Ground-Based Spectral Measurements of Solar Radiation (II) - Global and Diffuse Sky Radiation

Total Page:16

File Type:pdf, Size:1020Kb

Ground-Based Spectral Measurements of Solar Radiation (II) - Global and Diffuse Sky Radiation Ground-based Spectral Measurements of Solar Radiation (II) - Global and Diffuse Sky Radiation - by Keizo Murai, Masaharu Kobayashi, Ryozo Goto and Toyotaro Yamauchi Meteorological Research Institute, Tokyo (Received December 2, 1978) Abstract A newly designed spectro-pyranometer was used for the measurement of the global (direct+diffuse) and the diffuse sky radiation reaching the ground. By the subtraction of the diffuse component from the global radiation, we got the direct radiation compo- nent which leads to the spectral distribution of the optical thickness (extinction coeffi- cient) of the turbid atmosphere. The measurement of the diffuse sky radiation reveals the scattering effect of aerosols and that of the global radiation allows the estimation of total attenuation caused by scattering and absorption of aerosols. The effects of the aerosols are represented by the deviation of the real atmosphere measured from the Rayleigh atmosphere. By the combination of the measured values with those obtained by theoretical calculation for the model atmosphere, we estimated the amount of absorp- tion by the aerosols. Very strong absorption in the ultraviolet region was recognized. absorption alone. To clarify the character- 1. Introduction istics of absorption by the aerosols, it is In recent studies on the solar radiation, necessary to make some additional measure- many authors have investigated the absorp- ments of the solar radiation. And theoretical tion by the aerosol particles in the atmos- calculations are needed for comparison with phere (e. g. Drummond and Robinson, 1974 ; the measurements, assuming various values Robinson, 1962 and 1966 ; Liou and Sasamori, of the parameters contained in the transfer 1975). In them, the optical property of the equation in the turbid atmosphere. aerosol, especially the imaginary part of the For the purpose of studying the aerosol refractive index of the particle, is the es- absorption under various atmospheric condi- sential parameter to determine the amount tions, we made the spectral measurements of absorption by the aerosols. of the global and the diffuse sky radiation_ In a previous paper (Murai et al., 1977), at the ground surface, as well as of the we described the analysis of the measure- direct solar radiation. We further analysed ments of the direct solar radiation and the the data of the diffuse sky radiation with year-to-year variation of the extinction co- the aid of the theoretical calculation for the efficient of aerosols in Tokyo. The extinction model atmosphere. In this report, we de- coefficient thus obtained represents the total scribe the effects of the aerosols on the attenuation due to the scattering and the global and the diffuse sky radiation and absorption of the aerosols, but does not give estimate the absorption of solar radiation in us any information on the scattering or the the atmosphere. 2. Instruments and Measurement ation component. The direct componemt thus obtained for various optical air masses The spectro-pyranometer was used to was applied to the long method to derive measure the spectral distributions of global the spectral conversion factor corresponding and sky radiation reaching the ground. As to the extraterrestrial value of solar radi- the details of the instruments were explained ation. According to these conversion factors, in the previous paper (loc. cit.), our descrip- all measured values are represented by the tion of them will be necessarily brief. The fractions relative to the solar radiation in- instrument is composed of a double mono- cident on the unit horizontal surface at the chromator, an integrating sphere, a disk for top of the atmosphere. shielding the direct beam, an amplifier and a data recording system. A diffraction grat- ing and a quartz prizm are combined for 3. Results of Measurement building up the double monochromator, so The spectral distributions of the extinc- that the dispersion of wavelengths is nearly tion coefficient were calculated from the constant throughout the wavelength region direct components which were derived by for the measurement. The integrating sphere the subtraction described above. An example providing the receiving surface of incident of the relative values of the global, G(2), fluxes is attached to the entrance slit of the and the diffuse sky radiation, D(2), measured monochromator. The scanning of wave- is shown in Fig. 1. In the figure, GR(2) and lengths from 0.35 to 2.00 pm is performed by DR(2) represent the values of the global and a pulse motor with which we can fix the the diffuse sky radiation in the Rayleigh wavelength interval for the data sampling. atmosphere, respectively. An example of the The time needed for the scanning with wave- spectral extinction coefficient determined length interval 250A is about 10 min. and from the direct components is shown in Fig. during the scanning the light quantity enter-' 2. In the figure, the upper curve represents ing the monochromator is reduced by the the total extinction of the vertical column neutral density filters to get a suitable value of the atmosphere and the lower one the of photocurrent for the data recording. The extinction due to the aerosols. The hatched shade disk is for interrupting the direct area represents the ozone absorption in the beam radiation, and the global and the dif- Chappuis band. To get the spectral values fuse sky radiation were alternately measured of ozone absorption we used Vigroux's ab- with and without the disk respectively. sorption coefficients and the total amount The measurement was carried out in a of ozone obtained by routine observation at cloudless sky to clarify the effects of the Tateno (36°03'N; 140°08'E). To remove the aerosol particles on the solar radiation. The effect of water vapor absorption in the near data used for analysis were obtained from infrared region, we used the smooth curves measurements on six days during the period which pass through four measured values from January to March in 1978 in Tokyo. at 0.8, 1.05, 1.25 and 1.55 pm instead of the In these measurements, the sky was clear original measured curves. The absorption throughout the day and the time sequences at the above four wavelengths is negligibly of the global and the diffuse sky radiation small. were obtained by the continuous automatic According to the procedures described operation of the spectro-pyranometer. Thus above, we got the spectral distributions of we easily got the values for each component the aerosol extinction coefficient for all cases at the time corresponding to the optical air as shown in Fig. 3. For the sake of com- mass desired for the analysis. By the sub- parison, the distribution curve proportional traction of the diffuse component from the to 2. written in the figure. On average, global radiation we got the direct solar radi- the distributions in the shorter wavelength Fig., 1. Spectral distributions of global and diffuse sky radiation. C(A) and D(A) are measured distributions represented by the unit relative to the energy incident on the unit horizontal surface at the top of the atmosphere. G R(2) and D R(2) represent distribu- tions for the Rayleigh atmosphere. Fig. 2. Spectral distribution of the extinction Fig. 3. Spectral distributions of the aerosol coefficient calculated from the direct extinction coefficient obtained in the radiation component. r (A) represents the total extinction coefficient, rm(2) period of the measurement. the aerosol extinction coefficient. Hat- ched area shows the ozone absorption component. region are steeper and in the longer, flatter than 2-'-distribution. The size distributions corresponding to these extinction curves are calculated by using the inversion technique (Yamamoto and Tanaka, 1969) and are shown in Fig. 4. The absolute energy distributions of the global and the diffuse radiation meas- ured are represented in Fig. 5. The absolute values were obtained from the relative values represented in Fig. 1 as an example, multi- plied by the absolute values of solar radi- ation incident on the unit horizontal surface at the top of the atmosphere. We used the Table of the absolute energy of the extra- terrestrial solar radiation published by NASA (Thekaekara, 1971). In the figure, we can see that the spec- Fig. 5. Spectral distributions of the absolute tral distribution of the global radiation on energy of global and diffuse sky radi- Feb. 20, the most turbid case in our meas- ation. /0 represents the extrater- urements, is quite different from that on restrial irradiance, GR and DR the Jan. 25, the clearest case. For comparison, Rayleigh atmosphere, and G and D the distribution for the Rayleigh atmosphere the measured. is shown in the figure. The deficit of the measured values to those of the Rayleigh atmosphere generally increases with the in- crease of the extinction coefficient, and a part of it appears as the excess of the measured diffuse radiation reaching the ground over the Rayleigh case. The rest of the deficit is partly scattered out to the space and partly absorbed by the aerosols. The excess of diffuse radiation in the visible and the near infrared regions gener- ally increases with the increase of aerosol extinction, but in the region shorter than about 0.4 pm the excess becomes zero or nega- tive, the negative amount increasing with the increase of the extinction (See the following section). To compare the measurements with the theoretical calculations, the spectral dis- tributions of diffuse radiation for the model atmosphere are shown in Fig. 6 (Yamamoto, Tanaka and Ohta, 1974), in which the ex- tinction coefficient of aerosols, VM(2), is re- presented by Fig. 4. Size distributions of aerosol particles corresponding to the spectral distri- the refratictive index ii=-1.50-0.10i and butions of extinction coefficient re- =1.50-0.03i, and the surface albedo A,=0.15.
Recommended publications
  • Measurement of Radiation
    CHAPTER CONTENTS Page CHAPTER 7. MEASUREMENT OF RADIATION ........................................ 222 7.1 General ................................................................... 222 7.1.1 Definitions ......................................................... 222 7.1.2 Units and scales ..................................................... 223 7.1.2.1 Units ...................................................... 223 7.1.2.2 Standardization. 223 7.1.3 Meteorological requirements ......................................... 224 7.1.3.1 Data to be reported. 224 7.1.3.2 Uncertainty ................................................ 225 7.1.3.3 Sampling and recording. 225 7.1.3.4 Times of observation. 225 7.1.4 Measurement methods .............................................. 225 7.2 Measurement of direct solar radiation ......................................... 227 7.2.1 Direct solar radiation ................................................ 228 7.2.1.1 Primary standard pyrheliometers .............................. 228 7.2.1.2 Secondary standard pyrheliometers ............................ 229 7.2.1.3 Field and network pyrheliometers ............................. 230 7.2.1.4 Calibration of pyrheliometers ................................. 231 7.2.2 Exposure ........................................................... 232 7.3 Measurement of global and diffuse sky radiation ................................ 232 7.3.1 Calibration of pyranometers .......................................... 232 7.3.1.1 By reference to a standard pyrheliometer and a shaded
    [Show full text]
  • Solar Radiation Modeling and Measurements for Renewable Energy Applications: Data and Model Quality
    March 2003 • NREL/CP-560-33620 Solar Radiation Modeling and Measurements for Renewable Energy Applications: Data and Model Quality Preprint D.R. Myers To be presented at the International Expert Conference on Mathematical Modeling of Solar Radiation and Daylight—Challenges for the 21st Century Edinburgh, Scotland September 15–16, 2003 National Renewable Energy Laboratory 1617 Cole Boulevard Golden, Colorado 80401-3393 NREL is a U.S. Department of Energy Laboratory Operated by Midwest Research Institute • Battelle • Bechtel Contract No. DE-AC36-99-GO10337 NOTICE The submitted manuscript has been offered by an employee of the Midwest Research Institute (MRI), a contractor of the US Government under Contract No. DE-AC36-99GO10337. Accordingly, the US Government and MRI retain a nonexclusive royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for US Government purposes. This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof.
    [Show full text]
  • Heat Transfer and Thermal Modelling
    H0B EAT TRANSFER AND THERMAL RADIATION MODELLING HEAT TRANSFER AND THERMAL MODELLING ................................................................................ 2 Thermal modelling approaches ................................................................................................................. 2 Heat transfer modes and the heat equation ............................................................................................... 3 MODELLING THERMAL CONDUCTION ............................................................................................... 5 Thermal conductivities and other thermo-physical properties of materials .............................................. 5 Thermal inertia and energy storage ....................................................................................................... 7 Numerical discretization. Nodal elements ............................................................................................ 7 Thermal conduction averaging .................................................................................................................. 9 Multilayer plate ..................................................................................................................................... 9 Non-uniform thickness ........................................................................................................................ 11 Honeycomb panels .............................................................................................................................
    [Show full text]
  • An Overview and Issues of the Sky Radiometer Technology and SKYNET
    An overview and issues of the sky radiometer technology and SKYNET Teruyuki Nakajima1, Monica Campanelli2, Huizheng Che3, Victor Estellés2,4, Hitoshi Irie5, Sang-Woo Kim6, Jhoon Kim7, Dong Liu8, Tomoaki Nishizawa9, Govindan Pandithurai10, 5 Vijay Kumar Soni11, Boossarasiri Thana12, Nas-Urt Tugjsurn13, Kazuma Aoki14, Sujung Go7,15, Makiko Hashimoto1, Akiko Higurashi9, Stelios Kazadzis16, Pradeep Khatri17, Natalia Kouremeti16, Rei Kudo18, Franco Marenco19, Masahiro Momoi5,20, Shantikumar S. Ningombam21, Claire L. Ryder22, Akihiro Uchiyama9, Akihiro Yamazaki18. 10 1. Satellite Observation Center, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan 2. Consiglio Nazionale delle Ricerche, Istituto Scienze dell'Atmosfera e del Clima, via Fosso del Cavaliere, 100, 00133 - Roma, Italy 3. Centre for Atmosphere Watch And Services, CMA Chinese Academy of Meteorological 15 Sciences; 46 Zhong-Guan-Cun S. Ave., Beijing 100081, China 4. Dept. Física de la Terra i Termodinàmica, Universitat de València, Burjassot, Valencia, Spain 5. Center for Environmental Remote Sensing, Chiba University, Chiba 263-8522, Japan 6. School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, 20 Republic of Korea 7. Dept. of Atmospheric Sciences, Yonsei University, Seoul 03722, Republic of Korea 8. Center for Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China 9. National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, 25 Japan 10. Indian Institute of Tropical Meteorology, Ministry of Earth Sciences, Pune 411 008, India 11. Environment Monitoring & Research Centre, India Meteorological Department, Ministry of Earth Sciences, Mausam Bhawan, Lodi Road, New Delhi-110003, India 12.
    [Show full text]
  • Modeling Errors in Diffuse-Sky Radiation: Vector Vs. Scalar Treatment
    GEOPHYSICAL RESEARCH LETTERS, VOL. 25, NO. 2, Pages 135–138, JANUARY 15, 1998 Modeling errors in diffuse-sky radiation: Vector vs. scalar treatment A.A. Lacis, J. Chowdhary1, M.I. Mishchenko2, and B. Cairns1 NASA Goddard Institute for Space Studies, 2880 Broadway, New York, NY 10025 Abstract. Radiative transfer calculations that utilize the This would make the scalar approximation adequate for scalar approximation of light produce intensity errors as most cloud and aerosol radiance calculations. Moreover, large as 10% in the case of pure Rayleigh scattering. This in climate studies, where radiative fluxes and albedos are modeling error, which arises primarily from second order the quantities of interest, the integration over scattering scattering, is greatly reduced for flux and albedo results angle has the fortuitous effect of averaging out radiance because of error cancellation brought about by integration errors to the point where no one has seriously worried over scattering angle. However, polarized light scattered about the adequacy of the scalar approximation. Also, from an underlying ocean surface, or from atmospheric since climate related applications typically rely on relative aerosols, interacts with the pattern of Rayleigh scattered differences and radiative flux ratios, this tends to further polarization to distort the error cancellation and thus incur dilute the significance of potential errors that arise from larger flux and albedo errors. While addition of scattered the scalar approximation. radiation from clouds, aerosols or ground surface into the Recent comparisons of model results and observations Rayleigh atmosphere tends to reduce the magnitude of (e.g., Kato, et al., 1997; Kinne, et al. 1997; Charlock and scalar approximation intensity errors, the scalar errors in Alberta, 1996; Wild, et al.
    [Show full text]
  • Diffuse Solar Radiation and Associated Meteorological Parameters in India
    Ann. Geophysicae 14, 1051Ð1059 (1996) ( EGS Ð Springer-Verlag 1996 Di¤use solar radiation and associated meteorological parameters in India A. B. Bhattacharya1, S. K. Kar1, R. Bhattacharya2 1 Department of Physics, Kalyani University, Kalyani, West Bengal, 741 235, India 2 Centre of Advanced Study in Radio Physics and Electronics, Calcutta University, Calcutta, 700 009, India Received: 15 November 1995/Revised: 15 May 1996/Accepted: 27 May 1996 Abstract. Solar di¤use radiation data including global decades, but the data obtained so far are not enough radiation, shortwave and longwave balances, net radi- (Ideriah, 1992). Clouds are visible symbols of atmospheric ation and sunshine hours have been extensively analyzed activity and these are the seats of atmospheric electricity to study the variation of di¤use radiation with turbidity (Bhattacharya, 1994). No detailed analysis has yet been and cloud discharges appearing in the form of atmospher- made between the solar di¤use radiation, turbidity and ics over the tropics. Results of surface radiation measure- cloud discharges. We were thus prompted to study the ments at Calcutta, Poona, Delhi and Madras are presented variation of di¤use radiation with (1) turbidity and together with some meteorological parameters. The (2) cloud discharges appearing in the form of atmospher- monthly values of di¤use radiation and the monthly ratios ics over the tropics. of di¤use to global solar radiation have been examined, Solar radiation data for a period of 10 years from with a special emphasis in relation to the noise level of October 1982 to September 1992, including di¤use radi- atmospherics at Calcutta in the very low frequency band.
    [Show full text]
  • Development of Analytical Equations for Optimum Tilt of Two-Axis and Single- Axis Rotating Solar Panels for Clear-Atmosphere Condition" (2016)
    Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2016 Development of Analytical Equations for Optimum Tilt of Two- Axis and Single-Axis Rotating Solar Panels for Clear-Atmosphere Condition Gaurav Subhash Gugale Wright State University Follow this and additional works at: https://corescholar.libraries.wright.edu/etd_all Part of the Oil, Gas, and Energy Commons, and the Power and Energy Commons Repository Citation Gugale, Gaurav Subhash, "Development of Analytical Equations for Optimum Tilt of Two-Axis and Single- Axis Rotating Solar Panels for Clear-Atmosphere Condition" (2016). Browse all Theses and Dissertations. 1693. https://corescholar.libraries.wright.edu/etd_all/1693 This Thesis is brought to you for free and open access by the Theses and Dissertations at CORE Scholar. It has been accepted for inclusion in Browse all Theses and Dissertations by an authorized administrator of CORE Scholar. For more information, please contact [email protected]. DEVELOPMENT OF ANALYTICAL EQUATIONS FOR OPTIMUM TILT OF TWO-AXIS AND SINGLE-AXIS ROTATING SOLAR PANELS FOR CLEAR-ATMOSPHERE CONDITIONS A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Renewable and Clean Energy Engineering By GAURAV SUBHASH GUGALE B.E., University of Pune, India, 2014 2016 Wright State University WRIGHT STATE UNIVERSITY GRADUATE SCHOOL December 16, 2016 I HEREBY RECOMMEND THAT THE THESIS PREPARED UNDER MY SUPERVISION BY Gaurav Subhash Gugale ENTITLED Development of Analytical Equations for Optimum Tilt of Two-Axis and Single-Axis Rotating Solar Panels for Clear-Atmosphere Conditions BE ACCEPTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Science in Renewable and Clean Energy Engineering.
    [Show full text]
  • Comparative Study of Isotropic and Anisotropic Sky Models to Estimate Solar Radiation Incident on Tilted Surface: a Case Study for Bhopal, India
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Shukla, K. N.; Rangnekar, Saroj; Sudhakar, K. Article Comparative study of isotropic and anisotropic sky models to estimate solar radiation incident on tilted surface: A case study for Bhopal, India Energy Reports Provided in Cooperation with: Elsevier Suggested Citation: Shukla, K. N.; Rangnekar, Saroj; Sudhakar, K. (2015) : Comparative study of isotropic and anisotropic sky models to estimate solar radiation incident on tilted surface: A case study for Bhopal, India, Energy Reports, ISSN 2352-4847, Elsevier, Amsterdam, Vol. 1, pp. 96-103, http://dx.doi.org/10.1016/j.egyr.2015.03.003 This Version is available at: http://hdl.handle.net/10419/187817 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence.
    [Show full text]
  • An Overview of and Issues with Sky Radiometer Technology and SKYNET
    Atmos. Meas. Tech., 13, 4195–4218, 2020 https://doi.org/10.5194/amt-13-4195-2020 © Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License. An overview of and issues with sky radiometer technology and SKYNET Teruyuki Nakajima1, Monica Campanelli2, Huizheng Che3, Victor Estellés2,4, Hitoshi Irie5, Sang-Woo Kim6, Jhoon Kim7, Dong Liu8, Tomoaki Nishizawa9, Govindan Pandithurai10, Vijay Kumar Soni11, Boossarasiri Thana12, Nas-Urt Tugjsurn13, Kazuma Aoki14, Sujung Go7,15, Makiko Hashimoto1, Akiko Higurashi9, Stelios Kazadzis16, Pradeep Khatri17, Natalia Kouremeti16, Rei Kudo18, Franco Marenco19, Masahiro Momoi5,20, Shantikumar S. Ningombam21, Claire L. Ryder22, Akihiro Uchiyama9, and Akihiro Yamazaki18 1Satellite Observation Center, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba 305-8506, Japan 2Consiglio Nazionale delle Ricerche, Istituto Scienze dell’Atmosfera e del Clima, via Fosso del Cavaliere 100, 00133, Rome, Italy 3Key Laboratory of Atmospheric Chemistry of CMA, Chinese Academy of Meteorological Sciences, 46 Zhong-Guan-Cun S. Ave., Beijing 100081, China 4Dept. Física de la Terra i Termodinàmica, Universitat de València, Burjassot, València, Spain 5Center for Environmental Remote Sensing, Chiba University, Chiba 263-8522, Japan 6School of Earth and Environmental Sciences, Seoul National University, Seoul 08826, Republic of Korea 7Dept. of Atmospheric Sciences, Yonsei University, Seoul 03722, Republic of Korea 8Center for Atmospheric Optics, Anhui Institute of Optics and Fine Mechanics,
    [Show full text]
  • Aerosol Modelling : Spatial Distribution and Effects on Radiation
    Aerosol modelling : spatial distribution and effects on radiation Citation for published version (APA): Henzing, J. S. (2006). Aerosol modelling : spatial distribution and effects on radiation. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR601939 DOI: 10.6100/IR601939 Document status and date: Published: 01/01/2006 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Research Papers-Mechanics / Electrodynamics/Download/305
    WHY IS THE SKY BLUE? by Miles Mathis for the world is hollow and I have touched the sky Abstract: I will show that the current explanation is upside down. In researching this topic, I was surprised to find two different answers from two of the top mouthpieces of current physics. The top answer on a Yahoo search is by Philip Gibbs at the University of California, Riverside 1. It is that blue light is bent more than other colors. Gibbs shows us this illustration: Problem there is that we can move the Sun a few degrees and switch that effect. Just take the Sun above the first guy and he sees an unbent blue ray. The other guy sees a bent red ray. Light must be coming from all directions, not just the direction of the Sun, so this illustration is more than useless, it is misleading. Gibbs then shows it is air molecules, not dust, that do the bending, and he tells us that Einstein calculated in 1911 the scattering by molecules. These equations of Einstein are said to be “in agreement with experiment.” We are told, “the electromagnetic field of the light waves induces electric dipole moments in the molecules.” Gibbs then asks the million dollar question: “Why not violet?” If short wavelengths are bent more than long, then violet should be bent even more than blue, and the sky should be violet. He says it is due to the cones in our eyes. He shows the figure here and says that violet light stimulates red as well, making us see blue.
    [Show full text]
  • Modelling Hourly and Daily Diffuse Solar Radiation Using World-Wide Database Saima Muna Ww Ar
    MODELLING HOURLY AND DAILY DIFFUSE SOLAR RADIATION USING WORLD-WIDE DATABASE SAIMA MUNA WWAR B. Tech. in Petrochemical Engineering A thesis submitted in partial fulfilment of the requirements of Napier University for the degree of Doctor of Philosophy. April 2006 \ qodis J{e Wlio lias created tlie liea'CJens and tlie eartli and sends down water (rain) from tlie sRy, and tliere6y 6rouglit fortli fruits as pro'CJision foryou; andJ{e lias made tlie sliips to 6e of service to you, tliat tliey may sai[ tlirougli tlie sea 6y J{is Command; andJ{e lias made ri'CJers (afso) to 6e ofservice to you. jlndJ{e lias made tlie sun and tlie moon, 60tli constantfy pursuing tlieir courses, to 6e ofservice to you; andJ{e lias made tlie niglit and tlie day, to 6e of service to you. (Quran: Cliapter 14; Verses 32, 33) (])edicated to my P atlie'0 Prof ({ate) :M.unawwar )l1(Zo6airi Abstract ABSTRACT Solar energy is an alternative to fossil fuels for more sustainable and reliable energy options; with a huge potential to meet many times the present world energy demand. Readily available solar radiation data is a key to design and simulation of all solar energy applications. Whereas, global radiation is a frequently measured parameter, diffuse irradiance is often not measured, and therefore needs to be estimated from robust, reliable models. This research project aims to develop regional diffuse solar radiation models on both hourly and daily levels (using nine world-wide sites) for each of the following countries: India, Japan, Spain and UK.
    [Show full text]