Axis Scientific Larynx & Tongue A-106119

Total Page:16

File Type:pdf, Size:1020Kb

Axis Scientific Larynx & Tongue A-106119 Axis Scientific Larynx & Tongue A-106119 44. Superior Longitudinal 11. Triticeal Cartilage 15. Aryepiglottic Fold Muscle 43. Vallate Papillae 45. Transverse 46. Lingual Tonsil Muscle 29. Mandible 29. Mandible 11. Triticeal 15. Aryepiglottic Fold Cartilage 10. Corniculate Cartilage 43. Vallate Papillae 32. Major 12. Oblique Arytenoid Muscle Sublingual 34. Lingual Duct 09. Arytenoid Cartilage Nerve 33. Minor Sublingual Duct 42. Foliate Papillae 38. Genioglossus 13. Transverse Muscle Arytenoid Muscle 39. Geniohyoid Muscle 14. Posterior Cricoarytenoid 35. Submandibular Muscle Ganglion 26. Superior Thyroid Artery 32. Major 23. Parathyroid Sublingual Gland Duct 41. Dorsum of Tongue 31. Submandibular Gland 15. Aryepiglottic Fold 30. Sublingual 36. Styloglossus Gland Muscle 24. Superior 18. Laryngeal Vestibule Laryngeal Nerve 38. Genioglossus Muscle 25. Superior 08. Epiglottic Cartilage Laryngeal Artery 37. Hyoglossus Muscle 04. Median Thyrohyoid Ligament 27. Thyrohyoid Membrane 16. Vestibular Fold 28. Thyrohyoid Muscle 19. Ventricle of Larynx 01. Hyoid Bone 07. Cricothyroid Muscle 03. Thyrohyoid 22. Thyroid Gland Membrane 17. Vocal Fold 02. Thyroid Cartilage 25. Recurrent Laryngeal Nerve 06. Cricothyroid Ligament 20. Infraglottic Cavity 05. Cricoid Cartilage 21. Trachea 01. Hyoid Bone 24. Superior Laryngeal Nerve 02. Thyroid Cartilage 25. Recurrent Laryngeal Nerve 03. Thyrohyoid Membrane 26. Superior Thyroid Artery 04. Median Thyrohyoid Ligament 27. Thyrohyoid Membrane 05. Cricoid Cartilage 28. Thyrohyoid Muscle 06. Cricothyroid Ligament 29. Mandible 07. Cricothyroid Muscle 30. Sublingual Gland 08. Epiglottic Cartilage 31. Submandibular Gland 09. Arytenoid Cartilage 32. Major Sublingual Duct 33. Minor Sublingual Duct 10. Corniculate Cartilage 34. Lingual Nerve 11. Triticeal Cartilage 35. Submandibular Ganglion 12. Oblique Arytenoid Muscle 36. Styloglossus Muscle 13. Transverse Arytenoid Muscle 37. Hyoglossus Muscle 14. Posterior Cricoarytenoid Muscle 38. Genioglossus Muscle 15. Aryepiglottic Fold 39. Geniohyoid Muscle 16. Vestibular Fold 40. Mylohyoid Muscle 17. Vocal Fold 41. Dorsum of Tongue 18. Laryngeal Vestibule 42. Foliate Papillae 19. Ventricle of Larynx 43. Vallate Papillae 20. Infraglottic Cavity 44. Superior Longitudinal Muscle 21. Trachea 45. Transverse Muscle 22. Thyroid Gland 46. Lingual Tonsil 23. Parathyroid Gland 47. Epiglottic Vallecula © 2020 AXIS SCIENTIFIC.
Recommended publications
  • Larynx Anatomy
    LARYNX ANATOMY Elena Rizzo Riera R1 ORL HUSE INTRODUCTION v Odd and median organ v Infrahyoid region v Phonation, swallowing and breathing v Triangular pyramid v Postero- superior base àpharynx and hyoid bone v Bottom point àupper orifice of the trachea INTRODUCTION C4-C6 Tongue – trachea In women it is somewhat higher than in men. Male Female Length 44mm 36mm Transverse diameter 43mm 41mm Anteroposterior diameter 36mm 26mm SKELETAL STRUCTURE Framework: 11 cartilages linked by joints and fibroelastic structures 3 odd-and median cartilages: the thyroid, cricoid and epiglottis cartilages. 4 pair cartilages: corniculate cartilages of Santorini, the cuneiform cartilages of Wrisberg, the posterior sesamoid cartilages and arytenoid cartilages. Intrinsic and extrinsic muscles THYROID CARTILAGE Shield shaped cartilage Right and left vertical laminaà laryngeal prominence (Adam’s apple) M:90º F: 120º Children: intrathyroid cartilage THYROID CARTILAGE Outer surface à oblique line Inner surface Superior border à superior thyroid notch Inferior border à inferior thyroid notch Superior horns à lateral thyrohyoid ligaments Inferior horns à cricothyroid articulation THYROID CARTILAGE The oblique line gives attachement to the following muscles: ¡ Thyrohyoid muscle ¡ Sternothyroid muscle ¡ Inferior constrictor muscle Ligaments attached to the thyroid cartilage ¡ Thyroepiglottic lig ¡ Vestibular lig ¡ Vocal lig CRICOID CARTILAGE Complete signet ring Anterior arch and posterior lamina Ridge and depressions Cricothyroid articulation
    [Show full text]
  • How the Larynx (Voice Box) Works
    How the Larynx (Voice Box) Works Charles R. Larson, PhD If you love opera, or if you admire the voices of pop singers such as Celine Dion or Barbra Streisand, you may have wondered how it is these marvelous singers are able to create such beautiful music with this instrument we call the human voice. You may also know of someone who has a bad voice or has had to have their voice box, or larynx, removed because of illness or injury. The larynx is a critical organ of human speech and singing, and it serves important biological functions as well. Let's have a look at the larynx to understand its functions, what it looks like and how it works. It is thought that the same factors that favored the evolution of air‐breathing animals on earth led to the evolution of the larynx. Lungs are comprised of very delicate tissues that must be maintained within strict biological limits, that is, temperature, humidity and freedom from foreign particles. Thus, along with the first air‐breathing animals, there appeared a primitive sort of larynx, whose one and only function was protection of the lung. This function remains the most important of those the larynx has assumed in subsequent evolutionary developments. Now, of course we recognize that the larynx is critical for human speech and singing. But we also should realize that the larynx is important for swallowing, coughing, vomiting and eliminating contents of the abdomen. If you have ever felt your 'Adam's Apple', then you know where the larynx is.
    [Show full text]
  • Reverse Phonation -Physiologic and Clinical Aspects of This Speech Voice
    Rev Bras Otorrinolaringol 2007;73(2):271-7. REVIEW ARTICLE Reverse phonation - physiologic and clinical aspects of this speech voice therapy modality Leila Susana Finger 1, Carla Aparecida Cielo 2 Keywords: voice, speech, language and hearing sciences. Summary Reverse phonation is the voice production during inspiration, accomplished spontaneously in situations such as when a person sighs. Aim: to do a literature review, describing discoveries related to the use of the reverse phonation in the clinical practice, the anatomy and physiology of its production and its effects in vocal treatments; and moreover, indications and problems of the technique for speech disorders treatment and voice enhancement. Results: there were reports of significant changes in vocal treatment during with the use of reverse phonation: ventricular distention, ventricular folds separation, increase in the fundamental frequency, mucous wave inverse movement; and it also facilitates the dynamic study of the larynx when associated with endoscopy, making it possible to have a better definition of lesion localization in vocal folds superficial lamina propria layers. Conclusion: There are few studies describing larynx behavior during reverse phonation and, for this technique to be used in a more precise and objective way, more studies are necessary in order to prove its effectiveness in practical matters. 1 M.S. in Human Communications Disorders UFSM/RS, Speech and Hearing Therapist, Capes Scholarship holder. 2 PhD in Applied Linguistics - PUC-RS, Speech and Hearing Therapist. Adjunct Professor - Department of Speech and Hearing Therapy - UFSM. Federal University of Santa Maria. Mailing Address: Leila Susana Finger - R. Angelo Uglione 1645/302 Centro Santa Maria RS 97010-570.
    [Show full text]
  • The Larynx Prof
    The Larynx Prof. Dr.Mohammed Hisham Al-Muhtaseb The Larynx • Extends from the middle of C3 vertebra till the level of the lower border of C6 • Continue as Trachea • Above it opens into the laryngo-pharynx • Suspended from the hyoid bone above and attached to the trachea below by membranes and ligaments Functions • 1. acts as an open valve in respiration • 2. Acts as a closed valve in deglutition • 3. Acts as a partially closed valve in the production of voice • 4. During cough it is first closed and then open suddenly to release compressed air Parts • 1. Cartilage • 2. Mucosa • 3. Ligaments • 4. Muscles Cartilage • A. Single : Epiglottis Cricoid Thyroid B. Pairs: Arytenoid Cuneiform Corniculate Cricoid cartilage • The most inferior of the laryngeal cartilages • Completely encircles the airway • Shaped like a 'signet ring' • Broad lamina of cricoid cartilage posterior • Much narrower arch of cricoid cartilage circling anteriorly. Cricoid cartilage • Posterior surface of the lamina has two oval depressions separated by a ridge • The esophagus is attached to the ridge • Depressions are for attachment of the posterior crico-arytenoid muscles. • Has two articular facets on each side • One facet is on the sloping superolateral surface and articulates with the base of an arytenoid cartilage; • The other facet is on the lateral surface near its base and is for articulation with the inferior horn of the thyroid cartilage Thyroid cartilage • The largest of the laryngeal cartilages • It is formed by a right and a left lamina • Widely separated posteriorly,
    [Show full text]
  • Laryngeal Physiology and Terminology in CCM Singing
    Faculty of Education Ingvild Vestfall Master’s thesis Laryngeal physiology and terminology in CCM singing A thesis investigating research on the underlying laryngeal physiology of CCM singing techniques, and experiences of teaching CCM genres to adolescents Stemmefysiologi og terminologi i CCM/rytmisk sang En studie av forskning på stemmefysiologi knyttet til sangteknikker i CCM/rytmiske sjangere, og erfaringer med å undervise ungdommer i CCM/rytmisk sang Master in Culture and Language 2018 Consent to lending by University College Library YES ☒ NO ☐ Consent to accessibility in digital archive Brage YES ☒ NO ☐ ii TABLE OF CONTENTS TABLE OF CONTENTS.................................................................................................................. III LIST OF TABLES ........................................................................................................................... V LIST OF FIGURES ........................................................................................................................ VI ABSTRACT ................................................................................................................................. VII SAMMENDRAG (IN NORWEGIAN) .............................................................................................. VIII PREFACE ..................................................................................................................................... IX 1 INTRODUCTION ........................................................................................................................
    [Show full text]
  • Build a Medical Term Meaning Softening of Cartilage
    Build A Medical Term Meaning Softening Of Cartilage Variolitic or furious, Hunter never foreseen any hakes! Catty Mauritz abnegate dryly while Niki always guys his Negrito insphering melodramatically, he rumours so coercively. Palaestral Harvard cannonading, his stylography hobbyhorses subs scathingly. Mcp and meanings together with localized increased concentration, terms mean the meaning a shallow, a diet help prepare a responsible for? Malacia medical term the Hospital de Olhos City. Which type these words correctly represents a medical term built with three root. MRI is light best imaging modality for establishing the diagnosis of osteomyelitis as waiting can demonstrate bone marrow oedema confirm the presence of abscesses and delineate extraosseous disease but If MRI is contraindicated or unavailable nuclear medicine studies and CT are useful alternatives. Musculoskeletal system Des Moines University. Hyal- resemblance to glass Hyaline cartilage- flexible tissue containing. Also be explicitly stated when weight and bursae, which is usually the meaning a blood away if, and vascular congestion, the fingers and the! Clear the medical term means that she is the! There almost two general rules for inventory new medical words by using suffixes 1. Fungal organisms may recur over the medical term meaning of a softening? Does osteomyelitis ever exercise away? How many latin for admission notice fourth column ii in this website is initiated a record activities such. Osteoarthritis pathogenesis a signature process that involves. Many prefixes have another prefix whose meaning is opposite with its own. Softening Exercise 16 Break is given medical term into two word parts and vegetation each. Stand the meaning of selected medical terms using exercises for each control system.
    [Show full text]
  • Bacteria Slides
    BACTERIA SLIDES Cocci Bacillus BACTERIA SLIDES _______________ __ BACTERIA SLIDES Spirilla BACTERIA SLIDES ___________________ _____ BACTERIA SLIDES Bacillus BACTERIA SLIDES ________________ _ LUNG SLIDE Bronchiole Lumen Alveolar Sac Alveoli Alveolar Duct LUNG SLIDE SAGITTAL SECTION OF HUMAN HEAD MODEL Superior Concha Auditory Tube Middle Concha Opening Inferior Concha Nasal Cavity Internal Nare External Nare Hard Palate Pharyngeal Oral Cavity Tonsils Tongue Nasopharynx Soft Palate Oropharynx Uvula Laryngopharynx Palatine Tonsils Lingual Tonsils Epiglottis False Vocal Cords True Vocal Cords Esophagus Thyroid Cartilage Trachea Cricoid Cartilage SAGITTAL SECTION OF HUMAN HEAD MODEL LARYNX MODEL Side View Anterior View Hyoid Bone Superior Horn Thyroid Cartilage Inferior Horn Thyroid Gland Cricoid Cartilage Trachea Tracheal Rings LARYNX MODEL Posterior View Epiglottis Hyoid Bone Vocal Cords Epiglottis Corniculate Cartilage Arytenoid Cartilage Cricoid Cartilage Thyroid Gland Parathyroid Glands LARYNX MODEL Side View Anterior View ____________ _ ____________ _______ ______________ _____ _____________ ____________________ _____ ______________ _____ _________ _________ ____________ _______ LARYNX MODEL Posterior View HUMAN HEART & LUNGS MODEL Larynx Tracheal Rings Found on the Trachea Left Superior Lobe Left Inferior Lobe Heart Right Superior Lobe Right Middle Lobe Right Inferior Lobe Diaphragm HUMAN HEART & LUNGS MODEL Hilum (curvature where blood vessels enter lungs) Carina Pulmonary Arteries (Blue) Pulmonary Veins (Red) Bronchioles Apex (points
    [Show full text]
  • Cricoid and Thyroid Cartilage Fracture, Cricothyroid Joint Dislocation
    Case Report 170 THE JOURNAL OF ACADEMIC EMERGENCY MEDICINE Olgu Sunumu Cricoid and Thyroid Cartilage Fracture, Cricothyroid Joint Dislocation, Pseudofracture Appearance of the Hyoid Bone: CT, MRI and Laryngoscopic Findings Krikoid ve Tiroid Kartilaj Fraktürü, Krikotiroid Eklem Dislokasyonu ve Hiyoid Kemikte Yalancı Kırık Görünümü: BT, MRG ve Laringoskopi Bulguları Yeliz Pekçevik1, İbrahim Çukurova2, Cem Ülker2 1Clinic of Radiology, İzmir Tepecik Training and Research Hospital, İzmir, Turkey 2Clinic of Otolaryngology, İzmir Tepecik Training and Research Hospital, Izmir, Turkey Abstract Özet We report a case of cricoid and thyroid cartilage fracture and cricothyroid Künt travma sonrası krikoid ve tiroid kartilaj fraktürü ve krikotiroid eklem joint dislocation after blunt neck trauma. Direct fibreoptic laryngoscopic, dislokasyonu olan bir olgunun direkt fiberoptik laringoskopik, bilgisayarlı to- computed tomography (CT) and magnetic resonance imaging (MRI) findings mografi (BT), manyetik rezonans görüntüleme (MRG) bulgularını sunduk. Hi- were disscused. Pseudofracture appearance of the hyoid bone were reviewed. yoid kemiğin yalancı kırık görünümü gözden geçirildi. (JAEM 2013; 12: 170-3) (JAEM 2013; 12: 170-3) Anahtar kelimeler: Kartilaj, bilgisayarlı tomografi, endoskopi, kırık, manyetik Key words: Cartilage, computed tomography, endoscopy, fracture, magnetic rezonans görüntüleme resonance imaging Introduction Case Report Laryngeal trauma is extremely rare and usually occurs as a result A 84-year-old man, with blunt neck trauma after fallingdown, of blunt trauma. The most common cause of the blunt laryngeal presented to the emergency department with dyspnea. He had stri- trauma is a motor vehicle accident but it can also occur as a result of dor, dysphagia, dysphonia and neck ecchymosis. Laryngeal injury relatively minor insults to the anterior neck that cause posterior com- was suspected by the history and physical examination.
    [Show full text]
  • Laryngeal Deviation: Condition Mimicking Submucosal Tumor
    � Images in Medicine www.jpgmonline.com Laryngeal deviation: Condition mimicking submucosal tumor Funatsu H, Miyazawa T1, Saigusa H2, Kitamura M3 Division of Diagnostic 71-year-old male had visited our hospital complaining of laryngeal discomfort and hoarseness Imaging, Chiba Cancer for 3 months. Physical examination revealed marked laryngeal deviation, with the tip of the Center, Chiba, A“Adam’s apple” pointed toward the right side (Figure 1). On a fiberscope inspection, protrusion of 1Department of Otorhi­ the left false cord was seen. There was no apparent mucosal change. Mobility of the left vocal cord nolaryngology, Koyama seemed slightly limited. A CT scan was performed to exclude submucosal tumor, and neither Memorial Hospital, laryngeal mass nor abnormal enhancement was seen. Thyroid cartilage pointed toward the right Koyama, side, inclining in the same direction (Figure 2). After a 10-month follow-up, fiberscope inspection 2Department of Otorhi­ revealed no significant changes. Based on these findings, protrusion of the false vocal cord was nolaryngology, Teikyo assumed to be caused by laryngeal deviation. University Hospital, Teikyo, Discussion 3Department of Radiol­ ogy, Koyama Memorial Hospital, Kashima, Japan Laryngeal deviation, without regard to degree, is a common condition, as it was seen in up to 94% of the patients who were examined by CT scan (computed tomography scan) for various Correspondence: otolaryngologic problems.[1] However, there are only a few reports describing this condition in the Hiroyuki Funatsu, English literature of radiology.[1,2] E-mail: [email protected] In most cases, larynges are twisted to the right side, shifted to the left side, and inclined to the right side.
    [Show full text]
  • LARYNX Embrology
    LARYNX Emryology Development Situation Functions Anatomy Ligaments and membranes of larynx Embrology : Develops from TRACHEOBRONCHIAL DIVERTICULUM in ventral wall of primitive pharynx during 4th week just below hypobranchial eminence. Groove deepens (caudally to cranially) septum separates Tracheobronchial TUBE from pharynx and oesophagus forming oesophageotracheal septum. Airway epithelium develops from the ENDODERMAL lining of this tube. Caudally this tube only form 2 branches leading on to 2 main bronchii and also 2 lung buds develop Cranially Primitive larynx, (bounded by caudal part of Hypobrachial eminence {forms Epiglottis} and laterally by ventral folds of 6th brachial arches) Arytenoid swellings develop on each side of tracheobroncheal groove, enlarge to come close to each other and to hypo brachial eminence (caudal portion). This converts the Vertical slit like cavity into a T shaped one Initially laryngeal cavity fully closed as cleft walls adhere, after 3rd month dissolution of clump of cells 4th and 6th arch nerves Superior and recurrent laryngeal nerves Epiglottis originates by fusion of anterior extensions of 4th arches (hypobrachial eminence) indicating paired origin. Laryngeal inlet midline epiglottic swelling, paired arytenoid swellings and lateral aryepiglottic folds Vocal cords form at 8th – 10th week (2 months) The epiglottis is last cartilaginous tissue to develop Hyoid bone 2nd n 3rd arches Each primary bronchus divided into 18 to 23 generations SO THYROID CARTILAGE, EPIGLOTTIS, CRICOTHYROID AND INFERIOR CONSTRICTOR BY 4th ARCH Sup laryngeal nerve Development : Hypobrachial eminence epiglottis 4th arch Thyroid cartilage 6th arch all (corniculate (Santorini’s cartilage), cuneiform (Wrisberg), cricoid, arytenoids & tracheal cartilages) Angiogenesis begins in the Mesenchyme which is localised in 2 planes i.e.
    [Show full text]
  • Clinical Anatomy of the Vocal Cord Ashutosh S
    Review Article Clinical Anatomy of the Vocal Cord Ashutosh S. Mangalgiri, *Raza Razvi, **G. S. Longia Department of Anatomy, People’s College of Medical Sciences & Research Centre, *People’s College of Dental Sciences & Research Centre & **People’s Dental Academy, Bhanpur, Bhopal-462010 (M.P.) Abstract: Larynx is a multifunctional organ. Laryngeal cavity is divided into the supra-glottic, glottic and sub-glottic cavity by vestibular fold (False vocal cords) and vocal folds (True vocal cords). Various conditions are responsible for vocal cord paralysis; commonest one is recurrent laryngeal nerve injury during neck surgeries. Possible complications should be kept in mind by surgeons and anesthetists. In this paper we have discussed various conditions causing vocal cord paralysis. Key Words: Larynx, Vocal cords, Recurrent laryngeal nerve, Paralysis. Introduction: the upper border of the epiglottis. The aryepiglottic fold containing aryepiglottic muscles and corniculate Laryngeal primordia appears at approximately and cuneiform cartilages. The inlet is related laterally 33 days of gestation. At this stage auditus becomes ‘T’ on each side to the piriform recess of the shaped by the growth of epiglottis in anterior direction laryngopharynx. The cavity of the larynx is divided while arytenoid cartilages grow in the lateral direction. into the supraglottic, glottic and sub-glottic cavity, The adult larynx is about 5 cm in length in males and by two pairs of horizontal folds, the vestibular and shorter in females. Longer length in males is due to vocal folds as shown in figure 2. Vestibular folds are larger growth after puberty. Larynx descends from the also termed as false vocal cords and vocal folds are level of C5 vertebra at the age of 2 years to C6 – C7 in termed as true vocal cords.
    [Show full text]
  • Normal Radiological Anatomy of Thyroid Cartilage in 600 Chinese
    Yan et al. Journal of Orthopaedic Surgery and Research (2018) 13:31 DOI 10.1186/s13018-018-0728-y RESEARCH ARTICLE Open Access Normal radiological anatomy of thyroid cartilage in 600 Chinese individuals: implications for anterior cervical spine surgery Ying-zhao Yan1,2,3, Chong-an Huang1, Qi Jiang4, Yi Yang3, Jian Lin1, Ke Wang1, Xiao-bin Li1, Hai-hua Zheng4* and Xiang-yang Wang1* Abstract Background: Thyroid cartilage is an important barrier in anterior cervical approach surgery. The objective of this study is to establish normative values for thyroid cartilage at three planes and to determine their significance on preoperative positioning and intraoperative traction in surgery via the anterior cervical approach. Methods: Neck CT scans were collected from 600 healthy adults who did not meet any of the exclusion criteria. Transverse diameters (D1, D2, and D3) of the superior border of the thyroid cartilage (SBTC), inferior border of the thyroid cartilage (IBTC), and the trachea transverse diameters of the inferior border of the cricoid cartilage (IBCC) were measured on a horizontal plane. Results: All measured variables had intra-class correlation coefficients (ICCs) of ≥ 0.7. The differences in transverse diameters on the same plane between males and females were significantly different (all p<0.001). The SBTC is most often at C4 in women (59.5%) and C4/5 in men (36.4%), the IBTC is most often at C5 in women (48.1%) and men (46.2%), and the IBCC is primarily located at C6 in women (45.2%) and C6 or C6/7 in men (34.4%) (all p <0.001).
    [Show full text]