The Wiener Index: Development and Applications *
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Branching in Graphs and Molecules*
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Applied Mathematics 19 (1988) 65-83 65 North-Holland BRANCHING IN GRAPHS AND MOLECULES* Steven H. BERTZ A T&T Bell Laboratories, Murray Hill, NJ 07974, USA Received 9 October 1985 Revised 9 August 1986 Branching at a point is defined in terms of the degrees of the central points in the star graphs, K ,,nr n = 0,1,2,3, . As atoms are added to a structure (i.e., as points are added to a graph), the new structure in which the atom has been affixed to the precursor atom with the higher degree is the more branched. A branching index consistent with this axiom is B,,,=BR + B,+ r+s, where B,, B,, and B, are the branching indices of the new structure and two precursor struc- tures, respectively, and r and s are the degrees of the precursor atoms before they are connected by a bond (line). If B, = 0 for methane, then for other molecules it is simply equal to the number of pairs of adjacent bonds, or the number of lines in the line graph of the molecular graph. The iterated line graphs are then used to obtain a more complete ordering. Our results are compared to those of other approaches and help clarify branching and its relation to chemical properties such as boiling point. The subject of branching has received considerable attention in the chemical literature over the past ca. 40 years [2,6-9,13-16,19-28,341. -
Chemical Applications of Graph Theory 8 Kimberly Jordan Burch Department of Mathematics, Indiana University of Pennsylvania, Indiana, PA, United States
CHAPTER Chemical applications of graph theory 8 Kimberly Jordan Burch Department of Mathematics, Indiana University of Pennsylvania, Indiana, PA, United States 1 INTRODUCTION Chemical graph theory applies this branch of mathematics to model molecules in order to study their various physical properties. A graph G = (V, E) consists of a set V of vertices (or nodes) and a set E of unordered pairs of distinct elements of V, which are the edges. In chemistry, the atoms of a molecule are represented by the vertices and the chemical bonds are represented by the edges. The resulting graph is often called a chemical graph. When studying alkanes which have the chemical formula CnH2n+2, the hydrogen atoms are removed from the graph resulting in what is known as a hydrogen-depleted molecular graph or a carbon tree. Since each carbon has four bonds and each hydrogen has one bond, no information about the molecule is lost by removing the hydrogen atoms. The resulting graph is in fact easier to study since the geometric structure of the alkane is more apparent. For example, a rendering of 2,2,4-trimethylpentane is given in Fig. 1. The chemical graph of 2,2,4- trimethylpentane is given in Fig. 2. The vertex set of the graph in Fig. 2 is V ={a, b, c, d, e, f , g, h}, and the edge set of this graph is given by E = {ab, bc, cd, de, bf , bg, dh}.Thedegree of a vertex v is the number of edges attached to vertex v and is denoted deg(v). -
Search for Useful Graph Theoretical Invariants of Molecular Structure
60 J. Chem. In$ Comput. Sci. 1988, 28, 60-68 Search for Useful Graph Theoretical Invariants of Molecular Structure MILAN RANDIe,+ PETER J. HANSEN,* and PETER C. JURS* Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802 Received July 10, 1987 We have reexamined several graph theoretical invariants that have been used in the past in discussions of structure-property and structure-activity correlations in the search for optimal single-variabledescriptors for molecular structures. We found that judicious selection of the functional form for a correlation can lead to significant improvements in the correlations. The approach is illustrated with the connectivity index, the molecular ID number, the Wiener number, and the Hosoya topological index. We review the most suitable forms for the considered indices for correlations with boiling point. These findings have been further supported by considering alternative (polynomial expansion) models. The best results are about 2-3 times better (when measured by the magnitude of the standard deviation) than the best considered previously. INTRODUCTION Table I. Selection of Graph Theoretical Indices, Their Origin, and Their Structural Foundation The starting point in many theoretical considerations con- graph theoretical cerns the choice of the basis for the description of the system invariant name/symbol comments and ref under examination. In quantum chemical computations the basis means the selection of the orbitals (atomic) from which path numbers Pi ref 25 nonadjacent bonds P(W ref 3 and 7 one builds molecular wave functions, and the orbitals con- (matching) sidered in the past included Slater-type atomic orbitals, dou- Z = XdG,k) ble-zeta STO, Hermite-type extensions of STO, Gaussian sum of path W ref 2 atomic orbitals and contracted Gaussian sets, Hylaraas or- lengths bitals, geminals, etc. -
Biochem Press
Internet Electronic Journal of Molecular Design 2003, 2, 375–382 ISSN 1538–6414 BioChem Press http://www.biochempress.com Internet Electronic Journal of Molecular Design June 2003, Volume 2, Number 6, Pages 375–382 Editor: Ovidiu Ivanciuc Special issue dedicated to Professor Haruo Hosoya on the occasion of the 65th birthday Part 10 Guest Editor: Jun–ichi Aihara Statisco–Mechanical Aspect of the Hosoya Index Hideyuki Narumi 13–2 Higashi–15 Kita–11 Higashi–ku, Sapporo 065–0011 Japan Received: July 31, 2002; Accepted: October 7, 2002; Published: June 30, 2003 Citation of the article: H. Narumi, Statisco–Mechanical Aspect of the Hosoya Index, Internet Electron. J. Mol. Des. 2003, 2, 375–382, http://www.biochempress.com. Copyright © 2003 BioChem Press H. Narumi Internet Electronic Journal of Molecular Design 2003, 2, 375–382 Internet Electronic Journal BioChem Press of Molecular Design http://www.biochempress.com Statisco–Mechanical Aspect of the Hosoya Index# Hideyuki Narumi* 13–2 Higashi–15 Kita–11 Higashi–ku, Sapporo 065–0011 Japan Received: July 31, 2002; Accepted: October 7, 2002; Published: June 30, 2003 Internet Electron. J. Mol. Des. 2003, 2 (6), 375–382 Abstract By using the partition function of a graph new topological indices, the bond index, B, and the connective index, C, are defined for analyzing the statisco-mechanical aspect of the Hosoya index, Z (here denoted by H). By comparing these three indices, B, C, and H for small graphs representing the carbon atom skeletons of hydrocarbon molecules, the physical meaning of H was found to be clarified by C. Keywords. Hosoya index; connective index; partition function; statisco-mechanical theory; topological index; structural descriptor; molecular graph.