Modelos O Metaforas

Total Page:16

File Type:pdf, Size:1020Kb

Modelos O Metaforas Carlos Reynoso – Crítica de la complejidad según Edgar Morin Modelos o metáforas: Crítica del paradigma de la complejidad de Edgar Morin Carlos Reynoso UNIVERSIDAD DE BUENOS AIRES GRUPO ANTROPOCAOS [email protected] http://carlosreynoso.com.ar Versión 4.0 - Febrero de 2009 1 – Introducción ........................................................................................................................ 2 2 - Los tres principios de inteligibilidad ................................................................................... 6 3 - Ciencia fácil – Complejidad al alcance de todos ............................................................... 19 4 – La contradicción y sus consecuencias............................................................................... 24 5 - El discreto encanto del error .............................................................................................. 30 6 - Las prisiones de la cosificación ......................................................................................... 41 7 - Bucles circulares, bucles recursivos y modelos................................................................. 48 8 - El azar como motor del cambio ......................................................................................... 54 9 - Dualismo y pensamiento laxo............................................................................................ 66 10 - Del sujeto al fin desagraviado ......................................................................................... 72 11 - Flechas y operadores teóricos .......................................................................................... 79 12 - Transdisciplina – El campo de la complejidad ................................................................ 83 13 - Escribir desde la complejidad – Conclusiones ................................................................ 98 Índice de imágenes ................................................................................................................ 106 Referencias bibliográficas ..................................................................................................... 107 1 Carlos Reynoso – Crítica de la complejidad según Edgar Morin 1 – Introducción Junto con la autopoiesis, el constructivismo radical, los sucesivos programas new age de Fritjof Capra y la discontinuada investigación social de segundo orden, la teoría moriniana constituye una de las formas discursivas que pasan por estar vinculadas a las teorías contem- poráneas de la complejidad y el caos, las mismas a las que hasta hace un tiempo llamábamos sistémicas. Debido a las connotaciones que despiertan sus noms de guerre ésta es la clase de teorías que el lector asocia de inmediato con algo sensible, sutil, innovador. Al abrigo de esa convicción, un buen número de sociólogos y antropólogos actúa como si pensara que con ha- cer referencia ocasional al pensamiento de Edgar Morin, yuxtaponer enfoques como él lo ha- ce, seguir alguno de sus lineamientos o atenerse al espíritu de sus máximas, alcanza para si- tuar un desarrollo teórico, cualquiera sea su objeto, en un plano de complejidad. No sería juicioso negar en bloque el rendimiento de una formulación semejante: los conjun- tos complejos de ideas (o de componentes a veces falibles, como lo han propuesto John von Neumann [1951] o Theodore Sturgeon [1953]) funcionan por lo general mejor que sus partes más débiles. Pero aunque unos cuantos usuarios del Método se han servido con creatividad y provecho de nociones allí tratadas, no es inusual que los morinianos militantes de línea más dura actúen de manera característicamente optimista, como si ese pensamiento aportara una metodología inmejorable y homologara técnicas más productivas de lo que sería el caso si se adoptara una estrategia basada en modelos reputados simples o en el mero sentido común; como si un mundo se les abriera, me han dicho alguna vez. El propósito de este ensayo es salir al cruce de esas pretensiones y señalar, desde las coorde- nadas de una inspección interna, las distancias que median entre un conjunto programático de especificaciones (como el que Morin no termina de ofrecer) y las elaboraciones de carácter formal que podrían ser instrumentales en una investigación empírica, algunas herramientas genuinas de complejidad entre ellas. El objetivo es destacar, en otras palabras, que si bien puede que se hayan abierto mundos –y no niego que así sea– son muchos más los mundos a los que la estrategia termina sistemáticamente negando acceso. Y que los mundos que se han abierto se fundan en aserciones de las cuales no todas son verdad. Cada vez que me toca impartir un seminario o conferencia sobre complejidad en el ámbito de las ciencias sociales (jamás en contextos de carácter más técnico) alguien acaba trayendo a colación el pensamiento de Morin. A juzgar por la devoción con que se lo considera, no son pocos los que creen que con las ideas morinianas y las heurísticas que ellas promueven ya se tiene bastante, y que en materia de complejidad no es necesario ni posible ir más lejos o buscar en otra parte. A esta altura de los tiempos, sin embargo, se me hace evidente que debi- do al conformismo que refrenda y a su propia disponibilidad como repositorio cristalizado de citas citables, la obra de Morin es más un obstáculo que un beneficio en la comprensión cabal de la complejidad. La hipótesis a probar aquí es que sus trabajos no ofrecen un soporte apro- piado para articular las técnicas complejas que existen en abundancia, de las que hablaré más adelante y de las que él omite toda referencia. Tampoco proporcionan una visión compleja en gran escala que tenga algo que decir que sea (simultáneamente) nuevo, consistente y sustan- cial, y que resulte congruente con la orientación que la ciencia ha tomado o con la naturaleza de las ideas que hoy es posible pensar. 2 Carlos Reynoso – Crítica de la complejidad según Edgar Morin El hecho es que el modelo moriniano elude todo tratamiento de las teorías y métodos del úl- timo cuarto de siglo en el terreno complejo y no logra retratar con fidelidad la literatura sisté- mica anterior. En tanto lectura científica se halla sobredeterminada por el afán de impartir premios y condenas en función de criterios sectarios que a fuerza de ser pequeños resultan consabidos1, y por el empeño de Morin de constituirse en el mediador por excelencia entre cierta región de la ciencia y las humanidades como si ningún otro pensador hubiera explora- do ese espacio. En la ejecución de este plan se estrella con unas ciencias duras que lo desbor- dan y se distrae en un despliegue enciclopédico que no guarda proporción con las destrezas especializadas requeridas en ese terreno. Su programa no sólo falla en el terreno algorítmico, como sería de esperar, sino también y sobre todo en el epistemológico. Como demostraré lue- go con la paciencia que haga falta, el estilo es impropio, las carencias fehacientes, los errores muchos. Empañada por estos factores, su erudición suena más ampulosa que elegante cada día que pasa y en estos tiempos de disponibilidad masiva de información su magnitud no luce tan admirable como alguna vez se creyó que era. Cuando Morin tomó la decisión de “detener la bibliografía”, hacia 1984, las teorías de la complejidad y el caos recién estaban comenzando a plasmarse; faltaban unos diez años para que la neurociencia cognitiva ganara momento, se comenzara a estudiar seriamente el córtex prefrontal y se fundara la neurociencia computacional y el modelado matemático del cerebro como la instancia cognitiva que le estaba faltando al conexionismo (Abraham y Ueda 2000; O’Reilly y Munakata 2000; Lytton 2002; Eliasmith y Anderson 2003; Borisyuk y otros 2005; Arbib 2003; Stein 2007). Prácticamente nada de estas disciplinas alcanzó a entrar en su mo- delo, a excepción de unos pocos datos curiosos sobre el cerebro que se hacen eco de la mis- ma vulgata que todos conocen (Morin 1988: 62-67, 95-108). Esas mismas ciencias se dispa- raron en sentidos que en poco se asemejan a los lineamientos centrales de su paradigma y que no fueron previstos en sus profecías. Todo esto ponderado, el libro que sigue no califica como lo que se acostumbra llamar una lectura crítica. Es más bien una crítica en estado puro en la que presupongo que el lector ya ha leído a Morin, por lo que me siento dispensado de elaborar una pedagogía sobre lo que él 1 Y que denotan exactamente el mismo cuadro de valores y el mismo provincianismo conspirativo que prevalecen en la cibernética de segundo orden de Heinz von Foerster, “nuestro Sócrates electrónico” como lo llama Morin (1999: 44) o “Heinz el Grande” como lo exalta Francisco Varela. Siempre que los nombres de estos autores se multiplican en la bibliografía o se mencionan en los agradecimientos, el perfil ideológico de las posturas que se han de preconizar se torna predecible. Morin suele confundir aserciones pregonadas por los grupos particulares que le dieron cabida (autopoiéticos, deutero-ciberné- ticos, prigoginianos y hologramáticos) con reseñas neutras y fidedignas del estado de avance del cam- po complejo en general. Quienes hospedaron a Morin en los Estados Unidos siempre fueron autores minoritarios respecto de las corrientes principales; en los tiempos que corren los pocos que no han muerto siguen activos, aunque se expresan ahora en el peculiar estilo aforístico, apto para new agers, que invade a los estudiosos crepusculares cuando toman distancia del trabajo de laboratorio. En mate- ria de ídolos científicos el panteón de
Recommended publications
  • Speed Gradient and Maxent Principles for Shannon and Tsallis Entropies
    Entropy 2015, 17, 1090-1102; doi:10.3390/e17031090 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Speed Gradient and MaxEnt Principles for Shannon and Tsallis Entropies Alexander L. Fradkov 1;2 and Dmitry S. Shalymov 2;* 1 Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, 61, Bolshoy ave. V.O., 199178 Saint-Petersburg, Russia; E-Mail: [email protected] 2 Mathematics and Mechanics Faculty, Saint-Petersburg State University, Universitetsky prospekt, 28, 198504 Saint-Petersburg, Russia * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +7-812-428-4210. Academic Editor: Giorgio Kaniadakis Received: 22 December 2014 / Accepted: 2 March 2015 / Published: 6 March 2015 Abstract: In this paper we consider dynamics of non-stationary processes that follow the MaxEnt principle. We derive a set of equations describing dynamics of a system for Shannon and Tsallis entropies. Systems with discrete probability distribution are considered under mass conservation and energy conservation constraints. The existence and uniqueness of solution are established and asymptotic stability of the equilibrium is proved. Equations are derived based on the speed-gradient principle originated in control theory. Keywords: Shannon entropy, Tsallis entropy, maximum entropy (MaxEnt) principle, non-linear kinetics, speed-gradient principle PACS classifications: 65.40.Gr; 05.45.-a; 02.30.Yy; 02.50.-r 1. Introduction The notion of entropy is widely used in modern statistical physics, thermodynamics, information theory, engineering, etc. In 1948, Claude Shannon [1] introduced the entropy of a probability distribution P (X) as X S(X) = − P (xi) log P (xi); (1) i Entropy 2015, 17 1091 where X is a discrete random variable with possible values fx1; :::; xng.
    [Show full text]
  • Synchronization in a Class of Fractional-Order Chaotic Systems
    Advances in Science, Technology and Engineering Systems Journal Vol. 6, No. 3, 146-154 (2021) ASTES Journal www.astesj.com ISSN: 2415-6698 Special Issue on Multidisciplinary Sciences and Engineering Synchronization in a Class of Fractional-order Chaotic Systems via Feed- back Controllers: a Comparative Study Juan Luis Mata-Machuca* Instituto Politecnico Nacional, UPIITA, Department of Advanced Technologies, Mexico City, 07340, Mexico ARTICLEINFOABSTRACT Article history: In this paper a synchronization methodology of two fractional-order chaotic oscillators under Received: 03 December, 2020 the framework of identical synchronization and master-slave configuration is introduced. The Accepted: 04 May, 2021 proposed methodology is based on a fractional-order feedback control design under the frame Online: 20 May, 2021 of control theory, the feedback controllers provide synchronization convergence. A comparative study between a proportional control, a nonlinear fractional-order proportional-integral control Keywords: and an active control is presented. The above is showed via an analysis of the dynamic of Fractional-order chaotic the called synchronization error. Numerical experiments using the mathematical model of the system fractional-order unified chaotic system and its equivalent electronic circuit corroborate the Proportional control satisfactory results of the proposed schemes. Nonlinear fractional-order PI control Active control Master-slave synchronization Equivalent electronic circuit 1 Introduction that two seemingly random and unpredictable chaotic behaviors can converge in a single trajectory, new expectations arose around chaos theory, trying to solve its control, understanding and prediction. A significant development of chaos occurred after the publication by Lorenz [1] of a work related with the existence of non-periodic The synchronization of chaotic systems consists of coupling solutions in a model formed by nonlinear differential equations.
    [Show full text]
  • Modelling Non-Equilibrium Thermodynamic Systems from The
    Downloaded from http://rsta.royalsocietypublishing.org/ on January 23, 2017 Modelling non-equilibrium thermodynamic systems from rsta.royalsocietypublishing.org the speed-gradient principle Tatiana A. Khantuleva1,2 and Dmitry S. Shalymov1,2 Research 1Mathematics and Mechanics Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia Cite this article: Khantuleva TA, Shalymov 2The Laboratory ‘Control of Complex Systems’,Institute of Problems DS. 2017 Modelling non-equilibrium of Mechanical Engineering RAS, Saint-Petersburg, Russia thermodynamic systems from the speed-gradient principle. Phil.Trans.R.Soc.A DSS, 0000-0002-8794-7306 375: 20160220. http://dx.doi.org/10.1098/rsta.2016.0220 The application of the speed-gradient (SG) principle to the non-equilibrium distribution systems far away from thermodynamic equilibrium is investigated. The Accepted: 24 November 2016 options for applying the SG principle to describe the non-equilibrium transport processes in real-world One contribution of 15 to a theme issue environments are discussed. Investigation of a non- equilibrium system’s evolution at different scale ‘Horizons of cybernetical physics’. levels via the SG principle allows for a fresh look at the thermodynamics problems associated with Subject Areas: the behaviour of the system entropy. Generalized cybernetics, statistical physics, dynamic equations for finite and infinite number thermodynamics of constraints are proposed. It is shown that the stationary solution to the equations, resulting Keywords: from the SG principle, entirely coincides with the differential entropy, maximum entropy locally equilibrium distribution function obtained by principle, speed-gradient principle Zubarev. A new approach to describe time evolution of systems far from equilibrium is proposed based on application of the SG principle at the intermediate Author for correspondence: scale level of the system’s internal structure.
    [Show full text]
  • Control Systems Magazine, IEEE
    2004 IEEE FELLOWS Election to the grade of IEEE Fellow acknowledges outstanding contributions and exceptional professional distinction. We are pleased to present the IEEE Control Systems Society Members who have been accorded this honor for 2004. Er-Wei Bai University of Iowa, Iowa City, USA For contributions to system identification and parameter estimation. Er-Wei Bai was educated at Fudan University, Shanghai Jiaotong University, and the Universi- ty of California at Berkeley. He is a professor of electrical and computer engineering at the University of Iowa where he teaches and conducts research in system identification, con- trols, and their applications. Prof. Bai participates in IFAC and IEEE Control Systems Society activities and is author and coauthor of 100 journal papers. Gary J. Balas University of Minnesota, Minneapolis, USA For contributions to robust control techniques for aerospace vehicles. Gary Balas is a professor of aerospace engineering and mechanics, director of graduate stud- ies, and codirector of the Control Science and Dynamical Systems Department at the Univer- sity of Minnesota. He received his B.Sc. and M.S. from the University of California, Irvine, in 1982 and 1984, respectively, and his Ph.D. from the California Institute of Technology in 1989. His research interests are in robust control, real-time system, flight control, and industrial application of robust control methods. Prof. Balas held a McKnight-Land Grant Professorship at the University of Minnesota from 1993–1995, received the Outstanding Young Investigator Award from the ASME Dynamic Systems and Control Division in 1999, and the Institute of Technology George Taylor Distinguished Research Award, University of Minnesota, in 2003.
    [Show full text]
  • Feedback Traps for Virtual Potentials
    Feedback traps for virtual potentials MomˇciloGavrilov1∗ and John Bechhoefer1;2y 1Department of Physics, Simon Fraser University, Burnaby, British Columbia, V5A 1S6, Canada 2Kavli Institute for Theoretical Physics China CAS, Beijing, 100190, China Feedback traps are tools for trapping and manipulating single charged objects, such as molecules in solution. An alternative to optical tweezers and other single-molecule techniques, they use feedback to counteract the Brownian motion of a molecule of interest. The trap first acquires information about a molecule's position and then applies an electric feedback force to move the molecule. Since electric forces are stronger than optical forces at small scales, feedback traps are the best way to trap single molecules without \touching" them. Feedback traps can do more than trap molecules: They can also subject a target object to forces that are calculated to be the gradient of a desired potential function U(x). If the feedback loop is fast enough, it creates a virtual potential whose dynamics will be very close to those of a particle in an actual potential U(x). But because the dynamics are entirely a result of the feedback loop| absent the feedback, there is only an object diffusing in a fluid|we are free to specify and then manipulate in time an arbitrary potential U(x; t). Here, we review recent applications of feedback traps to studies on the fundamental connections between information and thermodynamics, a topic where feedback plays an even more-fundamental role. We discuss how recursive maximum likelihood techniques allow continuous calibration, to compensate for drifts in experiments that last for days.
    [Show full text]
  • Control of Chaotic Systems - A.L
    CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. XIII- Control of Chaotic Systems - A.L. Fradkov CONTROL OF CHAOTIC SYSTEMS A.L. Fradkov Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, RUSSIA Keywords: Chaos, chaotization, nonlinear systems, nonlinear control, partial stability, recurrence, stabilization, feedforward control, periodic excitation, Melnikov function, controlled Poincaré map, Ott-Grebogi-Yorke (OGY) method, Pyragas method, delayed feedback, Lurie system, Lyapunov function, synchronization Contents 1. Introduction 2. Notion of chaos 3. Models of controlled systems and control goals 4. Methods of controlling chaos: continuous-time systems 4.1. Feedforward Control by Periodic Signal 4.2. Linearization of Poincaré Map (OGY Method) 4.3. Delayed Feedback 4.4. Linear and Nonlinear Control 4.5. Adaptive Control 5. Discrete-time Control 6. Neural networks 7. Fuzzy systems 8. Control of chaos in distributed systems 9. Chaotic mixing 10. Generation of chaos (chaotization) 11. Other problems 12. Conclusions Acknowledgements Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The field related to control of chaotic systems was rapidly developing during the 1990s. Its state-of-the-artSAMPLE in the beginning of the 21stCHAPTERS century is presented in this article. Necessary preliminary material is given related to notion and properties of chaotic systems, models of the controlled plants and control goals. Several major branches of research are discussed in detail: feedforward or “nonfeedback” control (based on periodic excitation of the system); OGY method (based on linearization of Poincaré map); Pyragas method (based on time-delay feedback); traditional control engineering methods of linear, nonlinear and adaptive control; neural networks; fuzzy control. Some unsolved problems concerning the justification of chaos control methods are presented.
    [Show full text]
  • Fradkov A., Ananyevsky M., Efimov A. Cybernetical Physics and Control Of
    CYBERNETICAL PHYSICS AND CONTROL OF MOLECULAR SYSTEMS1 Alexander Fradkov, Mikhail Ananyevsky and Alexander Efimov Institute for Problems of Mechanical Engineering of RAS, St.Petersburg, Russia, 1. INTRODUCTION. PHYSICS AND CYBERNETICS Looking into the past. Encyclopedias define physics as the science studying the Nature, specifically its basic and most universal properties. The age of physics is about two millenia, and its history may be traced back to ancient times. Indeed, the term ``Physics'' meaning ``Nature'' in Greek was introduced by Aristotle. Cybernetics is much younger and the date of its birth is known precisely. Though the term also was coined in the Ancient Greece, the foundation of cybernetics as a science is associated with publishing the seminal Norbert Wiener's book [1] in 1948. Wiener defined cybernetics as the science of con- trol and communication in animal and machine. Novadays cybernetics is un- derstood as control and steering theory in a broad sense, including different methods and approaches born within control theory during half of century of its extensive development, such as identification, estimation, filtering, infor- mation theory, optimization, pattern recognition, etc [2]. Both physics and cybernetics were emerging areas in the XX century and contributed a lot into modern science. However, cybernetical terms were rare guests at the pages of physical journals until recently; its influence on physical researches has been neglectible. The reason lies, perhaps, in totally different methodologies of the two sciences. Physics (e.g. mechanics) is a classical descriptive science, while cybernetics (e.g. control theory) represents a sort of paradigm for prescriptive sciences [3]. It means that the main aim of physics is to describe and analyze a natural system, while the aim of cybernetics is to transform a system by means of controlling action in order to achieve its pre- scribed behavior.
    [Show full text]
  • Control of Chaos and Bifurcations - Alexander L
    CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XIII- Control of Chaos and Bifurcations - Alexander L. Fradkov and Guanrong Chen CONTROL OF CHAOS AND BIFURCATIONS Alexander L. Fradkov Institute for Problems of Mechanical Engineering, Russian Academy of Sciences, St. Petersburg, Russia Guanrong Chen Center for Chaos and Complex Networks, City University of Hong Kong, China Keywords: Chaos, bifurcation, nonlinear system, nonlinear control, partial stability, recurrence, feedforward control, periodic excitation, feedback control, controlled Poincaré map, Ott-Grebogi-Yorke (OGY) method, Pyragas method, delayed feedback, synchronization, chaotization, anti-control of chaos. Contents 1. Introduction 2. Features of chaos 3. Methods of chaos control 3.1. Feedforward Control by Periodic Signal 3.2. Linearization of Poincaré Map (OGY Method) 3.3. Delayed Feedback (Pyragas Method) 3.4. Linear and Nonlinear Control 3.5. Robust, Adaptive and Intelligent Control 3.6. Generation of Chaos (Chaotization) 4. Bifurcations control 4.1. Feedback Control 4.2. Washout-Filter-Aided Control 4.3. Normal-Form-Based Control 4.4. Frequency-Domain Method 5. Applications in science 5.1. Physics 5.2. Mechanics 5.3. Chemistry 5.4. Economy 5.5. Medicine 6. ApplicationsUNESCO in Technology – EOLSS 6.1. Mechanical Engineering 6.2. Electrical andSAMPLE Power Engineering CHAPTERS 6.3. Communication and Information 6.4. Chemical and Material Engineering 6.5. Miscellaneous Applications 7. Prospects of the field 8. Conclusions Acknowledgements Glossary Bibliography Biographical Sketches ©Encyclopedia of Life Support Systems (EOLSS) CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XIII- Control of Chaos and Bifurcations - Alexander L. Fradkov and Guanrong Chen Summary The research field of chaotic systems control has seen rapid development since the late 1980s.
    [Show full text]
  • CYBERNETICS 2.0 Dmitry A. Novikov Institute of Control Sciences
    Novikov D.A. Cybernetics 2.0 // Advances in Systems Science and Application. 2016. Vol. 16. No. 1. P. 1 – 18. CYBERNETICS 2.0 Dmitry A. Novikov Institute of Control Sciences, Moscow, Russia Moscow Institute of Physics and Technology, Moscow, Russia The evolution of cybernetics (from N. Wiener to the present day) is briefly considered. A new de- velopment stage of cybernetics (the so-called cybernetics 2.0) is discussed as a science on general regu- larities of systems organization and control. The author substantiates the topicality of elaborating a new branch of cybernetics, i.e., Organization theory (O3) which studies an organization as a property, pro- cess and system. Keywords: cybernetics, organization, system, control. 1. Cybernetics of N. Wiener This section is intended to consider in brief the history of cybernetics and describe “classical” cy- bernetics. Let us call it “cybernetics 1.0”. CYBERNETICS (from the Greek κυβερνητική “governance,” κυβερνώ “to steer, navigate or gov- ern,” κυβερνη “an administrative unit; an object of governance containing people”) is the science of general regularities of control and information transmission processes in different systems, whether machines, animals or society. Cybernetics studies the concepts of control and communication in living organisms, machines and organizations including self-organization. It focuses on how a (digital, mechanical or biological) system processes information, responds to it and changes or being changed for better functioning (including control and communication). Cybernetics is an interdisciplinary science. It originated “at the junction” of mathematics, logic, semiotics, physiology, biology and sociology. Among its inherent features, we mention analysis and revelation of general principles and approaches in scientific cognition.
    [Show full text]
  • Arxiv:1809.09562V2 [Quant-Ph] 30 Apr 2019 Sian Academy of Sciences Within the Project No
    KROTOV METHOD FOR OPTIMAL CONTROL IN CLOSED QUANTUM SYSTEMS O. V. Morzhin1 and A. N. Pechen2 April 30, 2019 1 Steklov Mathematical Institute of Russian Academy of Sciences (Moscow), Senior Re- searcher. E-mail: [email protected] 2 Steklov Mathematical Institute of Russian Academy of Sciences (Moscow), Head of the Department of Mathematical Methods for Quantum Technologies; National University of Science and Technology “MISIS” (Moscow), Department of Mathematics, Leading Re- searcher. E-mail: [email protected] (corresponding author) Dedicated to the bright memory of Prof. Vadim F. Krotov AMS 2010 Mathematics Subject Classification. Primary 81Q93; Secondary 49Mxx, 35Q40, 93C15 UDC 517.958 Abstract Mathematical problems of optimal control in quantum systems attract high interest in connection with fundamental questions and existing and prospective applications. An important problem is the development of methods for constructing controls for quantum systems. One of the commonly used methods is the Krotov method initially proposed beyond quantum control in the articles by V.F. Krotov and I.N. Feldman (1978, 1983). The method was used to develop a novel approach for finding optimal controls for quan- tum systems in [D.J. Tannor, V. Kazakov, V. Orlov, In: Time-Dependent Quantum Molecular Dynamics, Boston, Springer, 347–360 (1992)] and [J. Soml´oi,V.A. Kaza- kov, D.J. Tannor, Chem. Phys., 172:1, 85–98 (1993)], and in many works of various scientists, as described in details in this review. The review discusses mathematical aspects of this method for optimal control of closed quantum systems. It outlines var- ious modifications with respect to defining the improvement function (which in most cases is linear or linear-quadratic), constraints on control spectrum and on the states of a quantum system, regularizers, etc.
    [Show full text]
  • Implementation of Partial Synchronization of Different Chaotic Systems by Field Programmable Gate Array
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by DSpace@IZTECH Institutional Repository Implementation of Partial Synchronization of Different Chaotic Systems by Field Programmable Gate Array Can Eroglu˘ F. Acar Savacı Department of Electrical and Department of Electrical and Electronics Engineering Electronics Engineering Izmir Institute of Technology Izmir Institute of Technology Izmir, Turkey 35430 Izmir, Turkey 35430 Email: [email protected] Email: [email protected] Abstract—In this study, the synchronization of the master- system is implemented by the help of ISE and FUSE programs. slave systems has been achieved and implemented on Field Finally, in Section V, conclusions are presented. Programmable Gate Array (FPGA). In this paper, the master system and the slave system have been chosen as Lorenz and Rossler systems, respectively. The feedback control rule has been derived by feedback linearization method. By feedback II. SYNCHRONIZATION PROBLEM linearization, the coordinate transformation has been achieved then the control command for synchronization has been obtained. In this section, the partial synchronization problem in the In order to implement designed synchronized system, Matlab Simulink design of the system has been translated to Xilinx System sense of exact synchronization and practical synchronization Generator design to generate Very-High-Speed Integrated Circuits will be considered. The definitions given below describes Hardware Description Language (VHDL) code which is used to exact synchronization, practical synchronization and partial produce bitstream file. By Xilinx Integrated Software Environment synchronization, respectively. (ISE) program, VHDL code is converted to bitstream file which has been embedded into FPGA by Field Upgradeable Systems Environment (FUSE).
    [Show full text]
  • |||GET||| Application of New Cybernetics in Physics 1St Edition
    APPLICATION OF NEW CYBERNETICS IN PHYSICS 1ST EDITION DOWNLOAD FREE Oleg Kupervasser | 9780128133187 | | | | | Application of New Cybernetics in Physics This aids the reader in solving problems that were solved incorrectly or have not been solved. Principal Paradoxes of Quantum Mechanics 4. Flexible - Read on multiple operating systems and devices. The Novikov-Curzon-Ahlborn process is also optimal in the sense of minimal dissipation. Wiley-VCH, If you wish to Application of New Cybernetics in Physics 1st edition a tax exempt order please contact us. Typically, some parameters of physical systems are unknown and some Application of New Cybernetics in Physics 1st edition are not available for measurement. Kupervasser Ph D Thesis Interface growth processes. Bythis paper by Ott, Grebogi and Yorke [1] had been quoted over times whilst the total number of papers relating to control of chaos exceeded by the beginning of the 21st century, with papers per year being published in peer reviewed journals. Otherwise, if the dissipation degree is given, Application of New Cybernetics in Physics 1st edition process corresponds to the maximum entropy principle. Such a class of control goals can be related to problems of dissociation, ionization of molecular systems, escape from a potential well, chaotization, and other problems related to the growth of the system energy and its possible phase transition. Synergetic Models of Unpredictable Systems. Research objectives in cybernetical physics are frequently formulated as analyses of a class of possible system state changes under external controlling actions of a certain class. Ott, Grebogi and Yorke [1] and their followers introduced a new class of control goals not requiring any quantitative characteristic of the desired motion.
    [Show full text]