Pre-Feasibility Study for

Rural Electrification Program by Renewable Energy

In The Mountainous Region of Northern

in the

STUDY REPORT

March 2007

Engineering and Consulting Firms Association, Japan West Japan Engineering Consultants, Inc

This work was subsidized by Japan Keirin Association through its Promotion funds from From Manilla

CATARMAN RIVER

SAMAR ISLAND

LEYTE ISLAND

Location Map Contents

Executive Summary ························································································································ S-1 Chapter 1 Introduction·················································································································· 1 1.1 Background and Objectives ···························································································· 1 1.2 Scope of Works··············································································································· 2 1.3 Study Area ······················································································································2 1.4 Study Schedule ··············································································································· 2 1.5 Study Team Member······································································································· 3

Chapter 2 Socio-Economic Development in Communities Hosting Renewable energy ················ 4 2.1 Economic Development and Energy in the Philippines··················································· 4 2.2 Renewable Energy Development in the Philippines························································ 5 2.3 Major Issues ··················································································································· 14 2.4 Government Policies and Programs ················································································ 14 2.5 Impact to Host Communities ·························································································· 8

Chapter 3 Rural Electrification····································································································· 19 3.1 Current Condition of Rural Electrification······································································ 19 3.2 Promotion Policy of Rural Electrification ······································································· 22 3.3 Issues of Rural Electrification························································································· 23 3.4 Effects of Rural Electrification ······················································································· 25

Chapter 4 Outline of the Surveyed Area ······················································································· 29 4.1 Outline of Northern Samar Province··············································································· 29 4.2 Electrical Power Situation in Northern Samar Province·················································· 30

Chapter 5 Pre-Feasibility Study of Rural Electrification by Renewable Energy···························· 34 5.1 Current Situation of Rural Electrification in Coverage Area ··········································· 34 5.2 Assumption of Electric Demand associated with Rural Electrification···························· 41 5.3 Assumption of Electrification associated with Expansion of Distribution Line··············· 46 5.4 Assumption of Electrification Cost by Renewable Energy·············································· 51 5.5 Selection of Candidate Barangays for Electrification by Renewable Energy··················· 60

Chapter 6 Rural Electrification Plan by Renewable Energy·························································· 61 6.1 Potential of Micro Hydro Power Plant ············································································ 61 6.2 Hydro Power Generation Plant at Barangays ·································································· 61 6.3 Micro Hydro Power Plant ······························································································· 62 6.4 Biogas Power Plant········································································································· 66

Chapter 7 Profile of the Project ···································································································· 69

Appendix 1 Schedule for Field Investigation Appendix 2 Interviewed Persons List Appendix 3 Photos

Figure List

Fig-5.1 Status of Electrification in Region VIII···················································· 35 Fig-5.2 Status of Barangay Electrification in Northern Samar ············································· 36 Fig-5.3 Diagram of Transmission Line in Philippines (Northern Samar Area)···················· 37 Fig-5.4 Breakdown of Consumer Numbers in NORSAMELCO (as of 2004) ····················· 39 Fig-5.5 Demand Forecast of NORSAMELCO······································································ 40 Fig-5.6 Assumption of Electric Demand by Rural electrification (daily load curve)··········· 45 Fig-5.7 Expansion Plan of Distribution Line········································································· 48 Fig-5.8 Outline of 3kW Stirling Engine (ST-5) ····································································· 57 Fig-6.1 Micro Hydro Power Turbine Types ············································································· 63 Fig-6.2 Turbine Selection Diagram·························································································· 64 Fig-6.3 Biogas Generating System··························································································· 68

Table List

Table-1.1 Study Team Members·································································································· 3 Table-2.1 Hydropower Measurable Targets ······································································ 9 Table-2.2 Indicative Hydropower Capacity Addition······················································ 10 Table-3.1 1999 – 2006 Implementation Plans of O-Ilaw Program and ER Program··············· 20 Table-3.2 Electrification Level by Region (As of 31, October 2006) ······································ 21 Table-3.3 Barangay Electrification Level by Franchise Holder (As of October 2006) ··········· 21 Table-3.4 Rural Electrification by Method (1999 – 2002)························································ 25 Table-4.1 Electricity Demand ······························································································· 31 Table-4.2 Annual Power Purchase ······················································································ 32 Table-4.3 Supply – Demand Profile····················································································· 32 Table-4.4 Level of Electrification ························································································· 33 Table-5.1 Status of Barangay Electrification in Region VIII···················································· 35 Table-5.2 Status of Barangay Electrification in Northern Samar ············································· 36 Table-5.3 Outline of NORSAMELCO (As of 2006 Oct.)························································· 38 Table-5.4 Energy Distribution of NORSAMELCO(2004) ······················································· 39 Table-5.5 Electric Tariff of NORSAMELCO(2004)································································· 39 Table-5.6 Income Statement of NORSAMELCO(2004) ·························································· 40 Table-5.7 NORSAMELCO Development Plan········································································· 41 Table-5.8(1) Current Situation of Electrification of Barangays in Catubig ·································· 43 Table-5.8(2) Current Situation of Electrification of Barangays in Las Navas ······························ 44 Table-5.9 Assumption of Electric Demand by Rural electrification········································· 45 Table-5.10 Electrification Plan of Barangay ··············································································· 46 Table-5.11 Number of Household and Distance of Distribution Line········································ 48 Table-5.12 Electrification Cost by Expansion of Distribution Line ··········································· 50 Table-5.13 Electrification Cost by Each Method of Power Generation ····································· 53 Table-5.14 CDM Project by Usage of Biogas in Philippines (Registered CDM Project)·········· 54 Table-5.15 Current Situation of Firming of Livestock and Poultry in Catubig·························· 55 Table-5.16 Specification of Stirling Engine ················································································ 58 Table-5.17 Assumed Amount of Rice Chaff for Generating······················································· 58 Table-6.1 Potential of Micro Hydro Power at Catubig Service Area············································ 61 Table-6.2 Basic Specification of Hybrid Power Generating at Each Barangay ···························· 65 Table-6.3 Basic Specification of Biogas Power Generation························································· 67 Table-6.4 Comparison of Biogas Generating in Philippines and Japan········································ 68 Abbreviations

・DOE;Department of Energy ・NPC;National Power Corporation ・NPC-SPUG;National Power Corporation Small Power Utilities Group ・NIA;National Irrigation Administration ・PNOC;Philippine National Oil Corporation ・PNOC-EDC;Philippine National Oil Corporation-Energy Development Corporation ・TRANSCO;Transmission Company ・NEA;National Electrification Administration ・PSALM;Power Sector Assets and Liabilities Management Corporation ・ERC;Energy Regulatory Commission ・EPIRA;Electric Power Industry Reform Act ・PEP;Philippine Energy Plan ・WESM;Wholesale Electricity Spot Market ・IPP;Independent Power Producer ・NEDA;National Economic and Development Authority ・NORSAMELCO;Northern Samar Electric Cooperative, Inc. ・SIDC;Sorosoro Ibaba Development Cooperative ・LGU;Local Government Unit ・NGO;Non Government Organization ・DILG;Department of Interior and Local Government ・ER;Energy Regulation ・RWMHEE;Reforestation and Watershed Management, Health and Environment Enhancement ・REC;Rural Electrification Cooperative ・BAPA;Barangay Alternative Power Association ・LUWAS;Local Unit Water and Sanitation Systems ・RAIC;Regional Agri-Industrial Center ・PDIP;Provincial Development Investment Program ・PDMP;Provincial Development Management Plan ・PDC;Provincial Development Council ・RPS;Renewables Portfolio Standard ・JICA;Japan International Cooperation Agency ・JBIC;Japan Bank For International Cooperation

Executive Summary

To sustain the government’s efforts in providing a better quality of life to the Filipino people, the eradication of poverty remains a top national concern and a big challenge to the present administration in the Philippines. The Philippine government set plans that would attain its target of completing the energization of all barangays by year 2008.

The Northern Samar province in the region, which is the study area for this feasibility study on rural electrification, is one of the underdeveloped areas in the Philippines. Its per capita income level is less than 50% of the average per capita income level in the Philippines. Since the electrification rate of households in the northern mountainous area is only less than 20%, it has targeted to increase the electrification rate in order to boost the growth of agricultural activity and the development of the tourism industry.

JBIC has decided to fund the Exclusive Agricultural Development Project in the Catubig watershed area in the municipalities of Catubig and Las Navas in Northern Samar. This project aims to increase agricultural productivity, particularly of rice and other crops, increase the income of residents and improve health and sanitary conditions. This will be addressed by the development of an agricultural infrastructure centered on an irrigation system. This project will commence in 2007 and will be completed in 2008. It is envisioned that there will be an improvement in the quality of life of the people belonging to the poor sector upon the development of the base infrastructure. Moreover, the acceleration of rural electrification is also expected.

This study covers the feasibility of rural electrification by renewable energy, such as micro hydro power supplied from the potential of the Catubig River and irrigation facilities and biomass power energy supplied from agricultural products. The increase in agricultural products is an expected outcome of the Exclusive Agricultural Development Project in the Catubig watershed area.

As a result of this study total construction cost of rural electrification by hybrid system between micro hydro power for the base load and biogas power for the peak load is estimated as most competitive other than the cost of other alternatives such like expansion of distribution line to the beneficiary, soro micro hydro power, soro biogas power and rice chaff power.

- S-1 - Chapter 1 Introduction

1.1 Background and Objectives

To sustain the government’s efforts in providing a better quality of life to the Filipino people, the eradication of poverty remains a top national concern and a big challenge to the present administration in the Philippines. The Philippine government set plans that would attain its target of completing the energization of all barangays by year 2008.

Two-thirds of the poverty group, which comprises about 40% of the population in the Philippines, are engaged in the farming and fishing industries. Realization of rural electrification is expected to bridge the gap between the rich and the poor, help eradicate poverty in rural areas, provide a better quality of life and produce new sources of income.

The Northern Samar province in the Eastern Visayas region, which is the study area for this feasibility study on rural electrification, is one of the underdeveloped areas in the Philippines. Its per capita income level is less than 50% of the average per capita income level in the Philippines. Since the electrification rate of households in the northern mountainous area is only less than 20%, it has targeted to increase the electrification rate in order to boost the growth of agricultural activity and the development of the tourism industry.

The main industry in this province is agriculture, with major crops including rice, corn, coconut, banana and cassava. Although agriculture is the province’s main income source, self-sufficiency in rice has not been attained. Therefore, rice has been imported from the adjoining province.

Poor health and sanitary conditions, including that of the rural sewerage systems, have brought some diseases to the residents, thereby contributing to the slow progress in the province. Furthermore, since the roads in this area are unpaved, agricultural products can not be easily transported during the rainy season. These factors contribute to the low income level in the province.

JBIC has decided to fund the Exclusive Agricultural Development Project in the Catubig watershed area in the municipalities of Catubig and Las Navas in Northern Samar. This project aims to increase agricultural productivity, particularly of rice and other crops, increase the income of residents and improve health and sanitary conditions. This will be addressed by

- 1 - the development of an agricultural infrastructure centered on an irrigation system. This project will commence in 2007 and will be completed in 2008. It is envisioned that there will be an improvement in the quality of life of the people belonging to the poor sector upon the development of the base infrastructure. Moreover, the acceleration of rural electrification is also expected.

This study covers the feasibility of rural electrification by renewable energy, such as micro hydro power supplied from the potential of the Catubig River and irrigation facilities and biomass power energy supplied from agricultural products. The increase in agricultural products is an expected outcome of the Exclusive Agricultural Development Project in the Catubig watershed area.

1.2 Scope of Work

This study covers the feasibility of a scheme for implementation of this project, site survey and collection of data on the following:

z Site Survey at Power Plant site z Present condition and action assignment of rural electrification z Feasibility study of rural electrification by renewable energy

1.3 Study Area

This study was conducted in the municipalities of Catubig and Las Navas, which are located in the Northern Samar province, the mountainous region of north Samar Island.

To gather more information on case examples for renewable energy generation, the study team visited a biogas power plant site, which is currently undergoing construction in the Batangas province, and an existing micro hydro power plant in the province.

1.4 Study Schedule

Two site surveys were conducted for this study. The first survey was conducted to have a meeting, gather information and collect data from the concerned government units and branch offices during the period October 10, 2006 to October 14, 2006.

- 2 - The second survey was conducted to have a meeting with concerned government officials and visit the proposed site and some unenergized barangays in Northern Samar, the existing micro hydro power plant in Laguna and the biogas power plant site in Batangas. This second survey was carried out from December 3, 2006 until December 12, 2006. The detailed schedule of the site surveys is shown in the attached documents.

1.5 Study Team Member

Members of this study are listed below.

Table-1.1 Study Team Member No Name Specialty

1 Takatoshi Nagao Project Manager, Project Implementation Plan Masahiko 2 Study of Renewable Energy Kaneko 3 Yusuke Inoue Electric Power Facility Plan

4 Kei Katayama Rural Electrification Plan

5 Hiroki Aso Regional Development Plan

- 3 - Chapter 2 Socio-economic Development in Communities Hosting Renewable Energy

2.1 Economic Development and Energy in the Philippines

The link between energy and the economy has never been more evident than now when energy-related events tend to impact on a country’s economic performance. An increase in prices of oil, for example, is bound to immediately affect the prices of basic commodities and utilities such as water and electricity. The trickling effect goes on a wider scale as oil is a primary input to run our transport facilities. Electricity is also a basic requirement to sustain our industrial, commercial, and to a certain extent, agricultural activities. There is no doubt, therefore, that energy is a fundamental tool in any country’s development and a priori in the improvement of the people’s quality of life. Being aware of this fact, the government ensures that energy development is preceded by a rationalized and integrated energy-environment and economic planning approach.

The Philippine Energy Plan (PEP), which has a revolving time frame of ten years, is guided and remains consistent with national development plans such as the Medium-Term Philippine Development Plan (MTPDP) and Medium-Term Philippine Investment Plan (MTPIP). It is also cognizant of the country’s commitment to international agreements such as the UN Convention on Climate Change, the Kyoto Protocol and more recently, the Johannesburg Plan of Action for Sustainable Development. The PEP, with the most recent edition being the 2006 PEP Update, is annually modified by the Department of Energy (DOE) and its attached agencies to integrate vital developments in the global and domestic economy. Thus, any PEP update carefully considers macro-economic planning set by the relevant government agencies in the Philippines such as the National Economic and Development Authority (NEDA) for the Gross Domestic Product, Gross National Product and Gross Value Added rates; National Statistics Office for the population growth and the Central Bank of the Philippines for the foreign exchange rates. On the other hand, crude oil prices are taken from international benchmarks.

Such is the link between energy and the economy that the Arroyo administration has included energy independence as one of the components in its Five-Point Reform Package together with macro-economic stability, good governance, job creation and social development. With Philippine prospects for growth pegged at 5.5 percent in the next three years, all sectors in government including energy are called upon to contribute their respective shares in ensuring

- 4 - the country’s sustainable growth. The DOE, the country’s energy policy making body, commits to this over-arching goal as affirmed in its mission statement, to wit: “improving the quality of life of the Filipino by formulating and implementing policies and programs to ensure sustainable, stable, secure, sufficient, accessible and reasonably-priced energy.”

These are fleshed out in the two major goals as outlined in the Philippine Energy Plan 2005-2014 and affirmed in the 2006 PEP Update, to wit: attaining energy independence or a sustained self-sufficiency level of 60 percent by year 2010 and beyond; and, promoting the effective implementation of power sector reforms to bring about fair and reasonable energy prices in a competitive environment.

In realizing the 60 percent self-sufficiency goal, the energy sector has laid out plans that will accelerate the exploration, development and utilization of indigenous energy resources, intensify renewable energy development; increase the use of alternative fuels; and, enhance energy efficiency and conservation measures.

In the context of the study, the discussion will focus on the strategy of intensifying renewable energy development. Anchored on the government’s Renewable Energy Policy Framework (REPF) 2003-2013, the goal is to double the capacity share of renewable energy sources within the REPF time frame through the following specific objectives:

a) Be the number one geothermal producer in the world b) Double hydro capacity by 2013 c) Be the number one wind energy producer in Southeast Asia d) Become the solar manufacturing hub in Southeast Asia e) Expand contribution of biomass, solar, and ocean energy by 131 MW

2.2 Renewable Energy Development in the Philippines

Hydropower

Hydro energy, as defined in the REPF, is generated from the movement of masses of water. Hydroelectric power plants convert energy contained in flowing water, such as rivers and streams, into electricity. They are classified according to various capacities as follows: a)

- 5 - micro-hydro – 1 to 100 kW; b) mini-hydro – 101 kW to 10 MW; and c) large hydro- more than 10 MW.

Hydropower generation started in the country in the early 1900s in the northern mountains of . This was followed by the construction of the Botocan hydroelectric plant in Laguna in the 1930s but which was commissioned only during the 1940s as a result of the war that crippled operations in the country. During the same decade and the 1950s, more hydroelectric plants were commissioned by the state-owned National Power Corporation (NPC). Below is a listing of the early hydro power projects built by the NPC, the Manila Electric Company (MERALCO), the country’s largest electric utility provider, and some private institutions, such as the Plantation and Resort (Tiaong, Quezon ) and Camp John Hay Development Corporation (Baguio City):

a) Early Micro-hydros

1) VILLA ESCUDERO HP Operator/Owner : Villa Escudero Plantations & Resort Capacity : 75 kW Year of Operation : 1937

2.) CALIBATO HP Operator/Owner : PHILPODECO Capacity : 80 kW Year of Operation : 1939

- 6 - b) Early Mini-hydros

1) CAMP JOHN HAY MHP Operator/Owner : John Hay Development Corp. Capacity : 560 kW Year of Operation : 1913

2) BALOGBOG MHP Operator/Owner : PHILPODECO Capacity : 650 kW Year of Operation : 1928

3) PALACPAQUIN MHP Operator/Owner : PHILPODECO Capacity : 400 kW Year of Operation : 1937 c) Large Hydros

1) BOTOCAN HP Operator/Owner : MERALCO /NPC (1979) Capacity : 16.96 MW Year of Operation : 1930

2) CALIRAYA HP Operator/Owner : NPC Capacity : 32.0 MW Initial Year of Operation : 1941 Complete Operation : 1950

- 7 - Current Situation

In accordance with the REPF goals, the Philippines seeks to double its existing hydropower capacity from 2,518 MW in 2002 to 5,468 MW in 2013 through indicative capacity addition of 2,950 MW.

Performance Assessment

In the country’s quest for alternative clean sources of energy and correspondingly reduced dependence on imported fuels, hydropower generation presents a vital option. In 2004, hydropower resources contributed 15.9 percent to the country’s total power generation with the commissioning of the 345-MW San Roque Hydropower plant in Pangasinan and 350-MW Kalayaan 3 and 4 in Laguna. Fuel oil displacement of the sector reached 14.8 million barrels of fuel oil (MMBFOE). Currently, the country has 134 hydropower plants in operation, broken down into 21 large hydropower plants, 52 mini-hydropower plants and 61 micro-hydropower plants.

- 8 - Measurable Sectoral Targets

By 2014, the hydropower sector targets a cumulative installed capacity of 3,991 MW from hydropower resources, as outlined in the Philippine Energy Plan update 2006 (Table-2.1). This corresponds to about 780 MW of additional capacity from the current capacity of 3,219.1 MW, and is much smaller that the target capacity addition as defined in the REPF. Generation of electricity will reach 14,741 GWh by 2014, thereby displacing 25.4 MMBFOE.

Table-2.1 Hydropower Measurable Targets

2005 2006 2010 2014 Installed capacity 3,219.1 3,219.1 3,219.1 3,991.1 (MW ) Luzon 2,209.8 2,209.8 2,209.8 2,509.8 Visayas 11.61 11.61 11.61 61.61 Mindanao 997.65 997.65 997.65 1,427.65 Gross Generation 8,374 8,563 12,996 14,741 (GWh) Luzon 4,422 4,611 8,896 8,819 Visayas 35 35 35 188 Mindanao 3,917 3,917 4,065 5,734 Total Imported Fuel 14.44 14.76 22.41 25.42 Oil Displacement (in MMBFOE)

Indicative Projects

Potential sites for mini and micro-hydro projects are evenly distributed in all the country’s administrative regions. These were identified by the DOE, NPC and the National Electrification Administration (NEA). In 1995, the DOE conducted a water resource inventory study to validate NEA’s and NPC’s identified potential sites for promotion to private investors. Meanwhile, a study conducted by the United States Renewable Energy Laboratory (US-NREL) likewise revealed that micro-hydro potential sites are well distributed all over the country. The study gained the support of the local government units (LGUs), non-government organizations (NGOs), electric cooperatives (ECs) and the state-university based Affiliated Non-Conventional Energy Centers (ANECs) by also conducting local identification projects.

- 9 - Table-2.2 Indicative Hydropower Capacity Addition Potential Year Region Project Location Capacity (MW) Available CAR Pasil HEP Kalinga 22.0 2011 Talubin MHP Mt. Province 5.6 2012 Can-eo MHP Mt. Province 5.9 2012 Agbulu HEP* Apayao 360.0 2012 Nalatang HEP* Benguet 75.0 2014 Binongan HEP* Abra 175.0 2014 I Upper Agno MHP* Pangasinan 5.0 2008 II Adalam HEP Quirino 46.0 2010 Diduyon HEP* Quirino 345.0 2011 Abuan HEP* Isabela 60.0 2013 Ilaguen HEP* Isabela 88.0 2014 III Dinalugan MHP Aurora 0.5 2007 Debutunan MHP Aurora 0.5 2010 IV-A Kanan HEP* Infanta, Quezon 113.0 2008 IV-B Batang-Batang MHP Palawan 3.5 2006 Langogan MHP* Palawan 6.8 2010 Babuyan Island MHP* Palawan 5.6 2010 Catuiran HEP* Mindoro Oriental 18.0 2011 Aglubang HEP* Mindoro Oriental 13.6 2011 Cabinbin MHP* Palawan 0.8 2013 V Kapipian MHP Catanduanes 3.0 2006 Colasi MHP* Camarines 0.96 2008 Dugui MHP* Catanduanes 3.5 2009 Cawayan II MHP* Sorsogon 2.5 2012 Hitoma MHP* Catanduanes 3.0 2012 VI Igbolo MHP* Iloilo 4.0 2010 Timbaban HEP* Aklan 23.5 2011 Villasiga HEP* Antique 16.5 2012 VII Pacuan HEP Negros Oriental 33.0 2007 Siaton MHP* Negros Oriental 5.4 2011 Okoy HEP* Negros Oriental 12.0 2012 Sicopong HEP* Negros Oriental 17.8 2012 VIII Bugtong MHP* Samar 1.0 2009 Amandaraga MHP* 4.0 2012 IX Lower Dapitan MHP Zamboanga Norte 3.8 2006 Salug Daku 1 MHP* Zamboanga Sur 2.5 2008 Salug Daku 2 MHP Zamboanga Sur 2.5 2008 Middle Dapitan MHP Zamboanga Norte 4.4 2008 Salug Daku 3 MHP Zamboanga Sur 6.0 2010 Salug Daku 4 MHP Zamboanga Sur 6.0 2010 Upper Dapitan MHP Zamboanga Norte 3.6 2011 Ingin MHP* Zamboanga Norte 3.0 2012 * With feasibility study

- 10 - Potential Year Region Project Location Capacity Available (MW) X Tuasan MHP Camiguin 0.5 2008 Misamis Larangan MHP Occidental 8.5 2008 Culaman MHP Bukidnon 10.0 2008 Odiongan 3 MHP* Misamis Oriental 10.0 2008 Cabulig MHP* Misamis Oriental 3.5 2009 Tagoloan HEP* Bukidnon 68.0 2010 Impasugong HEP Bukidnon 68.0 2010 Odiongan 2 MHP* Misamis Oriental 5.0 2012 Liangan HEP Lanao Norte 11.9 2012 Bulanog Batang HEP* Bukidnon 132.0 2012 Agus III HEP* Lanao Norte/Sur 225.0 2014 XI Sibulan A Davao del Sur 16.5 2008 Sibulan B Davao del Sur 24.0 2008 Taytayan MHP Compostela Valley 0.6 2009 Tandik MHP* Compostela Valley 5.0 2010 Siguil B Sarangani 15.0 2010 Talaingod MHP Davao del Norte 10.0 2010 Suwawan HEP Davao City 40.0 2011 Tamogan HEP Davao City 60.0 2011 Camanlangan MHP Compostela Valley 1.0 2012 Balutakay MHP Davao del Sur 0.2 2012 XII Magpet MHP* Cotabato 10.0 2007 Libungan MHP North Cotabato 10.0 2010 Pulangi V HEP* North Cotabato 300.0 2012 XIII Taguibo MHP Agusan Norte 7.0 2008 Lake Mainit HEP Agusan Norte 22.0 2009 Pugo HEP* Agusan Norte 18.0 2010 ARMM Kanapnapan Fall MHP Lanao Sur 10.0 2008 * With feasibility study

The 2006 Plan Update identifies 70 hydropower projects with a total potential capacity of 2,603.5 MW (Table-2.2). This is composed of 34 large hydropower projects, 27 mini-hydropower projects and nine micro-hydropower projects. About 37 of these indicative projects have existing feasibility studies.

- 11 - Wind Power

Wind energy refers to the energy that can be derived from the wind, which can then be converted into useful electrical or mechanical energy. In the Philippines, there are six regions identified with wind electric potential. These include the following:

1. Batanes and Babuyan Island 2. Northwest tip of Luzon (Ilocos Norte) 3. Higher interior terrain of Luzon, Mindoro, Samar, Leyte, Panay, Negros, Cebu, Palawan, Eastern Mindanao and adjacent islands 4. Well-exposed east-facing coastal locations from Northern Luzon southward to Samar 5. The wind corridors between Luzon and Mindoro (including Lubang Island) 6. Between Mindoro and Panay (including the Semirara and Cuyo Island

The first large-scale wind power plant in the Philippines and in Southeast Asia is located in Bangui, Ilocos Norte. This 25-MW plant is developed by Northwind Power Development Corporation.

During the first wind contracting round in 2004, 16 potential wind power sites were offered to private investors. The estimated total capacity of these sites is 345 MW. Six pre-commercial contracts (PCCs) were since then issued by the Department of Energy (DOE) to various developers.

Nineteen additional wind power sites with an estimated total capacity of 3,270 MW were identified during the second batch. Six private investors signified their interest in developing some of these sites.

Solar Power

Solar energy is defined as energy derived form solar radiation which can be converted into useful thermal or electrical energy. Considering that the Philippines is situated near the equator, there is a nationwide potential for harnessing solar energy. Presently, there is a 960-kW CEPALCO solar power plant which is located in Cagayan de Oro in Mindanao and connected to the grid.

- 12 - There are eight solar energy programs, seven of which are funded by foreign donors. As part of the Solar Electrification Project, a 28-kWp centralized photovoltaic (PV) plant was also installed in Pangan-an Island, Cebu to supply electricity to about 200 households.

The Solar Power Technology Support (SPOTS) Project was designed to install solar energy systems in about 80 Agrarian Reform Communities (ARCs). There are 5,600 solar energy systems completed in 154 barangays under this program.

The Environmental Improvement for Economic Sustainability (EIES) Project also promotes the use of photovoltaic systems for rural-based electrification through the installation of 15,000 Solar Hybrid Systems (SHSs) in the target regions, which include Regions I to VII, the Minadanao area and the Cordillera Administrative Region (CAR). This project is being implemented by PNOC, in coordination with the DOE. As of the first quarter of 2006, 9,191 SHS have already been installed.

Biomass

The Philippines has significant biomass resources which can be harnessed to develop energy systems. The DOE has identified a biomass (bagasse) potential of 250 million barrels of fuel oil equivalent (MMBFOE) in the country. In terms of capacity, the country has a total installed capacity of 235.7 MW from the different regions, with Western Visayas having the biggest potential of 127.8 MW.

While the documentation of biomass energy systems is still an ongoing activity, the DOE has listed down several ongoing biomass projects including the 30-MW Talisay Bioenergy Project and the 50-MW Bioenergy Project.

There are likewise ongoing studies for the 25-MW Bais City Project, the 25-MW Capiz Bioenergy Project, the 5-MW La Suerte Rice Hull Project and the 5-MW Inter City Rice Hull project.

The DOE foresees the expansion of RE contribution (biomass, solar, micro hydro and ocean) by 250 MW by year 2013.

- 13 - 2.3 Major Issues

The capital-intensive nature, long gestation period (average of seven years) and related issues of social acceptability of large hydropower projects remain to be the sector’s biggest challenges. On the other hand, micro-hydro development for off-grid electrification is hindered by high upfront costs and the need for government support and intervention.

Socio-environmental concerns

There is considerable resistance for the development of large hydropower projects due to the potential for upstream flooding, destruction of agricultural areas and animal habitats and disruption of communities in the affected areas. These factors have affected the attractiveness of large hydropower projects.

Shift in type of development

Given the many issues plaguing large hydropower projects, the logical step is to focus on smaller, more manageable run-of-river projects. However, such shift will have to consider some challenges, such as a decrease in new potential capacity given the smaller scale of the projects, intermittent supply of power and an anticipated decrease in power generation during the summer months.

Commercialization of hydropower technology

There is a need to develop and commercialize suitable micro-hydro technology in the Philippines, even as hydropower technology for large and small projects is proven and mature. The Philippines remains to be dependent on imported electro-mechanical equipment for micro-hydro projects. The costs of these equipment vary based on kilowatt capacity. For instance, a 5-kW equipment with controls and metering devices costs US$11,000 while a 100-kW equipment costs US$64,500.

2.4 Government Policies and Programs

The aggressive development of the country’s renewable energy (RE) resource potential comes as the second most critical strategy in attaining the Philippine government advocacy for energy independence. In recent years, the steady increase in the contribution of geothermal

- 14 - and hydropower resources to the power generation mix has lessened the country’s dependence on imported fuels. In the government’s rural electrification efforts, renewable energy sources such as solar, micro-hydro, wind and biomass resources are seeing wide-scale use. Thus, it has become the government’s policy to facilitate the energy sector’s transition to a sustainable system with renewable energy as an increasingly prominent, viable and competitive option.

Along this context, the government is strongly working for the passage of House Bill 1068 entitled “An Act to Promote the Development, Utilization and Commercialization of Renewable Energy Sources” to further boost renewable energy in the country. The proposed bill, now on bicameral discussions, aims to promote the development of RE to further reduce the country’s reliance on generation systems powered by imported fuels while minimizing exposure of the economy to price fluctuations in the international markets. The bill will also ensure the increase in RE use through the provision of fiscal and non-fiscal incentives to RE developers, including mandatory generation, priority dispatch for intermittent generation and establishment of a trust fund. Likewise, the zero rating provided for RE-generated electricity under the recently-implemented Reformed Value Added Tax Law (R-VAT) or Republic Act 9337 will enhance the competitiveness of RE-sourced electricity.

Specifically, for hydropower projects, the enactment of Republic Act No. 7156, otherwise known as the Mini-Hydroelectric Power Incentives Act, in September 12, 1991 institutionalized attractive incentives for mini-hydro development, and consolidated under the then Office of Energy Affairs the responsibility and authority for hydropower development in the country. The law was meant to address the financial issues plaguing the industry then in the wake of the peso depreciation experienced by the country in the late 1980s. Summarized below are the important provisions of RA 7156 which are enforced to date:

a) Special privilege tax rates – Tax payable by developers/grantees to develop potential sites for hydroelectric power and to generate, transmit and sell electric power shall be 2.0 percent of their gross receipts.

b) Income tax holiday for seven years from the start of commercial operation.

c) Tax and duty free importation of machinery, equipment and materials – Exemption from payment of tariff duties and value-added tax (VAT) on the importation of machinery and equipment within seven years from date of award of contract.

- 15 -

d) Tax credit on domestic capital equipment – For developers who buy machinery, equipment, materials and parts from local manufacturers, tax credit is granted in an amount equivalent to 100 percent from the value of VAT and customs duties that would have been paid to import said machinery, equipment, etc.

e) Special realty tax rates on equipment and machinery – Realty and other taxes on civil works, equipment, machinery and other improvements of a registered mini-hydroelectric power developer shall not exceed 2.5 percent of their original cost.

f) VAT exemption – Exemption from payment of 10 percent VAT on gross receipts derived from the sale of electric power whether wheeled via NPC or electricity utility lines.

In relation to the issues presented earlier, the following are some action plans that the DOE has indicated to pursue:

a) Information, Education and Communication to enhance public acceptability

Prior to the implementation of the hydropower projects, the DOE shall involve all stakeholders in the decision-making process which could also include consultations with cultural communities (since hydro projects are mostly in the hinterlands). This would ensure that rights of the affected peoples are taken into consideration. At the same time, project risks are easier to ascertain through the joint conduct of social preparation activities.

b) Promotion of alternative hydro development

The run-of-river schemes of construction will allow for a balance of river ecosystems while providing communities dependent on the river for their livelihood to co-exist with hydropower projects. In addition, the government would place greater emphasis on projects with social and environmental issues by treating these problems as an integral element, along with economic and financial considerations in the decision-making process.

- 16 - c) Commercialization of hydropower technology

With additional incentives as stipulated in the proposed RE Bill, the commercialization of locally made hydropower equipment can be attained. The following measures are proposed to hasten commercialization:

1) Establishment of a Market Service Center

The Center will assist RE producers to obtain legal papers and permits required for RE projects. Likewise, under the UNDP-assisted CBRED project, there are provisions for various financing assistance options available to developers of renewable energy projects. The Center is also envisioned to be the repository of database for all hydropower projects.

2) Pursuit of technical cooperation with other countries

For small-scale hydropower development, the basic strategy for commercialization is to encourage electro-mechanical manufacturers to set up facilities in the Philippines and reduce the cost of importation of turbine equipment. There are several local turbine fabricators in the country that can be trained to enhance their capability to manufacture turbine equipment. The DOE will likewise continue to seek technical and bilateral cooperation with other countries that offer the latest expertise and technology transfer to replicate some successful demonstration projects.

- 17 - 2.5 Impact to Host Communities

The DOE continues to fulfill its social commitment to communities hosting energy projects through Energy Regulations (ER) 1-94 of Republic Act (RA) 7638 or the Department of Energy Act of 1992. Other enabling legislations include the following: Republic Act 7160 or the Local Government Code and Republic Act 9136 or the Electric Power Industry Reform Act (EPIRA) of 2001. Energy projects include energy-generating facilities or energy resource development activities.

Section 289 and 294 of the RA 7160 provides that the LGU shall receive 1.0 percent of the gross sales of the preceding calendar year or 40 percent of the total collection of royalties, taxes and other fees earned from the development and utilization of energy resources, whichever is higher. Eighty percent of this allocation shall be applied solely for the reduction of electricity costs where such resources are located while the remaining 20 percent will be used for local development and livelihood projects.

On the other hand, ER 1-94 requires generation companies and/or energy resource developers to set aside Php 0.01/kWh of their total electricity sales as financial benefits to the host communities. Funds can be accessed by proposing projects under any of the following classifications: electrification fund (EF); development and livelihood fund (DLF); and, reforestation, watershed management, health and/or environment enhancement (RWMHEEF). The allocation of the fund is as follows: 50 percent of one centavo for EF and 25 percent each for DLF and RWMEEF, respectively.

The non-monetary advantages, on the other hand, include the prioritization of load dispatch, training and skills development, preference in employment, preference in procurement of local supplies and sound environmental management.

The grant of financial benefits was subsequently strengthened in Section 66 of the EPIRA and Part A, Rule 29 of the EPIRA’s Implementing Rules and Regulations. The guidelines expanded the coverage with the inclusion of energy generating facilities having capacities of 10 MW and below.

- 18 - Chapter 3 Rural Electrification

3.1 Current Condition of Rural Electrification

Rural electrification in the Philippines has been adopted as a key policy of the national government as it can improve the living standards of the people and reduce poverty by the creation of new income sources in rural areas. In 1960, the Philippine government declared its stance in tackling rural electrification as a national policy, and established the Electrification Agency (EA). In 1969, the National Electrification Act was enacted and the EA was reorganized to form the National Electrification Administration (NEA), with the task to seriously undertake rural electrification. As power distribution in the Philippines had been carried out by private companies, the business was concentrated in highly populated urban areas where economic efficiency is greater. Therefore, the difference between urban and rural areas was growing larger. To solve this situation, NEA initiated the promotion of rural electrification through the Rural Electrification Cooperatives (RECs1) to be established in the local areas pursuant to the Act2.

Spurred by a substantial amount of subsidies from the national government and the support agencies, rural electrification dramatically advanced in the 1970s, and the number of RECs reached the current 119 in 1980. However, there were some RECs with weak financial foundation and many had poor collection of electricity charges. Thus, electrification has been carried out with many financial issues.

By 1997, electrification was completed for all municipalities, but the barangay level electrification remained only at roughly 72%. In order to keep promoting rural electrification, the Philippine government launched the O-Ilaw program in 2000 and the Expanded Rural Electrification (ER) program in April 2003. These programs were initiated to meet the objectives to complete electrification of all barangays by 2008 (initial target was 2004, which was changed to 2006 and re-changed to the current target), and to reach 90% household connection rate by 2017. It is said that there are 41,995 barangays in the Philippines, and roughly 8,300 (19.8%) were un-electrified as of the end of 2000. The national government is trying to accelerate electrification by increasing the annual target for electrification to 1,500 barangays (Table-3.1).

1 REC changed its name to Electric Cooperative (EC) in 1993. 2 JICA Report of SW mission on "Rural Electrification in the Philippines (June 2004)" page 27

- 19 - Table-3.1 1999 – 2006 Implementation Plans of O-Ilaw Program and ER Program

CUMULATIVE ANNUAL BARANGAY YEAR NO. OF TARGET ELECT. LEVEL BARANGAYS 1999(actual) 755 32,281 76.90% 2000(actual) 1,366 33,647 80.10% 2001(actual) 1,253 34,900 83.10% 2002 1,636 36,536 87.00% 2003 1,664 38,200 91.00% 2004 1,700 39,900 95.00% 2005 1,095 40,995 97.60% 2006 1,000 41,995 100.00% TOTAL 7,095 - - (Source: DOE, http://www.doe.gov.ph/Rep/O-ilaw/oilaw.htm)

In the Philippines, a subject barangay is deemed electrified either (1) electricity is supplied to 10 or more households in that barangay, or (2) feeder lines have been installed in the un-electrified barangay (electricity supply is possible, but to be electrified or not is up to the customer). But recently DOE reformed its definition (1) electricity is supplied to 30 or 40 households in that barangay by sustainable energy such as solar power, battery charge station (BCS), diesel power and others or (2) feeder lines have been installed in the un-electrified barangay. Definition described in (2) is the same as the last one but the number of beneficiaries of electrification was increased. However, even if 100% electrification is achieved on the barangay level, many households are yet to be electrified. In fact, an average 30 to 40 households in a barangay are connected, meaning that the barangay is electrified even if only a part of the barangay is actually served with electricity3.

As of October 2006, of the total 41,945 barangays4, electrification has been completed in 39,590 barangays, giving an electrification rate of 94.4% (Table-3.2). Electrification rates are largely different among regions: Luzon region 97.1%, Visayas region 96.0%, and Mindanao region 87.0%. Comparison of the electrification rate by power distributor, which is responsible for electrification implementation, shows 93.8% for ECs, the largest in number, followed by 98.5% for MERALCO, and 97.7% for private business/municipality/others (Table-3.3).

3 Japan Electric Power Information Center, Inc "Overseas Electric Utility Industries 2003 – Philippines" pp. 543 4 The October 2006 data says the total number of barangays is 41,945.

- 20 - Table-3.2 Electrification Level by Region (As of 31, October 2006)

Electrified Unelectrified Ratio Area Barangays Barangays Barangays (%) Philippines 41,945 39,590 2,355 94.4 Luzon 20,476 19,888 588 97.1 Visayas 11,443 10,982 461 96.0 Mindanao 10,026 8,720 1,306 87.0 (Source: DOE)

Table-3.3 Barangay Electrification Level by Franchise Holder (As of October 2006)

Electrified Electrification Franchise Holder Number of Barangay Challenge Completed Level (%) 119 Electric Cooperatives 36,080 86% 33,752 93.8 2,251 MERALCO 4,314 10% 4,251 98.5 66 24 Private Investor 1,625 4% 1,587 97.7 38 Owned/ LGUs/ Others Total 41,945 100% 39,590 94.4 2,355 (Source: DOE )

- 21 - 3.2 Promotion Policy of Rural Electrification

Rural electrification has been carried out by concerned organizations led by the DOE, in accordance with the O-Ilaw Program and the ER Program. First, the Secretary of the DOE formulates an electrification objective for the year, which is allocated to the concerned organizations by the Program Team (PT) comprised of the DOE and other parties. Then, the RECs and private power companies conduct actual implementation5. The PT was formed through DOE Special Order No. 2000-01-03 in January 2000 (revised by S.O. No. 2001-04-010 in 2001). Its responsibilities include the overall planning, promotion, monitoring and evaluation of rural electrification. The PT is composed of officials from the DOE, NEA, PNOC and NPC. The Program Management Office (PMO) based in the DOE serves as the implementing arm of the PT.

The O-Ilaw Program allows for a menu of options for participation from which donors or prospective partners can choose. The O-Ilaw Program components include the following6:

(1) Regular electrification program of government agencies a) Department of Energy and its related agencies (i) Locally-funded projects on electrification using new and renewable energy sources (ii) Grant-in-Aid Programs (iii) Electrification projects under ER 1-94 Fund7 b) National Electrification Administration/Rural Electric Cooperatives c) National Power Corporation d) Philippine National Oil Company through its Environmental Improvement for Economic Sustainability (EIES) Project e) PNOC-Energy Development Corporation f) Department of Agrarian Reform through its Solar Power Technology Support (SPOTS) Project for Agrarian Reform Communities (2) Electrification projects of Private Investors-Owned Utilities such as Meralco, Davao Light and Power Company, etc. (3) Electrification projects of LGU-owned utilities

5 Japan Electric Power Information Center, Inc "Overseas Electric Utility Industries 2003 – Philippines" p. 544 6 The Philippine Department of Energy Website http://www.doe.gov.ph/Rep/O-ilaw/oilaw.htm 7 Financial Benefits to Host Communities under ER 1-94. One-centavo per kilowatt-hour (P0.01/kWh) of the Electricity Sales which shall apply to Generation Facilities and/or energy resource development projects (50% for Electrification Fund, 25% for Development and Livelihood Fund and 25% for Environment Enhancement Fund).

- 22 - (4) The Independent Power Producers (IPP) Program (5) The Adopt-a-Barangay Program (6) Electrification through the Renewable Energy Service Company (RESCO) concept

As seen from these programs, the O-Ilaw Program and the ER Program offer participation in rural electrification projects to organizations other than government agencies and electric power suppliers. The funds come from different sources such as the national general budget, ER 1-94 fund, LGU budget, and subsidies from NGO or overseas. IPPs are also invited to participate with some expectation placed on their financial capability. Some examples of rural electrification implemented using the ER 1-94 fund are the PNOC-EDC's electrifying roughly 10 barangays near on Leyte Island in 2000, the US Southern Energy's barangay electrification project near the coal-fired thermal power plant in Quezon, and the Malaysia's East Asia project in Cebu8.

Rural electrification is basically carried out by an entity which holds the power distribution rights in the relevant area (Franchise Distribution Unit, e.g., EC). However, in the area where such FDU has declared no electrification plan in the foreseeable future in view of economic efficiency, electrification is implemented by the Missionary electrification project. Missionary electrification is undertaken by entities other than ECs, and they also expect private companies to participate. The entity implementing electrification in that area is called the qualified third party (QTP). If there are no QTPs, the NPC-SPUG will implement the project as a last resort. As Missionary electrification projects are for areas with little or no profitability, continuous subsidies are needed and the fund from a universal charge is appropriated. Universal charge is imposed on every electricity end-user as a part of the electricity charge, and its rate is decided by the Energy Regulatory Commission (ERC).

3.3 Issues of Rural Electrification

For power distribution, the country is divided into a total of 138 service districts; 119 ECs, 16 private power distributors, and 3 municipal electric power suppliers. Of the ECs, only 15 (12.6%) have achieved 100% barangay electrification, and 75 (63.0%) have not reached 90%. None of the ECs have achieved 100% household connection rate9.

8 Japan Electric Power Information Center, Inc "Overseas Electric Utility Industries 2003 – Philippines" p. 544 9 JICA "Survey of Donor Trend for Overseas Electrification (Philippines) September 2003" page 123

- 23 - Electrification has two methods, one is to extend transmission/distribution grids and the other is to utilize dispersion type power sources. At the end of 2000, roughly 4,000 (approx. 45%) of about 8,300 barangays were located quite a distance from the existing grids10. Investment efficiency in these areas is significantly low. The grid extension is difficult due to dispersed locations of villages and electrification cost is high because of the low income level. Such areas have no choice but to depend on the off-grid dispersion-type power sources. Mini-hydropower is utilized in areas where hydropower potential exists. Other areas utilize mini grids that use new or renewable energy sources such as solar light, wind power and biomass. Individual electrification by solar home system (SHS) is also promoted.

Table-3.4 shows the electrification methods used from 1999 to 2002. Of the 5,082 barangays, 4,159 or 81.8% were electrified by grid extension, and the remaining 923 or 18.2% ere through mini grid. Roughly 70% of the mini-grid electrification was through new or renewable energy sources11.

Whether electrified by grid extension or by mini grid, the barangays to be electrified in the future have a small power demand, making the electricity supply cost high. As the income of the people living in such barangays is small, an electrification project is quite unattractive to the power distributors. A big issue for the future is how electrification should be promoted in such areas from the perspective of livelihood improvement of the residents.

The DOE has other data useful for planning future electrification. Roughly 1,700 barangays, approx. 18% of roughly 8,300 un-electrified barangays, are located in the provinces where power plants have already been constructed. These power plants mainly supply energy for the demand outside the province. It is desirable for them to contribute to promoting the electrification of un-electrified barangays in one way or another. ER1-94 fund was established to this end. As aforementioned, pursuant to this system, power producers are obliged to set aside one centavo (0.01 peso) per kWh of energy generation to the DOE fund. 50% of this fund is disbursed to energize the un-electrified barangays surrounding the power plants. It is also possible for a power producer to construct a power-distribution grid, and in such a case, the ER 1-94 fund will be refunded later on12. At any rate, it has a significant value in planning the

10 The Philippine Department of Energy Website http://www.doe.gov.ph/Rep/O-ilaw/oilaw.htm 11 JICA Report of SW mission on "Rural Electrification in the Philippines (June 2004)" page 32 12 The Philippine Department of Energy Website http://www.doe.gov.ph/Rep/O-ilaw/oilaw.htm

- 24 - future direction of rural electrification to physically or institutionally utilize the existing power plants for electrification of areas surrounding the power plants.

Table-3.4 Rural Electrification by Method (1999 – 2002)

Year 1999 2000 2001 2002 Total Extension of Grid 713 1,078 1,010 1,358 4,159(81.8%) Isolated Small Gird 42 288 245 348 923(18.2%) Solar (PV) 42 56 212 310 620(12.2%) Micro Hydro 15 3 6 24 (0.5%) Hybrid 2 2 4 (0.1%) Generator Set 215 28 32 275 (5.4%) Total 755 1,366 1,255 1,706 5,082 (100.0%) (Source: JICA Report of SW mission on “Rural Electrification in the Philippines” (June, 2004) p. 32)

3.4 Effects of Rural Electrification

During the survey of last year, we visited the area in Pasil, Kalinga Province, which was electrified through micro hydro by JICA. We interviewed one customer and the details are as given below:

(1) Place visited: Residence of Mr. Constantio Rosito (2) Location: Dangtalan (former Balangao), Pasil (3) Summary: i) State of electrification: The electrification of this area was carried out in December 2004, through micro hydropower to provide 15 kW, by JICA and DOE. Almost all of the 180 households in this area are connected. Power is supplied from 5 p.m. to 8 a.m. the next morning. The operation is undertaken by the Barangay Alternative Power Association (BAPA).

ii) Electric appliances owned: Mr. Rosito is in the police service of Balbalan, the adjacent town. His house has fluorescent lamps (8 W x 5: 40 W), a refrigerator (93 W), a rice cooker, a TV, a VCR, etc. As they are not used simultaneously, the total demand is less than 200 W. Fluorescent lamps of 8 W are recommended so that electricity can be used by as many households as possible. One lamp costs 170 pesos. At another household whose head is a carpenter, a power saw (800 W) and a

- 25 - power planer (500 W) were purchased after electrification. The electricity charge is computed using a calculation formula according to the demand. They pay 180 pesos per month. Though there is no meter installed now, BAPA is looking into installing meters, which have already been provided free of charge by the DOE. As no meters are installed, some residents complain that they may be overcharged. The BAPA has two charge collectors.

iii) Lifestyle changes after electrification: People's lifestyle has significantly changed after electrification. The biggest change is the use of kerosene. They were using kerosene lamps and 4 liters of kerosene in 15 days costing 140 pesos. Electricity turned out to be cheaper. Changes occurred in children's life. The time used for studying lessened during the first 6 months after electrification because they were watching TV and videos. Recently, however, they got bored of those activities and started to study longer than before. There are 6 children in the family, 2 in junior high school, 3 in elementary school, and one toddler. The same thing seems to be happening in other households. Roughly 30% of the households own a TV and a VCR. Satellite broadcasting system can be installed for 750 pesos. The problem of micro hydropower is the voltage fluctuation. At one time, the heater of the dummy load at the power plant broke down causing a rise in voltage and shutting the lights off.

The effects of rural electrification on residents are systematically summarized in the 2004 Ex-Post Evaluation Reports regarding the Philippine NEA Rural Electrification Project13 implemented by the Japan Bank for International Cooperation from 1994 to 2001. The Report states that the rural electrification in the Philippines brought about the following effects14.

[Impact of Project] For this evaluation, a survey was conducted to study the positive and negative impacts of this project on local residents. 47% of the residents interviewed answered "very satisfied," and 46% answered "satisfied," showing as much as 93% of the residents are satisfied with the project. Asked what impact of electrification they recognized, they

13 L/A was concluded in August 1994. Yen loan amount 11.4 billion yen (loan disbursed amount 9.7 billion yen). Implementing agency: National Electrification Administration (NEA) 14 JBIC Ex-Post Evaluation Report 2004 "NEA Rural Electrification Project" http://www.jbic.go.jp/english/oec/post/2004/pdf/2-26_full.pdf

- 26 - responded that the project provided not only pastimes and convenience through lighting and other electric appliances but various positive changes such as few fires, improved working and educational environment and improved communications among family members and neighbors. The negative impacts of this project were the debts incurred by household appliance purchases and electricity payment (13%) and the diminished traditional sense of values (3%). a) Increase in employment opportunities and income In the barangays electrified under the project, some residents started new businesses or increased their income utilizing electricity. Other examples include being able to operate the sundry store till late at night, making ice lollipops in the freezer for sale, and opening of a bakery. b) Improvement in educational environment The project electrified the educational institutions in the barangays, such as nurseries and elementary schools, as well as the general households. In the 16 barangays interviewed, a total of 13 nurseries and elementary schools and 4 high schools were electrified. In the general households, fluorescent and incandescent lamps that are much brighter than the formerly used kerosene lamps allow for the children to study at night. c) Improved convenience and increased pastimes After electrification, most households purchased fluorescent lamps, light bulbs and other lighting fixtures (93% of the surveyed). Other electric appliances purchased that can serve to enhance convenience and ease the burden of household chores are refrigerators (26%), irons (16%), washing machines (8%), electric rice cookers (5%), and electric pumps for domestic water (4%). They also bought entertainment items, such as TVs (54%), VCRs (24%), radios/radio cassette players (30%), karaoke machines (13%), and video games (2%). The residents' lifestyle changed from working in the field during the day and coming home to sleep after the sunset to talking under the light, or visiting neighbors to watch TV or video, or singing karaoke together. Many households replied that their communication within the family or with the neighbors had improved. d) Securing less expensive, safe light source Prior to electrification, most of the households were using kerosene lamps as a light

- 27 - source. After electrification, fluorescent lamps of 20 to 40 W or incandescent lamps of 40 to 60 W are used. A 60-W incandescent lamp is 7 to 70 times brighter than a kerosene lamp, while the former is roughly a half to one-ninth of the latter in cost. The kerosene lamps often caused a fire when toppled. Other problems with kerosene lamps are bad smell from smoke, health damage including coughs and eye irritation, and soot. Many residents think that, now that they use fluorescent or incandescent lamps, they are worry free from fire and damage by kerosene lamp smoke.

- 28 - Chapter 4 Outline of the Surveyed Area

4.1 Outline of Northern Samar Province

Northern Samar is part of the Eastern Visayas Region, which hosts five (5) other provinces, namely: Leyte, , , Eastern Samar and Western Samar. Northern Samar province occupies a total land area of 3,498 square kilometers.

Northern Samar is located on the eastern part of the Philippine Islands. It is bounded by San Bernardino Strait on the north, Samar Sea on the west, Pacific Ocean on the east, and the provinces of Samar and Eastern Samar on the south.

It ranks thirty-fifth (35th) in size among the 74 provinces of the Philippines and accounts for practically 1.2 percent of the total land area of the country. About 52 percent of the total land area is covered by forest and 42 percent is classified as alienable and disposable.

Northern Samar is the gateway to the Visayas and Mindanao from Luzon. It can be reached by 14 hours bus travel through the Maharlika Highway passing Bicol Region and traversing the San Bernardino Strait via ferryboat in the primary ports of San Isidro and Allen. Presently, it is already accessible to Manila via Asian Spirit Airlines servicing four flights a week. It can also be reached by boat from Manila and Cebu via City,

- 29 - and City. Some inter-island shipping companies have scheduled travel to the ports of San Jose and .

Northern Samar covers 25 municipalities, 569 barangays and 94,410 households. Catarman is its capital town. The province registered a total population of 500,639 in 2000 (2000 Census of Population and Housing), posting an annual growth rate of 2.11 percent. Its population density is recorded at 143 persons per square kilometer. Majority speak the Waray-waray dialect.

In terms of income, the province is classified as second class. Among the municipalities, majority or 62.5% are fifth class municipalities. Only two are considered second and third class municipalities (Catarman and Laoang).

The major industries in Northern Samar are agriculture and fishery. Coconut, abaca, palay and root crops are the major agricultural crops of the province while bangus, crabs and prawns are among its major fish/seafood products. Other industries include furniture and handicraft making, hat and mat weaving, brick making, oil manufacturing and soap making.

Northern Samar falls under the intermediate type climate, which has no distinct dry and wet seasons. The rainiest months are October to January, while the driest is the month of May.

4.2 Electric Power Situation in Northern Samar

Eastern Visayas is dependent mainly on geothermal resource, Leyte Province being the host of the largest producer of geothermal energy in the country. The region hosts two (2) geothermal power plants: the Leyte Tongonan 1, 2 and 3 geothermal power plants – the Leyte Geothermal Power Plant (LGPP 1) with total installed capacity of 112.50 MW and dependable capacity of 99 MW, and the Tongonan 2 & 3 (Leyte A) with a total installed capacity of 610.80 MW and dependable capacity of 578.40 MW. The LGPP total power generation in 2005 stood at 1,929.62 GWh while Leyte A generation reached 604.04 GWh for the same year. Excess power generation from these plants are exported to Cebu and Luzon through the Leyte-Cebu grid and the Leyte-Luzon grid, respectively.

Northern Samar is being serviced by an electric cooperative - the Northern Samar Electric Cooperative (NORSAMELCO) - in supplying the power requirements of the province. In 2005, the EC sold a total of 36,271 MWh of electricty to its customers. The residential

- 30 - sector is the major user of electricity of the province with a 92.5 percent share in the total electricity demand for the same year. The electricity utilization level of the sector is expected to post an annual average growth rate of 9 percent for the 10-year period (2006-2015). On the other hand, the commercial sector only registered a 5.36 percent share in 2005 with an annual growth rate of 2 percent within the 10-year period, while the rest is shared by the industrial sector and other users of electricity, such as public buildings and street lights.

Table-4.1 Electricity Demand

Electricity Demand

No. of Customers 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Residential 33510 37670 41948 46001 50378 54995 59714 64131 68395 73001 Commercial 1985 2067 2128 2192 2279 2335 2391 2421 2450 2481 Industrial 1 1 1 1 1 1 1 1 1 1 Others 818 869 888 905 930 956 962 969 982 996 Total 36,313 40,608 44,966 49,099 53,588 58,287 63,068 67,521 71,829 76,479

NORSAMELCO has no existing bilateral supply contract with the National Power Corporation (NPC) for the delivery of its power requiement. As such, there is no firm supply of power for the province. The EC depends on its annual non-contracted purchase of power from NPC, which is not sustainable since it would be determined by the availability of supply from NPC not contracted with other utilities. Given this condititon, the annual supply power deficit would be the annual power purchase of the province. System losses acounted at an average of 18% from 2001 to 2005. Projected system loss for the next 10 years is seen at a decreasing rate from 14% in 2006 to 5% in 2015. Meanwhile, peak demand stood at an average of 7.4 from 2001 to 2005, which is expected to demonstrate an increasing trend within the 10-year period – from 8% in 2006 to 17% in 2015. The system peak occurs at around 7:00 p.m. The over-all system load factor is low at 58% due to the dominance of residnetial consumers. To meet the required 13.2% reserve margin , the the electric cooperative needs additional capacity of 1 MW from 2006 to 2009 and 2 MW from 2010 to 2015.

- 31 - Table-4.2 Annual Power Purchase

Annual Power Purchase Purchase Year (MWh) 2001 25,871 2002 30,790 2003 34,235 2004 39,224 2005 40,550 2006 42,734 2007 45,967 2008 49,776 2009 54,235 2010 59,106 2011 65,391 2012 72,459 2013 78,001 2014 83,267 2015 89,302

Table-4.3 Supply – Demand Profile

30.00 Supply - Demand Profile (MW)

20.00

10.00

0.00 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Add'l Cap to meet at least 13.2% RM 0.92 1.06 1.06 1.06 1.11 1.19 1.29 1.41 1.54 1.70 1.85 1.99 2.09 2.24 Indicative Supply (M W) 7.00 8.00 8.00 8.00 8.41 9.05 9.80 10.67 11.63 12.87 14.02 15.09 15.84 16.99 Firm Supply (M W) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 PEAK LOAD (MW) 7.00 8.00 8.00 8.00 8.41 9.05 9.80 10.67 11.63 12.87 14.02 15.09 15.84 16.99

- 32 - The barangay electrification level in 2005 stood at 67%, which can be translated to 380 barangays electrified. The electrification level represents one of the lowest in the country and is mainly due to the remote nature of the remaining unenergized barangays in the province. The absence of roads also makes it more difficult to extend the distribution lines to the barangays. The municipality of Las Navas, for example, can be easier reached by cruising the Catubig River, a main source of transportation for the village folks from the said town. The EC has waived twenty-three (23) barangays from its coverage for possible Third Party Agreements From its 546 coverage barangays (96% of the total number of barangays), the EC could meet its target of 100% barangay electrification level by 2008. However, about 40% of the total household population would remain unelectrified until 2015.

Table-4.4 Level of Electrification

Level of Electrification

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 Barangay Level (%) 83% 92% 96% 96% 96% 96% 96% 96% 96% 96% No. of Barangays Energized (On-Grid) 446 493 516 516 516 516 516 516 516 516 No. of Barangays Energized (Off-Grid) 26 30 30 30 30 30 30 30 30 30 Total 472 523 546 546 546 546 546 546 546 546 Household Level (%) 36% 37% 39% 41% 44% 46% 49% 52% 55% 58%

No. of Household Energized (On-Grid) 31,717 34,096 36,653 39,402 42,475 45,788 49,360 53,308 57,573 62,179

No. of Household Energized (Off-Grid) n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. Total 31,717 34,096 36,653 39,402 42,475 45,788 49,360 53,308 57,573 62,179

References:

1. Philippine Energy Plan 2005-2014 2. Philippine Energy Plan 2006 Update 3. Renewable Energy Policy Framework 4. National Electrification Chronicle, 2003 - 2005 5. Official Website of Northern Samar (www.northernsamar.gov.ph)

- 33 - Chapter 5 Pre-Feasibility Study of Rural Electrification by Renewable Energy

5.1 Current Situation of Rural Electrification in Coverage Area

5.1.1 Current Situation of Rural Electrification in Northern Samar

An area for this investigation is located along the Catubig watershed area in Northern Samar, in the municipalities of Catubig and Las Navas. Northern Samar is a province in the Eastern Visayas region (Region VIII). As of July 2006, the level of energization for barangays in Region VIII stood at 90.8%, with several electric cooperatives in Leyte, whose electric power is supplied by geothermal power plant, attaining a 100% energization level. However, the energization level in NORSAMELCO, which covers Northern Samar, is only 73.1%, the lowest among electric cooperatives in Region VIII (Table-5.1, Fig-5.1). The energization level in Catubig is 60.9% but in Las Navas, the level is a very low 11.3%. Thus, the acceleration of energization has become a very serious problem (Table-5.2 , Fig-5.2).

- 34 - Table-5.1 Status of Barangay Electrification in Region VIII

Electric Number of Barangays Cooperatives Covered Energized % Region VIII 4390 3984 90.8 DORELCO 499 494 99.0 LEYECO II 196 196 100.0 LEYECO III 285 285 100.0 LEYECO IV 245 242 98.8 LEYECO V 416 416 100.0 SOLECO 500 483 96.6 BILECO 132 132 100.0 SAMELCO I 427 366 85.7 SAMELCO II 524 482 92.0 ESAMELCO 597 472 79.1 NORSAMELC 569 416 73.1 (as of 2006,July,31) (Source: NEA)

Fig-5.1 Status of Barangay Electrification in Region VIII Status of Barangay Electrification in Region VIII (as of 2006,July)

100

90

80

70 Barabgay Base Electrification Ratio (%) Ratio Electrification Base Barabgay 60

O V O I C III CO n VIII CO II E CO E CO ECO L YE Y BILEC OREL E E SOL Regio D LEY L L SAMELCO LEYECO IV SAME SAMELCOE II NORSAMELCO

- 35 - Table-5.2 Status of Barangay Electrification in Northern Samar (as of 2004.12.31) Municipality Cooperative Number of Barangays Potential Members House Connections Energized Covered Energized % Households Total % Total % Allen 20 19 95.0 3,217 2,140 66.52 2,529 78.6 Biri 8 2 25.0 1,317 376 28.55 397 30.1 18 13 72.2 2,613 1,710 65.44 1,598 61.2 12 5 41.7 1,780 504 28.31 446 25.1 Catarman 55 37 67.3 9,228 7,465 80.90 8,145 88.3 Catubig 46 28 60.9 4,050 1538 37.98 1596 39.4 Gamay 26 12 46.2 3,119 992 31.81 1104 35.4 Laoang 56 33 58.9 7,968 3,707 46.52 3,905 49.0 15 5 33.3 1,396 441 31.59 476 34.1 Las Navas 53 6 11.3 4,286 451 10.52 479 11.2 26 20 76.9 3,635 1,565 43.05 1,624 44.7 Lope de Vega 22 5 22.7 1,621 309 19.06 374 23.1 13 7 53.8 1,326 472 35.60 471 35.5 Mondragon 25 14 56.0 3,987 1,985 49.79 1,927 48.3 32 23 71.9 4,019 2,181 54.27 2,259 56.2 26 12 46.2 3,349 1,396 41.68 1,470 43.9 Rosario 11 7 63.6 1,196 596 49.83 629 52.6 San Antonio 10 10 100.0 1,423 723 50.81 665 46.7 San Isidro 14 13 92.9 3,591 2,155 60.01 2,291 63.8 San Jose 16 16 100.0 2,099 1,356 64.60 1,385 66.0 San Roque 16 10 62.5 2,493 1257 50.42 1288 51.7 San Vicente 7 3 42.9 1,178 195 16.55 196 16.6 26 3 11.5 1,601 12 0.75 12 0.7 Victoria 16 13 81.3 1,873 956 51.04 945 50.5 Total 569 316 55.5 72,365 34,482 47.65 36,211 50.0 Source : Northern Samar Electric Cooperative (NORSAMELCO), Inc., Bobon, Northern Samar

Fig-5.2 Status of Barangay Electrification in Northern Samar

Status of Barabgay Electrification in Northern Samar (as of 2004 )

100

90 80

70

60

50

40

30

20

Barangay Ratio (%) Electrification Base 10

0 Biri Allen Total Capul Bobon Lapinig Gamay Laoang Rosario Catubig Victoria Palapag Mapanas San Jose San Pambujan Catarman San Isidro San Lavezares Las Navas Las Mondragon Roque San San Antonio San Vicente Silvino Lobos Lope de Vega de Lope

- 36 - 5.1.2 Power Supply Facilities

NORSAMELCO supplies electricity to its customers through the Wright substation (138kV/69kV), a transmission line system with 69kV and three substations (Dalakit, Lawaan and Allen) from the Tongonan geothermal power plant unit 1 (Steam Development: PNOC-EDC, Generating: NPC, Output 112.5MW). NORSAMELCO covers the Northern Samar area after receiving the electricity at the substation and distributes electricity to its customers. Electric supply to Catubig and Las Navas is transmitted from the Lawaan substation (69kV/13.2kV, 3.75MW) through a 30 km long distribution line (Fig-5.3).

Fig-5.3 Diagram of Transmission Line in Philippines (Northern Samar Area)

Electricity is also supplied by photovoltaic (PV) solar systems, small diesel power generating sets and battery charging systems (BCS) in Catubig and Las Navas. BCS put up using Solar panel systems are supplied by PNOC-EDC and NPC. The cost for charging a battery through the grid is 50-70 pesos while charging a battery through the PV solar system is about 20 pesos. The diesel power system is supplied by private enterprises with a cost of 100 pesos per 10m per month and four operating hours (18:00-21:00, 5:00-6:00). Even though the electricity rate is still expensive compared to the residents’ average income of 4,000-6,000 pesos per month, electricity demand is high as it increases the level of convenience in the life of the residents. Even though the normal cost of the solar system panel is 75Wp per set, the expensive 150Wp panel has nevertheless started to become popular.

- 37 - 5.1.3 Summary of NORSAMELCO

NORSAMELCO, the electric cooperative which provides electricity to the Northern Samar area, was established in 1977. NORSAMELCO distributes power to a total of 23 municipalities and 316 barangays out of 24 Municipalities and 569 Barangays in an area covering 3,498km2. The only remaining municipality without electricity will be energized by 2007. As of 2004, a total of 36,211 households out of the 72,000 households had a contract to receive the electricity (Table-5.3). The breakdown of the consumer volume of NORSAMELCO is 67% for residential, 18% for commercial, 9% for public building, 1% for industrial and 4% for street light (Fig-5.4).

Table-5.3 Outline of NORSAMELCO (As of 2006 Oct.) Item Unit Number

Peak Load kW 8,133

Load Factor % 64.8

System Power factor % 94.1

No. of Towns Covered 24 No. of Towns Energised 24

No. of Barangays Covered 569 No. of Barangays Energised 318

No. of Potential Consumers 72,365 No. of Actual Consumers 38,400

Energy Net Purchased (Monthly) kWh 3,717,908 System Loss % 21 Average Energy Rate (Buying) Peso/kWh 4.66

Average Energy Rate (Selling) Peso/kWh 6.23 Revenue (Monthly) Peso 18,331 (Source: NORSAMELCO)

The energy distribution of NORSAMELCO in 2004 was 31,249MWh which included 72.4% for residential (Table-5.4). The latest information shows that 3,717,900kWh per month is distributed (as of October 2006) corresponding to 44,615MWh per year. As of 2006, the maximum electricity demand was 8,133kW (Table-5.3). With more electrification projects on line, NORSAMELCO foresees a problem of a larger system loss. At present, the average system loss stands at 12%. In addition to technical losses, the other sources of losses may come from defective electric meters, etc.

- 38 - As of 2004, the electricity selling rate of NORSAMELCO was 6.13 pesos/kWh for Residential, 5.41 pesos/kWh for Commercial and 5.60 pesos/kWh for Total (Table-5.5). As of October 2006, the rate increased to 6.23 pesos/kWh. NORSAMELCO pays 4.66 pesos/kWh for electricity it purchases from the NPC (Table-5.3).

Fig-5.4 Breakdown of Consumer Numbers in NORSAMELCO (as of 2004)

Industrial, 1% Street Light, 4% Public Building, 9%

Commercial, 18%

(Source: NORSAMELO) Resident, 67%

Table-5.4 Energy Distribution of NORSAMELCO(2004)

Type MWh Residential 22,632 72.4%

Commercial 5,141 16.5% Industrial 183 0.6% Others 3,293 10.5% Total 31,249 100.0% (Source:2005 Regional Social & Economic Trends)

Table-5.5 Electric Tariff of NORSAMELCO(2004)

Type Peso/kWh Residential 6.13 Commercial 5.41 Industrial 5.45 Public Building 5.46 Street Light 5.57

Total 5.60

(Source:2005 Regional Social & Economic Trends)

According to the income statement of the electric cooperative, NORSAMELCO recorded deficits in two years. It had a deficit of 1,550,085 Pesos in 2004 but the deficit has been covered in recent years (Table-5.6). Fig-5.5 and Table-5.7 show the prospects for electric

- 39 - demand and development plan, respectively, in NORSAMELCO. According to Fig-5.5 and Table-5.7, the number of consumers and the maximum peak load will increase by 13% and 7% per year, respectively. NORSAMELCO has formulated plans to attain its target of completing the energization of all barangays by year 2008.

Table-5.6 Income Statement of NORSAMELCO(2004) (Peso) 2004 2003 Operating Revenue 188,004,480 151,005,569 Operating Expense 180,266,376 144,958,715 Net Operating Income 7,738,104 6,046,854 Interest Charge 3,326,224 5,650,702 Depreciation Charge 8,291,743 5,871,375 Net Operating Income after Interest & Dep. -3,879,863 -5,475,223

Other Income 2,329,778 2,998,464

Net Income (Loss) -1,550,085 -2,476,759 (Source: NORSAMWELCO 2004 Annual Report)

Fig-5.5 Demand Forecast of NORSAMELCO

100,000 16.0

90,000 14.0 80,000 12.0 70,000 60,000 10.0 50,000 8.0

40,000 6.0 Peak Load (MW) No. of Consumers of No. 30,000 4.0 20,000 2.0 10,000 0 0.0 2005 2006 2007 2008 2009 2010 2011 2012

No. of Consumers Peak Load (MW)

- 40 -

Table-5.7 NORSAMELCO Development Plan

Item 2005 2006 2007 2008 2009 2010 2011 2012 No. of Costumers 39,044 44,014 49,617 55,942 63,075 71,124 80,329 90,447 Peak Load (MW) 9 9 10 11 12 13 13 14 Level of Electrification Barangay Level 73% 82% 91% 100% 100% 100% 100% 100% No. Barangay Electrified (On-Grid) 352 382 412 443 443 443 443 443 No. Barangay Electrified (Off-Grid) 63 84 105 126 126 126 126 126 Total 415 466 517 569 569 569 569 569 Projected Infrastructure Requirement Distribution/ Sub-transmission Facilities 102 125 64 94 Expansion (ckt-kms) 102 125 64 94 Rehabilitation / Upgrade (ckt-kms) Substation Capacity (MVA) Reactive Power Compensation Plan (MVAr) Capital Investment Requirements (Million Peso 488726319889 (Source: Phillipnes Energy Plan 2004-2013 )

NORSAMELCO has adopted the QTP (Qualified Third Party) concept to implement the extension of distribution lines to some of its franchise areas. The DOE has considered the weakness of the financing base of NORSAMELCO. PNOC-EDC provides the electricity to surrounding areas in Leyte as it operates geothermal power plants in the area. Therefore, there is no claim from the beneficiaries of economical inefficiencies. However, intention of development of distribution lines depends on the QTP’s policy so that it is not so smooth to implement. The DOE expects that development of distribution lines will be implemented not only by PNOC-EDC but also by NPC-SPUG, NEA using public funds, and Mirant and KEPCO using private funds.

5.1.4 Current Situation of Electrification in the municipalities of Catubig and Las Navas

A total of 28 barangays out of the 47 barangays in Catubig have been energized, while a total of 26 barangays out of the 53 barangays in Las Navas have been energized. Both municipalities consider electrification plans which will be implemented by QTPs (Table-5.8(1), Table-5.8(2)). However, these plans may not be actually implemented because no measures are taken such as assistance or penalty.

5.2 Assumption of Electric Demand associated with Rural Electrification

As mentioned in the Help for Catubig Agricultural Advancement Project (HCAAP), the said project as financed through a yen-loan has been implemented. This project will bring development of irrigation and drainage facilities in an area of 4,500ha and a highway with a

- 41 - distance of 65 kilometers. As a result of this project, extensive improvements are expected so that agricultural productivity will significantly increase from 1 ton/ha to 5 tons/ha.

This study provides for the feasibility of the effective utilization of renewable energy resources in rural electrification. Renewable resources will be provided by micro hydro power potential from the irrigation canal as developed by HCAAP, and by biomass energy, contingent to increased agricultural production.

Once barangays are energized, residents will purchase electric products such as lights, TV and refrigerator to make living conditions more convenient, and improve livelihood opportunities. Residents will also be encouraged to buy electric equipment such as power planer and electric saw which will generate savings on labor power and produce high-value added products.

Once barangays are energized, household electrical goods such as household lights, TV, and refrigerators will become common along with street lights and pumps for water well, Ice manufacturing stores and rice mills will likewise be installed in the barangays (Table-5.9). Thus, a peak load of 9.6 kW is estimated for all barangays with a condition that 50 households are energized in one barangays. According to the daily power demand in the barangays (Fig-5.6), the load factor is estimated as 48.8%.

- 42 - Table-5.8(1) Current Situation of Electrification of Barangays in Catubig

Catubig Barangay Population Household ElectrificationPlan Fund Source 1 Barangay 1Pobl 1,119 240 2 Barangay 2Pobl 441 83 3 Barangay 3Pobl 607 122 4 Barangay 4Pobl 416 78 5 Barangay 5Pobl 370 71 6 Barangay 6Pobl 313 58 7 Barangay 7Pobl 299 64 8 Barangay 8Pobl 827 154 9 Anongo 795 155 2007 PNOC-EDC 10 Bonifacio 332 61 2007 PNOC-EDC 11 Boring 182 35 Energized 12 Cagbugna 432 76 Energized 13 Cagmanaba 728 113 Energized 14 Cagugubngan 451 84 15 Calingnan 976 182 Energized 16 Canuctan 280 48 Energized 17 CM Recto 477 88 18 D Mercader 465 97 Energized 19 Guibuangan 368 73 Energized 20 Hinagonoyan 676 105 Energized 21 Hiparayan 694 125 Energized 22 Hitapian 1,004 180 Energized 23 Inobururan 141 25 24 Irawahan 704 128 Energized 25 Lenoy ahan 334 65 Energized 26 Libon 273 47 Energized 27 Mag-ongon 342 53 Energized 28 Magtuad 876 178 Energized 29 Manering 221 43 Energized 30 Nabuluo 337 63 Energized 31 Nagoocan 643 120 Energized 32 Nahulid 198 39 Energized 33 Opong 590 114 34 Osang 244 51 2008 NPC-SPUG 35 Osmena 290 66 36 P Rebadulla 339 56 37 Roxas 896 147 2007 PNOC-EDC 38 Sagudsoron 435 80 39 San Antonio 309 55 2007 PNOC-EDC 40 San Fransico 1,074 193 41 San Jose 2,348 435 42 San Vicente 1,671 327 2007 PNOC-EDC 43 Santa Fe 787 138 2007 PNOC-EDC 44 Sulitan 801 151 45 Tangbo 342 77 2006 NEA 46 Tongodnon 174 35 2006 Mirant 47 Viena Maria 224 37 Total 26,845 5,015 (Source: Census 2000, DOE materials)

- 43 - Table-5.8(2) Current Situation of Electrification of Barangays in Las Navas Las Navas Barangay Population Household ElectrificationPlan Fund Source 1 Balugo 385 80 Energized 2 Bugtosan 436 83 Energized 3 Bukid 900 189 Energized 4 Geguinta 408 82 Energized 5 Geraodo 337 66 Energized 6 Guyo 387 73 Energized 7 H Jolejole 409 82 Energized 8 H Jolejole District 1,477 322 9 L Empon 332 69 Energized 10 Lourdes 793 151 Energized 11 Lumala-og 399 89 Energized 12 Mabini 491 92 Energized 13 Mac Arthur 326 56 Energized 14 Palanas 164 35 Energized 15 Quirino District 1,748 331 Energized 16 Rebong 557 101 17 Roxas 571 99 Energized 18 San Andres 380 82 Energized 19 San Jorge 756 149 Energized 20 San Miguel 1,116 207 Energized 21 Caputoan 209 41 Energized 22 Cuenco 290 54 Energized 23 San Fransisco 654 111 Energized 24 San Isidro 1,666 335 Energized 25 San Jose 259 44 Energized 26 Santo Tomas 155 31 Energized 27 Tagan-ayan 316 60 Energized 28 Victory 565 102 Energized 29 Bugay 621 103 2006 Mirant 30 Bulao 935 196 2008 PNOC-EDC 31 Catoto ogan 219 44 2006 KEPCO 32 Dapdap 1,673 296 Energized 2006 NEA 33 Del Pilar 858 168 2006 NEA 34 Dolores 143 24 2006 KEPCO 35 Epaw 179 36 2006 KEPCO 36 Hangi 521 98 2008 PNOC-EDC 37 Imelda 296 54 2006 KEPCO 38 Lakandula 224 46 2006 KEPCO 39 Magsaysay 459 96 2008 PNOC-EDC 40 Matelarag 261 48 2007 PNOC-EDC 41 Osmena 206 40 2008 NPC-SPUG 42 Paco 305 63 2006 KEPCO 43 Perez 360 64 2008 NPC-SPUG 44 Poponton 526 104 2008 NPC-SPUG 45 Quezon 163 35 2008 PNOC-EDC 46 Quirino 841 159 2008 NPC-SPUG 47 Rizal 517 90 2008 PNOC-EDC 48 Rufino 200 35 2008 NPC-SPUG 49 Sag-od 188 33 2008 NPC-SPUG 50 San Antonio 228 45 2008 NPC-SPUG 51 San Fermando 921 184 2006 NEA 52 Tagab iran 1,157 224 2008 PNOC-EDC 53 Taylor 859 140 2006 KEPCO Total 29,346 5,641 (Source: Census 2000, DOE materials)

- 44 - Table-5.9 Assumption of Electric Demand by Rural electrification

(kWh/ <Energy Denmand in Barangay> coverage (kW) (hour) Remarks day) Number of Households 50 Households Household Light (40Wx4) 160 W 0.8 6.4 4 25.6 Peak Household TV 70 W 0.5 1.75 4 7.0 Peak Households Refrigerator (50L 100 W 0.3 0.45 24 10.8 Peak & Base (Refrigerator Availability) ( 0.3 ) Street Light (40WX25) 40 W 25 1 12 12.0 Peak & Base Pump for Water Well 250 W 1unit 0.25 20 5.0 Non-Peak Ice Manufacturer 1,250 W 1unit 1.25 20 25.0 Non-Peak Rice Miller 3,000 W 1unit 3 9 27.0 Non-Peak Total 112.4 (Peak Demand 9.6 kW 44.6 ) (Base Demand 5.0 kW 67.8 )

Fig-5.6 Assumption of Electric Demand by Rural electrification (daily load curve)

Daily Power Demand in Barangay (50 Households)

12

10

8

6

Demand (kW) 4

2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 hour

HH Ref St Light HH Light HH TV Pump Ice Rice

- 45 - 5.3 Assumption of Electrification associated with Expansion of Distribution Line

Before initiating the study of electrification by renewable energy, a cost estimation study to develop extension of distribution line for rural electrification is needed.

Unenegized barangays in Catubig and Las Navas are distributed in the south and east areas. To study rural electrification by extension of distribution line in the vicinity of the Catubig Service area, that study team needed to obtain the potential data. The population and number of households of the barangays are shown in Table-5.10. The table includes energized barangays as shown in Table-5.8(1) and Table-5.8(2). Barangays served by solar panel systems and small diesel generators are considered by the government as energized.

Table-5.10 Electrification Plan of Barangay

No. Barangay Population Households 47 Rizal 517 90 53 Taylor 859 140 14 Palanas 164 35 48 Rufino 200 35 27 Tagan-ayan 316 60 25 San Jose 259 44 35 Epaw 179 36

49 Sag-od 188 33 24 San Isidro 1,666 335 50 San Antonio 228 45

Total 4,576 853

- 46 - The specific plan for expansion of distribution line is assumed as shown in Fig-5.7. As a result of these expansion plans, the distance of expansion of distribution line and households is assumed as shown in Table-5.11.

The electrification cost by expansion of distribution line is assumed to consist of the items as follows.

1. Capital cost for expansion of distribution line 2. Capital cost for installation of electric transformer and incoming line 3. Capital cost for extension of transformer at Lawaan substation 4. Operation and Maintenance cost for power distribution equipment 5. Cost for distribution loss from Lawaan substation to household 6. Power cost

Where, As for No.1, the cost for expansion of distribution line is estimated to be USD 8,000 per km. The annual expense rate of 0.114 is estimated based on an expected lifetime of 25 years and a discount rate of 12%. As for No.2, the unit rate for a transformer of USD 1,600 is applied based on NORSAMELCO’s standard specifications for transformers with 13.2kV, 240V and 15kVA. As for No.3, the unit rate for a transformer of USD 12/kVA is applied. Even though no expansion is needed at the Lawaan substation in this plan, this cost is estimated for future expansion of electrification. As for No.4, the O & M cost is assumed to be 1.5% of the construction cost As for No.5, the distribution loss depends on the distance of the distribution line and the electric power, so that it is estimated by the multiplication method using the electric unit rate of NORSAMELCO. As for No.6, the consumer price is applied which contains the generating and transmission costs as well as the administration costs of NORSAMELCO.

- 47 - Fig-5.7 Expansion Plan of Distribution Line

Las Navas

Mabini Goyo

Taylor Rizal Hangi San Antonio Del Pilar

Tagab iran Palanas

Rufino

Dapdap

Tagan-ayan Epaw San Isidro

San Jose

Sag-od

Table-5.11 Number of Household and Distance of Distribution Line

Section From To Household Population Distance (house) (people) (km)

1 Mabini Rizal 90 517 2.8 2 Rizal Taylor 140 859 2.2 3 Hangi Palanas 35 164 3.0 4 Palanas Rufino 35 200 2.4 5 Tagabiran Tagan-ayan 60 316 3.6 6 Dapdap Epaw 44 259 2.4 7 Epaw San Jose 36 179 2.4 8 San Jose Sag-od 33 188 3.6 9 Dapdap San Isidro 335 1,666 3.4 10 Dapdap San Antonio 45 228 3.6 Total 853 4,576 29.3

- 48 - The Long-run Marginal Cost (LRMC) is estimated by the cost at block distance of expansion of distribution line divided by the annual usage of electric power of consumer. Table-5.12 shows the electrification cost of each area by expansion of distribution line.

As a result, the electrification cost is estimated to range from 19.8 centavos/kWh to 32.2 centavos/kWh. If the distance of the distribution line is long and the barangay is small, the electrification cost is estimated to be more than 25centavos/kWh.

- 49 -

Table-5.12 Electrification Cost by Expansion of Distribution Line

Eenergize Plan up to each Barangay Rizal Taylor Palanas Rufino Tagan-ayan Epaw San Jose Sag-od San Isidro San Antonio All Area-A Calculation Methodology Beneficiary Households (houses) 90 140 35 35 60 44 36 33 335 45 853 (a) Census 2000 data Beneficiary Population (people) 517 859 164 200 316 259 179 188 1,666 228 4,576 (b) Census 2000 data

Power Demand (kW) 17.3 26.9 6.7 6.7 11.5 8.4 6.9 6.3 64.3 8.6 163.8 (c) (a)xStandard Barangay Power Demand/100 Annual Energy Demand (MWh) 73.8 114.9 28.7 28.7 49.2 36.1 29.5 27.1 274.9 36.9 699.9 (d) (a)xStandard Barangay Energy Demand/100x365 Distance of Feeder Expansion (km) 2.8 2.2 3.0 2.4 3.6 2.4 2.4 3.6 3.4 3.6 29.3 (e) From Feeder Line Allocation Tabel Distance from Laoang S/S (km) 29.8 31.9 29.4 31.8 31.8 36.0 38.4 42.0 37.0 37.2 34.5 (f) Distance from Laoang S/S Loss rate in Dist. Line (%) 0.13% 0.22% 0.05% 0.05% 0.09% 0.08% 0.07% 0.07% 0.61% 0.08% 0.31% (g) depend on distance & power demand Annual Energy to be Transmitted (MWh) 73.9 115.1 28.7 28.7 49.3 36.1 29.6 27.1 276.6 37.0 702.1 (h) (d)/(1-(g)) Annual Energy Loss in Dist. Line (MWh) 0.1 0.3 0.0 0.0 0.0 0.0 0.0 0.0 1.7 0.0 2.2 (i) (h)-(d) Cost of Dist. Trans. Extension ('000$) 0.3 0.4 0.1 0.1 0.2 0.1 0.1 0.1 1.0 0.1 2.5 (j) @12$/kVA Cost of Distribution Lines Extensio('000$) 22.1 17.3 24.0 19.2 28.8 19.2 19.2 28.8 26.9 28.8 234.2 (k) @8,000$/km Pole Transformer ('000$) 2.3 3.6 0.9 0.9 1.5 1.1 0.9 0.8 8.6 1.2 21.8 (l) @1,600$(15kVA) Connecting Line ('000$) 6.1 9.5 2.4 2.4 4.1 3.0 2.4 2.2 22.8 3.1 58.0 (m) @85$/Household Total Construction Cost ('000$) 30.8 30.8 27.4 22.6 34.6 23.4 22.7 32.0 59.2 33.1 316.5 (n) (j)+(k)+(l)+(m)

Annual Cost of Construction. ('000$) 3.50 3.50 3.12 2.57 3.94 2.67 2.58 3.64 6.74 3.77 36.0 (o) (n)x annuity 0.114 (25 yrs, 12%) O&M Cost ('000$) 0.46 0.46 0.41 0.34 0.52 0.35 0.34 0.48 0.89 0.50 4.7 (p) (n)x1.5% Cost of Loss Energy ('000$) 0.01 0.03 0.00 0.00 0.01 0.00 0.00 0.00 0.21 0.00 0.3 (q) (i)x(t) Total Cost (Annual) ('000$) 3.98 4.00 3.53 2.91 4.46 3.02 2.92 4.12 7.84 4.27 41.1 (r) (o)+(p)+(q)

Cost of Grid Expansion (¢ /kWh ) 5.4 3.5 12.3 10.1 9.1 8.4 9.9 15.2 2.9 11.6 5.9 (s) (r)/((d) Cost of Energy (¢ /kWh) 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 17.0 (t) Norsamelco Tariff (6.23P/kWh) x Tariff Increase (2.0% annu Energy Cost by Grid Extension (¢ /kWh) 22.4 20.5 29.3 27.1 26.1 25.4 26.9 32.2 19.8 28.6 22.9 (u) (s)+(t)

- 50 -

5.4 Assumption of Electrification Cost by Renewable Energy

5.4.1 Assumption of Electrification Cost by Micro Hydro Power Plant

As mentioned in Chapter 2, the electric demand for rural electrification is estimated to have a peak load of 10 kW and a base load of 5kW. If all electric demand is covered only by the micro hydro power plant, an output of 10 kW is needed. If the facility is not used efficiently during peak load, the utilized capacity is estimated to be 46.8%. A potential discharge 0.2m3/s and a head of 7m is essential to cover the output of 10kW generation.

On the other hand, if only the base load is to be covered by the micro-hydro power plant, the installation of a plant with an output of 5kW is needed. In this case, the utilized capacity is estimated as 66.5%. A potential discharge 0.1m3/s and a head of 7m is essential to cover the output of 10kW generation.

The electrification cost by micro hydro power plant is assumed to consist of the items as follows.

1. Capital cost of installation of Turbine and Generator 2. Capital cost of installation of distribution line (low-voltage distribution system of 240V) 3. Operation and Maintenance cost for Turbine and Generator 4. Cost of operator

Where, As for No.1, the cost for Turbine is estimated at USD 8,000 per kW. The annual expense rate of 0.1078 is estimated based on an expected lifetime of 45 years and a discount rate of 12%. As for No.2, the same unit rate is applied with the expansion of distribution line As for No.3, the total annual O&M cost for the Turbine, Generator and distribution facility is assumed to be 1.5% of the construction cost. As for No.4,the remuneration of one operator is assumed to be 4,000peso/month.

The Long-run Marginal Cost (LRMC) is estimated by all construction cost of micro hydro power plant divided by the annual usage of electric power of consumer. The

- 51 -

electrification cost of 27.7centavos/kWh is estimated if the total electric demand of 10kW is covered by the micro hydro power plant. Meanwhile, the electrification cost of 22.1centavos/kWh is estimated if the base load of 5kW is covered by the micro hydro power plant.

The details of the hydro power potential from the irrigation canal constructed under HCAAP is described in chapter 6. Accordingly, a potential of 10kW can not be anticipated so that the installation of a 5kW micro hydro power plant is assumed as suitable. Table-5.13 shows the results of the study.

- 52 -

Table-5.13 Electrification Cost by Each Method of Power Generation

Generation Type Micro Hydro Biogas Rice Hull Combustion Micro Hydro & Biogas

(a) (b) (c) (d) (e) (b)+(d) Power Plant Output (kW) 10.0 5.0 Output (kW) 10.0 5.0 Output (kW) 10.0 10.0 Plant Factor (%) 46.8% 66.5% Plant Factor (%) 46.8% 27.2% Plant Factor (%) 46.8% 46.8% Annual Generation (MWh) 41.0 29.1 Annual Generation (MWh) 41.0 11.9 Annual Generation (MWh) 41.0 41.0

Energy Source Current of Irrigation Channel Animal Waste Rice Hull Discharge (m3/s) 0.2 0.1 Swine (heads) 1,800 500 Harvest Area (ha) 130 Head (m) 7 7 Daily Biogas Offtake (Nm3) 100 28 Annual Available Rice Hull (ton/y) 182 Heat Value (kcal/m3) 5,000 5,000 Heat Value (kcal/kg) 3,250 Gas Engine Efficiency (%) 20% 20% Engine Efficiency (%) 8%

Initial Construction Turbine & Generator ('000$) 80.0 40.0 CIGER ('000$) 30.0 10.0 Stirling Eng. & Gen. ('000$) 105 50.0 Cost Estimation - - - - Gas Holder ('000$) 4.0 2.0 (3.3 kW x 3units) 2.0 - - - - Gas engine & Generator ('000$) 8.0 5.0 Rice Hull Storage ('000$) 5.0 5.0 Distribution Line ('000$) 1.2 1.2 Distribution Line ('000$) 1.2 1.2 Distribution Line ('000$) 1.2 1.2 Connecting Line ('000$) 3.4 3.4 Connecting Line ('000$) 3.4 3.4 Connecting Line ('000$) 3.4 3.4 Total ('000$) 84.6 44.6 Total ('000$) 46.6 21.6 Total ('000$) 114.6 61.6

Annual Generation Capital Cost ('000$) 9.12 4.81 Capital Cost ('000$) 5.57 2.58 Capital Cost ('000$) 13.70 7.39 Cost Estimation O&M Cost ('000$) 1.27 0.67 O&M Cost ('000$) 0.93 0.43 O&M Cost ('000$) 2.29 1.10 Operator (1 person) ('000$) 0.96 0.96 Operator (2 person) ('000$) 1.92 1.92 Operator (3 person) ('000$) 2.88 1.92 Supplemental Fuel ('000$) 0.46 Total ('000$) 11.35 6.44 Total ('000$) 8.42 4.93 Total ('000$) 19.33 10.41

Generation Cost Generation Cost (¢ /kWh) 27.7 22.1 Generation Cost (¢ /kWh) 20.5 41.5 Generation Cost (¢ /kWh) 47.1 25.4

Difficulty of Difficulty of As stirling engine is in the demonstration stage, acquiring acquiring the generation cost estimation is high. However Comments necessary necessary if the engine cost becomes lower, the generation discharge swine cost also becomes lower.

- 53 -

5.4.2 Assumption of Electrification Cost by Biogas Energy

The system which performs a methane fermentation process using livestock manure from swine, cows, or poultry has been used commercially in the Philippines. These technologies have been used as the technology for livestock manure processing from an environmental impact point of view but marsh gas has also been used effectively from an energy usage point of view. According to DOE officials, large and small processing system of livestock manure has been done in more than 650 places in Philippines. An example of a large case application is at the Maya farm, where electricity is generated by marsh gas from 60,000 hogs in a farm with an area of 40Ha, and is used for light and refrigerator in the enclosure. The usage of simplified digester tanks of concrete is encouraged in case of small scale farming. There have been 9 manufacturers for digester tank of livestock manure processing in the Philippines.

In recent years, cases of methane fermentation system with swine manure planned as CDM project have been increasing in the Philippines (Table-5.14). In this case, marsh gas has been processed by CIGAR (Covered In-ground Anaerobic Digester) which was developed by the Bioscience Company. Thus, the system which performs a methane fermentation processing of livestock manure has been used commercially. Swine farming has been a livelihood activity in Catubig (Table-5.15). If the income level of the farm household is increased in association with HCAAP, it is assumed that farm households engaged in swine farming as an auxiliary business will also increase. Thus, biogas generation by livestock manure as renewable energy is studied.

Table-5.14 CDM Project by Usage of Biogas in Philippines (Registered CDM Project)

Registered Title Host Parties Other Parties Methodology * Reductions ** Ref

United Kingdom of Great AMS-III.D. ver. 30-Oct-06 Gaya Lim Farm Inc. Methane Recovery Philippines 3130 611 Britain and Northern Ireland 9 Uni-Rich Agro-Industrial Corporation United Kingdom of Great AMS-III.D. ver. 28-Oct-06 Methane Recovery and Electricity Philippines 2929 609 Britain and Northern Ireland 9 Generation United Kingdom of Great AMS-III.D. ver. 23-Oct-06 Joliza Farms Inc. Methane Recovery Philippines 3656 607 Britain and Northern Ireland 9 Gold Farm Livestocks Corporation United Kingdom of Great AMS-III.D. ver. 21-Oct-06 Methane Recovery and Electricity Philippines 2929 612 Britain and Northern Ireland 9 Generation (Source: UNFCCC CDM Project activities http://cdm.unfccc.int/Projects/registered.html)

- 54 -

Table-5.15 Current Situation of Firming of Livestock and Poultry in Catubig

(as of 2000) Livestock / Number Production Poultry (heads) (metric tons) Livestock Swine 5,200 6.50 Cattle 150 0.75 Goat 1,000 5.75 Carabao 3,197 15.90 Horse - - Sheep 20 0.02 Poultry Chicken 11,760 5.80 Duck 500 0.25 Turky 100 0.10 (Source: Materials of Catubig Municiparity)

In the case of generating by marsh gas, and similarly as with micro hydro power, biogas generating equipment with an output of 10 kW is needed. In this case, the utilized capacity is estimated as 46.8%. 1,800 hogs, a digester tank with a capacity of 3,600m3 and a biogas volume of 100m3/day is needed for an electric demand of 10 kW.

On the other hand, if only the base load is to be covered by the biogas power plant, an installation of only 5kW is needed. The utilized capacity is estimated as 11.9% but if the gas holder uses 500 hogs only, a corresponding smaller biogas digester tank and a biogas volume of 28m3/day is need.

The electrification cost by biogas power plant is assumed to consist of the items as follows.

1. Capital cost of biogas transaction equipment (including installation cost) 2. Capital costs of gas engine and generator (including installation cost) 3. Capital cost of installation of distribution line (low-voltage distribution system of 240V) 4. O&M cost of biogas transaction equipment, gas engine, generator and distribution equipment. 5. Cost of operator

Where, As for No.1, the construction cost for CIGAR is estimated as 7.4$/m3 and an annual expense rate of 0.1195 is estimated based on an expected lifetime of 20 years and a

- 55 -

discount rate of 12%. As for No.2, the cost of gas engine and generator is estimated with annual expense rate of 0.1195. As for No.3, the same unit rate is applied with the expansion of the distribution line. As for No.4, the total annual O&M cost of CIGAR, gas engine, generator and distribution equipment is assumed to be 1.5% of the construction cost. As for No.5, the remuneration of two operators is assumed to be 4,000peso per person per month.

The Long-run Marginal Cost (LRMC) is estimated by all construction costs`of the biogas power plant divided by the annual usage of electric power of consumers. The electrification cost of 20.5centavos/kWh is estimated if the total electric demand of 10kW is covered by the biogas power plant. Meanwhile, an electrification cost of 41.5centavos/kWh is estimated if the base load of 5kW is covered by the biogas power plant (Table-5.13).

As a result of this study, the electrification cost by biogas with a capacity of 10kW is assumed as the same cost as by expansion of distribution line. However, it might be difficult to gather 1,800 hogs for swine farming.

5.4.3 Assumption of Electrification Cost by Rice Chaff Power Plant

It is expected that agricultural productivity will increase substantially from rice cropping, from a daily capacity of 1ton/ha to 5ton/ha under HCAAP. As a result of this, rice chaff might be used for generating energy. Even though rice chaff is used for household cooking in the Philippines, there is no experience of large scale usage of rice chaff. According to the DOE, rice chaff power plant is planned in Bulacan province with a capacity of 35MW and in Nueva Ecija province with capacity of 25-30MW.

If the study of rice chaff power plant is conducted and existing boiler technology and steam electric generation are used, the scale of generating equipment becomes large. In fact, the capacity of the case example mentioned above is 25-30MW, and operating rice chaff power plant in Thailand is 10-20MW. To install the generating equipment with large capacity, large amounts of rice chaff is needed. However, there is no committed plan of rice chaff collecting system under HCAAP. Thus, in the current situation, rice chaff power is not suitable for rural electrification.

- 56 -

On the other hand, Stirling engine has been coming up with small size biomass energy using higher efficiency technology. Stiring engine is an external-combustion engine, unlike an internal-combustion engine, and generates power from various external fuel sources such as rubbish timber, biomass, etc.. Even if the technology of internal-combustion engine was invented many years ago, it has not, come into practical use, in the shadow of development of internal combustion power. However, nowadays, the technology of external-combustion engine has come up from the point of view of the efficient use of untouched natural resources and environmental aspects. These days, small type systems with 5 horsepower and capacity output of 3kW (Fig-5.8) have been tested for validation. Since a small size system is suitable for the electrification of small barangays, the feasibility of electrification by using the Stirling engine is studied15.

If rice chaff power is generated using a Stirling engine, it becomes advantageous to raise economical efficiency by raising the facility utilization factor. Thus a total of 10kW output may be generated by 3 sets of 3.3kW engines. In this case, the utilization factor is estimated as 46.8%. The specifications of the Stirling engine is shown in Table-5.16. An amount of 180 tons per year of rice chaff is needed to generate 10kW. This amount is equivalent to the amount of rice chaff produced from the farm with an area of 130ha and which is prepared under HCAAP (Table-5.17).

Fig-5.8 Outline of 3kW Stirling Engine (ST-5)

Biomass Fuel Hopper Controller

Fan

Combustion Chamber Heater Head Compressor Generator (Source: Boucher of STIRLING ENGINE Co. Ltd.)

15 Materials and information about stirling engine has been kindly provide by STIRLING ENGINE Co. Ltd. Kanagawa Science Park East Tower 213 3-2-1 Sakado, Takatsu-ku, Kawasaki-city, Japan, 213-0012 http://www.stirling–engine.com

- 57 -

Table-5.16 Specification of Stirling Engine

Specifications of the ST-5 Stirling Engine

Engine Type External Combustion, Stirling Cycle, Crank Drive Engine Output 5 Horse power (Shaft), at 650 rpm Fuels Used Wood, Saw dust, Husks, Corn cods, Weeds, Other Agro-byproducts, Natural Gas Fuel Consumption 38 kW of Heat (approximately 10 kg/h of wood) Lubrication Dry bearing; No oil used Working Fluid Air Working Pressure 5 bar, self pressurizing Heater Head temperature 650 ℃ Dimension 49" x 16" x 16" Weight 440 lbs (200kg)

(Source: Stirling Engine Co. Ltd)

Table-5.17 Assumed Amount of Rice Chaff for Generating

Item Estimation

Rice Productivity 5.0 t/ha

Paddy Field Area 130 ha

Rice Production 1,140 ton/year (*)

Available RiceHusk Ratio 0.8

Rice Husk Weight 0.2 kg/kg Rice

Available Rice Husk 180 ton/year Heat Value of RiceHusk 3,250 kcal/kg Energy Generation 41,270 kWh/year Energy Generation 113 kWh/day (*) Rainy season 5.0 t/ha, dry season 3.75 t/ha.

- 58 -

The electrification cost by rice chaff power with Stirling engine is assumed to consist of the items as follows.

1. Capital cost of Stirling engine and installation cost 2. Capital cost of construction of storage house for rice chaff 3. Capital cost of installation of distribution line (low-voltage distribution system of 240V) 4. O&M cost of Stirling engine, generator and distribution equipment 5. Cost of operator

Where, As for No.1, currently, since stirling engine is under verification test, the commercial price has not been set. Therefore, the cost of $35,000 is used as a provisional value. An annual expense rate of 0.1195 is estimated based on an expected lifetime of 20 years and discount rate of 12%. As for No.2, the cost is estimated to be $5,000 and an annual expense rate of 0.1195 is used similarly as in No.1. As for No.3, the same unit rate is applied with the expansion of distribution line. As for No.4, the total annual O&M cost of Stirling engine, generator and distribution equipment is assumed to be 2.0% of the construction cost. As for No.5, the remuneration of three operators is assumed to be 4,000peso per person per month.

The Long-run Marginal Cost (LRMC) is estimated by all construction costs of biogas power plant divided by the annual usage of electric power of consumers. The electrification cost of 47.1centavos/kWh is estimated if the total electric demand of 10kW is covered by the biogas power plant (Table-5.13). This price is estimated to be higher than the cost of expansion of distribution line since the capital cost of Stirling engine is provisional. Meanwhile, the electrification cost of 20centavos/kWh is estimated if the cost of Stirling engine becomes common and consequently attains a lower price such as $10,000. The commercial viability and popularization of Stirling engine is expected since the cost is just the same as the expansion cost of distribution line.

- 59 -

5.4.4 Assumption of Electrification Cost by Hybrid Generating System between Micro Hydro Power and Biogas Power

As described in Sub clause 4.1 and 4.2, it is not expected that only micro hydro power potential is hard to cover the number of 50 households of standard Barangay. On the other hand, number of the firming swines are also not enough to produce the electricity by Biogas method to cover all households. In consideration of both features, micro hydro is available to operate 24 hours and Biogas is available to stock in Gas holder, hybrid system between a micro hydro power plant for base load and biogas power for peak load is proposed in this study.

As a result of this study total construction cost of rural electrification by hybrid generating system between micro hydro power with 5kW and biogas power with 5 kW is estimated to be $61,600. As the method mentioned above indicates that the annual operating and maintenance cost is estimated to be about $10,400. The Long-run Marginal Cost (LRMC) is estimated by all construction costs of the hybrid generating system divided by annual usage of electric power of consumers. The electrification cost of 25.4centavos/kWh is estimated.

5.5 Selection of Candidate Barangays for Electrification by Renewable Energy

As mentioned in Chapter 3, the electrification cost for the expansion of distribution line is estimated from 20centavos/kWh to 32centavos/kWh and there are some barangays with costs of more than 25centavos/kWh. On the other hand, the electrification cost by hybrid generating system between micro hydro power and biogas power is estimated as 25centavos/kWh. As a result of this study, seven barangays in Las Navas may possibly adopt the hybrid system as follows.

No. Barangay Population Household 1 Palanas 164 35 2 Rufino 200 35 3 Tangan-ayan 316 60 4 Epaw 259 44 5 San Jose 179 36 6 San-od 188 33 7 San Antonio 228 45

- 60 -

Chapter 6 Rural Electrification Plan by Renewable Energy

6.1 Potential of Micro Hydro Power Plant

The HCAAP plan consists of constructing three irrigation facilities which include the Catubig service area (3,565.5ha), the Bulao service area (742.2ha) and the Hagbay service area (665.3ha), respectively. The data discharge and head of the water channel, and of the irrigation channel at the Catubig service area were subsequently obtained in this study. Table-6.1 show the potentials for micro hydro power generation at the Catubig service area.

As a result of this study, the possibility of micro hydro power generation was found in four barangays, namely, Palanas, Tagan-ayam, Epaw and San Jose.

Table-6.1 Potential of Micro Hydro Power at Catubig Service Area

Site No. Discharge Head Output Nearest (m3/s) (m) (kW) Barangay 1 0.11 2.6 1.7 San Isidro 2 0.19 2.8 3.2 Epaw 3 0.19 1.5 1.8 San Jose 4 0.17 4.5 4.3 Tagan-Ayan 5 0.24 4.2 6.0 Tagan-Ayan 6 0.22 2.0 2.6 Tagan-Ayan 7 0.10 3.0 1.8 Palanas 8 0.14 3.4 2.8 Rizal

6.2 Hybrid Power Generation Plan at Barangays

The respective electric power demand in each of the four barangays, namely, Palanas, Tagan-ayan, Epaw and San Jose is shown under the Demand side column of Table-6.2. The possible supply sources, on the other hand, and in case that power is provided for by Micro hydro power and Biogas power, is shown under the Supply side column of Table-6.2.

In Palanas, a barangay peak demand of 6.7kW and an electric energy demand of 78.7kWh per day are anticipated. These requirements can be met by hybrid power generation, which consists of constructing a 1.8kW micro hydro power facility along the No.7 water channel for base load, and a supplemental 4.9kW biogas power facility, for covering the shortfall. In this instance, a total of about 540 farmed swine (about 15 swine per stand alone) and the installation of a CIGER digester chamber with a volume of 1,100m3 shall be needed.

- 61 -

In barangay Tagan-ayan, the expected peak demand of 11.5kW and an electric energy demand of 134.9kWh per day are anticipated. The expected demand can likewise be met through hybrid power generation, which consists of constructing a 6.0kW micro hydro power plant along the No.5 water channel for base load, and an additional biogas power facility with a capacity of 5.5kW, to cover for the shortfall. About 600 farmed swine (about 10 swine per stand alone) and the installation of a CIGER digester chamber of 1,200m3 shall be needed.

In barangay Epaw, the daily peak demand is expected to reach 8.4kW with a corresponding electric energy demand of 98.9kWh. Hybrid power generation, consisting of a 3.2kW micro hydro power facility along the No.2 water channel for base load, and a 5.2kW biogas power structure for covering the shortfall, are necessary. These will require getting manure from about 440 farmed swine (about 10 swine per stand alone) and installing a CIGER digester chamber with a volume of 900m3.

In barangay San Jose, a peak demand of 6.9kW and electric energy demand of 80.9kWh per day is anticipated. Once again, a hybrid power generation consisting of a 1.8kW micro hydro power facility along the No.3 water channel for base load, and a biogas power structure with a capacity of 5.1kW for covering the shortfall, are needed. Considering the requirements, manure from about 580 farmed swine (about 16 swine per stand alone) and the installation of a CIGER digester chamber with a volume of 1,200m3 are needed.

6.3 Micro Hydro Power Plant 6.3.1 Turbine for micro hydro power

With the micro hydro power turbine, which is applied to micro hydro power stations of less than 100kW, more emphasis is placed on low cost and ease of inspection and maintenance rather than on turbine efficiency.

The Pelton turbine, and S-type tubular turbine, which are also widely used for small and micro hydro power, and only the types particular to micro hydro power are described below.

The cross-flow turbine is used for relatively small flow with a head of 5 to 100m. The runner is a cylindrical cage type with 20 to 30 arc shaped blades. One guide vane is divided into two parts which are arranged axially. It maintains high efficiency in a wide load range as the guide vanes are switched according to the load.

- 62 -

The rim-generator unit has the generator rotor installed on the circumference of the runner blade and the generator and turbine are integrated into one piece.

The turgo impulse turbine is applied to the intermediate specific speed between the Pelton turbine and Francis turbine. This is an old model dating from 1920’s but is now being reconsidered for power applications. Fig-6.1 shows various types of micro hydro power turbine.

Fig-6.1 Micro Hydro Power Turbine Types

- 63 -

6.3.2 Selection of type of turbine

The turbine type is selected on the basis of the effective head and turbine discharge, while considering such factors as river flow, operation of the and regulating pondage. When two or more turbine types are possible, they are determined by comprehensively studying their cost efficiency, maintainability, etc.

Various turbines have limitation on their respective head and applicable specific speed. The application range is determined by their adaptability to the head variation, characteristic, strength against cavitation, etc. Turbine Selection Diagram is shown in Fig-6.2.

Effective Head H(m) 1000 1000

Pelton Turbine Turgo Impulse Turbine Horizontal Francis Turbine Vertical Francis Turbine

100 100 Kaplan Turbine

10 10

Reversible pump Turbine Cross-Flow Turbine

S-type Tubular Turbine

Submerged pump Turbine Propeller Turbine

Propeller Turbine(Siphon) 1 1 0.01 0.1 1 10 100 Maximum Discharge Q(m3/s)

Fig-6.2 Turbine Selection Diagram

For the type of turbine, Propeller turbine was found to be appropriate in view of the flow (0.1-0.24m3/s) and effective head (1.5-4.5m) relationship based on the turbine selection diagram given in Fig-6.2. Thus Propeller turbine was selected for its high efficiency and proven performance.

- 64 -

Table-6.2 Basic Specification of Hybrid Power Generating at Each Barangay

Demand Side Supply Side Daily Daily Base Hydro Energy Energy Household Peak Base Micro Hydro Biogas Necessary Capacity of Barangay Energy Energy Site production by Production s Demand Demand Potential Generation No. of Swine Digester Demand Demand No. Micro Hydro by Biogas (house) (kW) (kW) (kWh) (kWh) (kW) (kWh) (kW) (kWh) (Head) (m3) (a) (b) (c) (d) (e) (f) (g) (h)=(b)-(f) (i)=(d)-(g) (j) (k)

Palanas 35 6.7 3.5 78.7 55.9 1.8 7 43.2 4.9 35.5 540 1,100 Tagan-ayan 60 11.5 6.0 134.9 95.8 6.0 5 95.8 5.5 39.1 600 1,200 Epaw 44 8.4 4.4 98.9 70.2 3.2 2 70.2 5.2 28.7 440 900 San Jose 36 6.9 3.6 80.9 57.5 1.8 3 43.2 5.1 37.7 580 1,200

Note 1. Peak demand (b) is calculated by 9.6kW x (Households No./ 50) 2. Base demand (c) is calculated by 5.0kW x (Households No./ 50) 3. Daily energy demand (d) is calculated by 112.4 kWh x (Households No./ 50) 4. Daily base energy demand (e) is calculated by 79.8 kWh x (Households No./ 50) 5. Energy production by Micro hydro (g) is smaller number of either micro hydro potential (f) x 24h or daily base energy demand (e). 6. Biogas generation (h) is the balance of peak demand (b) and Micro hydro potential (f). 7. Energy production by biogas (i) is the balance of daily energy demand (d) and energy production by micro hydro (g). 8. Necessary No. of swine (j) is calculated by energy production by biogas (i) divided by 6.54 kWh/day/100 swine head. 9. Capacity of digester (k) is calculated by energy production by biogas (i) multipled by 31.0 m3/kWh/day.

- 65 -

6.4 Biogas Power Plant

As already mentioned, the CIGER (Covered In-ground Anaerobic Digester) method, which is more common in the Philippines and which was developed by the Philippine Bioscience Company, is considered for the biogas power plant plan. In order to protect the penetration of digestive juice to the ground and the emission of produced gas to the air, the chamber is covered with a 1mm-thick, high density polyethylene (HDPE) liner. The waste material of the farm animal is stocked in the digester chamber for at least 30 days. Then, the organic matter is broken down by bacteria, so that biogas, including methane, is produced. This gives a BOD of more than 90% and a COD of more than 80% which account for the density of methane becoming more than 65%. On the other hand, bacillus withers away in a temperature condition of more than 35 degrees.

(Source: UNFCCC CDM Project Activity, Gaya Lim Farm Inc. Methane Recovery project PDD p.5)

The biogas generating system with a CIGER chamber is being constructed by the Sorosoro Ibaba Development Cooperative (SIDC) in Batangas province. The SIDC was established in 1969 as a cooperative and as of the end of 2005, the cooperative had full category members totaling 3,834 and supporting members numbering 4,976. The activities of SIDC include stock growing, distribution, rice milling and sales of goods. SIDC also consistently maintains a swine population of approximately 30,000 throughout the year. Two years ago, SIDC started the study of fermentative treatment with swine’s manure, from an environmental perspective and considering digestive gas and usage of organic manure. At present, a big gas power generation system is being constructed with funding support from the British government. This system covers the following processes: manure is produced from 8,000 swine; the manure is digested in the CIGER chamber (30m x 90m x depth of 6m), where

- 66 -

biogas with an average daily volume of 400-500m3 is produced; the gas is collected in the tank to generate 75kw of electricity; and the electricity is distributed to the office building of SIDC and some households in the vicinity. The generating system will be completed by 2007. The swine manure is gathered automatically using a drain system.

The total construction cost of 6 million pesos is broken down as: 4 million pesos for the digester chamber, and 2 million pesos for construction. The generator is procured from the United States of America with a price of 1.3 million per set. The generated electricity is distributed to some households (50-100 households, 200-300 residents) in the barangay. At the moment, electricity is being distributed by MERALCO. However, a reduction in electricity tariff is expected with the potential use of biogas power.

Aside from swine, manure from poultry and cows may additionally be considered. For instance, chicken manure produces biogas more efficiently than manure from swine. However, due to the local dry conditions, manure from poultry has been utilized better as fertilizer on commercial basis, than for energy use. Therefore, manure of swine is still the most efficient fuel source for biogas energy in the Philippines.

Considering the specifications of SIDC’s system, manure from 500 swine and a biogas digester chamber with a volume of 1,010m3 shall be needed to generate an output of 5kW. These are expected to result in the production of 28m3 of biogas per day and the generation of about 32.7kWh of electric energy. Table-6.4 shows that comparison of biogas generation in Philippines and Japan.

Table-6.3 Basic Specification of Biogas Power Generation

Item Estimation Swine number 500 head Biogas Production 28 m3/day Heat Value of Biogas 5,000 kcal/m3 Daily Energy of Biogas 32.7 kWh/day

Output Power 5 kW Generation Hour per day 6.5 hours Energy Prod. by Swine No. 6.5 kWh/day/100head Capacity of Digester 1,010 m3 Digester cap. by Energy prod 31.0 m3/kWh/day

- 67 -

Table-6.4 Comparison of Biogas Generating in Philippines and Japan

SIDC Cooperative Yagi Bio-Ecology Center Item (Japan) (Philippines) Bio Materials Animal Waste Cow, Swine etc. Swine 8,000 (heads) 86 (t/day) Digester Type CIGER BIMA Capacitym3 16,200 2,100 m3 30m×90m×6m(D) 14mφ×17.7m(H) Daily Biogas Offtake 450 m3 2,120 m3 Heat value around 5,000 kcal/m3 4,780 kcal/m3 (Methane content 65%) Gas Holder Capacity unknown 500 m3 350 m3 Engine Capacity 75 kW 220 kW 75kW×2 80kW×1 Heat Efficiency unknown 28.1% Daily Electricity Generation 3,500 kWh

Project Cost Digester 6.0 million Peso Gas Engine 1.3 million Peso Total 7.3 million Peso 1,048 million Yen

Source Hearing at SIDC Broacher of the Center (Note: CIGER;Covered in ground anaerobic reactor)

Fig-6.3 Biogas Generating System

Pigpen

Gas Holder CIGER

Electricity

Gas Engine & Generator

- 68 -

Chapter 7 Profile of the Project Profile for Rural Electrification Program by Renewable Energy in The Mountainous Region of Northern Samar

1. Sector 2. Project site Energy Catubig and Las Navas Province, Mountainous Region in Northern Samar, Philippines, 3. Agency in charge of implementation Philippine National Oil Corporation ;PNOC 4. Background and Purpose The Northern Samar province in the Eastern Visayas region, which is the study area for this feasibility study on rural electrification, is one of the underdeveloped areas in the Philippines. Its per capita income level is less than 50% of the average per capita income level in the Philippines. Since the electrification rate of households in the northern mountainous area is only less than 20%, it has targeted to increase the electrification rate in order to boost the growth of agricultural activity and the development of the tourism industry. This study covers the feasibility of rural electrification by renewable energy, such as micro hydro power supplied from the potential of the Catubig River and irrigation facilities and biomass power energy supplied from agricultural products. The increase in agricultural products is an expected outcome of the Exclusive Agricultural Development Project in the Catubig watershed area. 5. Outline of Project (1) Name ; Rural Electrification Program by Renewable Energy (2) Maximum Output Generated by Hybrid Power System Palanas barangay: P=6.7kW (Micro Hydro: 1.8kW, Biogas: 4.9kW) Tagan-ayan barangay: P=11.5kW (Micro Hydro: 6.0kW, Biogas: 5.5kW) Epaw barangay: P=8.4kW (Micro Hydro: 3.2kW, Biogas: 5.2kW) San Jose barangay: P=6.9kW (Micro Hydro: 1.8kW, Biogas: 5.1kW) 6. Project implementation term F/S to completion of construction ; approx two years(Construction period : a half year) 7. Expected benefit and beneficiary Beneficiary ; Local residents Benefits ; Efficient use of Livestock Manure, Employment effect brought by construction, Development of local industry after electrification, Reduce poverty by productivity improvement 8. Expected influence to environment 9. Expected cost Almost no influence About 0.5million dollars

- 69 -

- 70 -

Appendix 1

Schedule for Field Investigation

- 71 - - 72 -

Schedule for Field Investigation

(1st Field Investigation)

From Days NightDate Week By To Activities (Via)

Departure 1 1 2006.10.10 Tue Fukuoka Air Manila Meeting with West Jec Resident Coordinator

Meeting with DOE Energy Utilization Management Bereau Director 2 2 2006.10.11 Wed Manila Meeting with PNOC-EDC Engineering Design and Construction Department

Meeting with NIA Design and Specfications Department Office-in-Charge 3 3 2006.10.12 Thu Manila Data collection at Bureau of Agricultural Statistics Data collection at National Statistic Office

Meeting with DOE Energy Utilization Management Bureau (JICA Experts) 4 4 2006.10.13 Fri Manila Meeting with PNOC-EDC Assistant to the President Meeting with PNOC-EDC Engineering Design and Construction Department

5 5 2006.10.14 Sat Manila Air Fukuoka Arrival

- 73 -

Schedule for Field Investigation (2nd Field Investigation) From Days NightDate Week By To Activities (Via)

Departure 1 1 2006.12.03 Sun Fukuoka Air Manila Meeting with West Jec Resident Coordinator

Meeting with DOE Energy Utilization Management Bureau Director 2 2 2006.12.04 Mon Manila Meeting with NIA Design and Specfications Department Office-in-Charge Meeting with NPC-SPUG Vice President Meeting with NIA Catubig Agricultural Project Office Meeting with Las Navas LGU Office Survey for Catubig irrigation site 3 3 2006.12.05 Tue Manila Air Catarman Survey for Pinipisakan Fall Survey for Energized Barangay (Dapdap) Survey for Unenergized Barangay (Epaw) Meeting with NIA Catubig Field Office Meeting with Catubig LGU Office Survey for Lawaan Substation (NORSAMELCO) 4 4 2006.12.06 Wed Catarman Meeting with NIA Catubig Consultant Office Meeting with NORSAMELCO Meeting with Eastern Philippines University

Meeting with DOE Electric Power Industry Management Bureau Director Catarman Air Manila Meeting with DOE Rural Electrification Adm. & Mgt. 5 5 2006.12.07 Thu Division Manila Car Batangas Meeting with PNOC-EDCEngineering Design, Procurement & Construction Department Meeting with NIA Administrator Meeting with Sorosoro Ibaba Development Cooperative 6 6 2006.12.08 Fri Batangas Car Manila Survey for Biomass Powerstation site (Under construction) Data collection at National Statistic Office Manila Car Laguna Survey for Balugbog Hydropower Plant Meeting with Philippine Power and Development 7 7 2006.12.09 Sat Corporation Laguna Car Manila Survey for Villa Escudero Hydropower Plant

Making for field investigation report 8 8 2006.12.10 Sun Manila Collection data arrangement

Meeting with EDCOP (Philippine consultant) Meeting with JBIC Manila 9 9 2006.12.11 Mon Manila Meeting with DOE Energy Utilization Management Bureau (JICA Experts)

10 2006.12.12 Tue Manila Air Fukuoka Arrival

- 74 - - 75 -

Appendix 2

Interviewed Persons List

- 76 -

Interviewed Persons List (No.1)

Name Post Position Dr.Guillermo R. Balce Department of Energy Undersecretary Energy Utilization Management Bureau Mr. Mario C. Marasigan Ditto Director, Officer-in-Charge Renewable Energy Management Division Mr. Ronnie N. Sargento Ditto Officer in charge Electric Power Industry Management Bureau Ms.Mylene Capongcol Ditto Director Electric Power Industry Management Bureau Ms.Marissa Mariano Ditto Senior Science Research Specialist Electric Power Industry Management Bureau Mr.Sherwin Adeva Ditto Senior Science Research Specialist Electric Power Industry Management Bureau Mr.Elmer Casao Ditto Science Research Specialist Electric Power Industry Management Bureau Mr.Rodel Padrique Ditto World bank consaultant on rural power project Mr. Lorenzo S. Marcelo National Power Corporation Vice President(Small Power Utilities Group) PNOC Energy Development Mr. Noel D. Salonga Assistant to the President Corporation Engineering Design Procurement and Construction Mr. Martin Jude Lacambra Ditto Department Manager Construction Department Mr. Ronnie Andador Ditto Superintendent Corporate Plannung Mr. Erudito S. Recio Ditto Manager

Mr.Danilo H. Cruz Ditto Process Design Supervisor

National Irrigation Mr.Arturo C. Lomibao Administrator Administration Design and Specifications Department Mr. Rodolfo D. Gales Ditto Office-in-Charge Design and Specifications Department Ms. Proserpina Mariano Ditto Senior Engineer

Mr.Reinerio E. Irinco Ditto Project Manager(HCAAP-IDC)

Mr.Prisco Buco Ditto Project Engineer(HCAAP-IDC)

Mr.Abner Morales Ditto Project Engineer(HCAAP-IDC, Catubig)

Mr.Romualdo Saises Las Navas LGU Municipal Engineer

Dr.Felipe Gavino Las Navas LGU Municipal Engineer

Mr.Antonio Adella Catubig LGU Planning Officer University of Eastern Mr.Lidany Cornillez Engineer Philippines

- 77 -

Interviewed Persons List (No.2)

Name Post Position Northern Samar Electric Mr.Henry Banjawan Engineer Cooperative, Inc. Mr.Roy Sosa Ditto Engineer Sorosoro Ibaba Development Mr.Rico B. Geron General Manager Cooperative Ms.Marife Dimaano Ditto Executive Assistant Philippine Power and Mr.Ramon Achacoso General Manager Development Corporation Villa Escudero Hydro Power Mr.jaime Iporac Engineer Station Japan Bank for International Mr.Hiroshi Togo Chief Representative in Manila Cooperation Energy Utilization Management Bureau Mr. Jun Tamakawa Department of Energy JICA expert (Tokyo Electric Power Company) Engineering and Development Mr.Jose U. Jovellanos Chairman Corporation of the Philippines Mr.Restituto A. Arbolente Ditto Vice President(Power & Industrial)

Mr.Wilfredo A. Osabel Ditto Vice President(Agri-Infrastructure)

Mr.Teofilo Malicse Ditto NIA HCAAP Engineer

Mr.Ben Ibuna, Jr Ditto NIA HCAAP Engineer

- 78 - - 79 -

Appendix 3

Photos

- 80 -

Boatslip of Catubig Boatslip of Catubig

River Condition of Catubig River River Condition of Catubig River (Downstream) (Downstream)

River Condition of Catubig River River Condition of Catubig River (Upstream) (Upstream)

- 81 -

Intake Dam Site

(JBIC Catubig Agricultural Advancement Project)

Upstream of Intake Dam Intake Site

Unenergized Barangay Unenergized Barangay (Right side of Intake Dam) (Right side of Intake Dam)

- 82 -

Pinipisakan Falls Pinipisakan Falls

(Downstream of Intake Dam site) (Downstream of Intake Dam site)

Downstream of Pinipisakan Falls Boatslip of Pinipisakan falls

Rest Area of Pinipisakan Falls

- 83 -

Las Navas LGU Office Las Navas Town

Energized Barangay (Dapdap) Energized Barangay (Dapdap)

Energized Barangay (Dapdap) Rice mill (Dapdap)

- 84 -

Unenergized Barangay (Epaw) Unenergized Barangay (Epaw)

Diesel generator 3kW (Epaw) Diesel generator 3kW (Epaw)

University of Eastern Philippines (Catubig) Old Church (Catubig)

- 85 -

NORSAMELCO Substation (Catubig) NORSAMELCO Substation (Catubig)

Biogas Powerstation of Under construction Pig Farm (SIDC) (SIDC)

Covered In-ground Anaerobic Digeter of Under construction (SIDC)

- 86 -

フィリピン国サマール島北部山間地域における 再生可能エネルギーによる地方電化促進計画可能性調査

和文要約

- 87 -

- 88 - 1. 背景と目的

フィリピン国においては、地方電化は貧困撲滅につながり人間生活の質的向上に寄与す るため、政府の最重要政策の一つとして 2008 年のバランガイ(村落)電化率 100%を目標 に地方電化を推進しているところである。

フィリピンでは、人口の約4割を占める貧困層の約3分の2が地方部の農民・漁民であ ると言われている。したがって、地方電化の実現は農村部での貧困軽減、都市部と地方農 村部の格差是正など農村地域における住民の生活水準向上や新しい収入源の創造を生み出 すものと期待されている。

今回、地方電化調査の対象としたフィリピン中部ビサヤス地方サマール島の北サマール 州は、フィリピンの中でも、経済・社会開発の最も遅れた地域の一つであり(フィリピン 全70州のうち約20を数える貧困州の一つ)、住民一人当たりの所得水準が全国平均の5 割未満となっている。また、北部山間地域は、世帯数から見た電化率は 20%以下でフィリピ ンの中でも最も開発が遅れている地域であるため、再生可能エネルギーを利用した地方電 化を図り、農業生産の拡大や観光産業の発展を目指している。

同州の産業は農業が主体であり、米、とうもろこし、ココナツ、バナナ、キャッサバな どが主な収穫物である。しかし、農業が主な収入源であるにもかかわらず、米の州内自給 が達成されておらず、近隣のレイテ州等からの移入に頼っている状況である。また、排水 状況が悪いため住民が住血吸虫病にかかるなど、劣悪な保健衛生状態も開発の妨げとなっ ている。さらに、当地域の道路は未舗装のため雨季に水没するなどほとんど通行が出来ず、 農産物を市場に運搬することもままならず、収入確保の道まで閉ざされている状況である。

このような状況のもと、国際協力銀行は北サマール州カトゥビッグ川流域のカトゥビッ グ町、ラスナバス町において、「フィリピンカトゥビッグ農業総合開発事業」を円借款事業 として支援することとなった。本事業は、かんがい施設を中心とする農村基盤整備を行う ことにより、同地域における米を中心とする農業生産性の向上と農産物の増産を図り、ひ いては地域農民の所得向上、保健・衛生状態の改善に寄与することを目的とするものであ る。本事業は今年度着手され 2008 年に完成する見込みであるが、事業の進捗にしたがって 基礎インフラの整備が進み、さらには貧困層の生活の質的向上が見込まれるため、それに 伴う電化の促進が望まれているところである。

本調査では、フィリピン国サマール島北部を流れるカトゥビッグ川(Catubig River)流 域の未電化村落地域において、再生可能エネルギー、特に同河川やかんがい施設が持つ水 力発電ポテンシャル及び当地域で実施される農業総合開発事業による農産物の増産に伴っ て発生するエネルギーであるバイオマスを利用した地方電化プロジェクトの促進可能性検 討を行うものである。

- 89 - 2. 再生可能エネルギー開発と地域社会

2.1 フィリピンの経済発展とエネルギー フィリピンにおいては、今後 3 年間で 5.5%の経済成長が見込まれており、エネルギーは 国の経済発展に不可欠な要素として今後の方策が検討されている。 2006 年のフィリピンエネルギープランでは、輸入化石燃料依存型エネルギー構造からの 脱却を促進するため、2010 年までにエネルギー自給率を 60%とすることを目標としている。 また、環境負荷の少ない国産エネルギーの開発と利用を積極的に推進しており、特に原油 価格が高騰している現在の状況も考慮のうえ再生可能エネルギーによる電源開発を下記に 示す国の重要なエネルギー政策として位置づけている。 ・世界で一番の地熱エネルギー開発国になること。 ・2013 年までに水力エネルギー開発量を 2 倍にすること。 ・東南アジアで一番の風力エネルギー開発国になること。 ・東南アジアにおけるソーラー設備製作の拠点となること。 ・バイオマス、太陽光、海洋エネルギーの拡大を図ること。

2.2 フィリピンの再生可能エネルギー開発 フィリピン国内の再生可能エネルギーの開発は、現在積極的に進められている地方電化 プログラムの中でオフグリッド電源、更には環境保護面から環境負荷の少ない電源として 重要な位置付けとなっている。特に今後は水力、地熱、バイオマス、太陽光、風力などを 中心に積極的に導入される計画となっている。

(1) 水力 フィリピンの水力発電施設は国家の電力系統に 3,219MW の電力を供給している。水力発 電は、信頼できる電力供給源であり、国の電力需要に対しかなりの貢献をしてきている。 フィリピンエネルギープランでは、下表に示すように 2014 年までに 780MW の新たな開発 を行い電力供給量を 3,991MW にする目標を掲げている。

表-1 水力発電開発目標 2005 2006 2010 2014 設備容量 (MW ) 3,219.1 3,219.1 3,219.1 3,991.1 Luzon 2,209.8 2,209.8 2,209.8 2,509.8 Visayas 11.61 11.61 11.61 61.61 Mindanao 997.65 997.65 997.65 1,427.65 発電量 (GWh) 8,374 8,563 12,996 14,741 Luzon 4,422 4,611 8,896 8,819 Visayas 35 35 35 188 Mindanao 3,917 3,917 4,065 5,734 総輸入石油等価換算量 14.44 14.76 22.41 25.42 (in MMBFOE)

- 90 - (2) バイオマス バイオマスエネルギーの開発も期待されており、エネルギー省は国全体で石油換算にし て 250 百万バレルのポテンシャルがあると推定している。 既存バイオマス発電設備容量は 235.7MW でそのうち西ビサヤス地方が 127.8MW を占めて いる。現在、ネグロス島の 2 箇所で 30MW と 50MW のバイオエネルギー発電所が建設中であ り、4 箇所のプロジェクトが進行中である。

(3) 太陽光 フィリピンは赤道に近いことから全国的に太陽エネルギーの潜在量は大きい。 フィリピン政府は、太陽エネルギー技術サポートプロジェクトとして、約 80 の農業組合 組織にソーラーシステムを設置することとしており、現在 154 のバランガイで 5,600 箇所 の太陽光発電設備が設置されている。また、環境改善プロジェクトとしてエネルギー省と PNOC が共同してルソン島北部コルディリア地域とミンダナオ島においてソーラーハイブリ ッドシステムの導入を進めているところである。

(4) 風力 フィリピンでの風力開発有望地域は以下に示すとおりである。 ・北部ルソンのバタネス、バブヤン諸島 ・ルソン島北東端 ・ルソン、ミンドロ、サマール、レイテ、パナイ、ネグロス、セブ、パラワンの内 陸山岳部 ・北部ルソンから南部サマールの東海岸 ・ルソン島とミンドロ島の間 ・ミンドロ島とパナイ島の間 フィリピンで最初の大規模風力発電所(25MW)は、北部ルソン島イロコスノルテで開発 された。その後 2004 年には 16 箇所で合計 345MW の風力発電開発が計画された。また、最 近では 19 箇所で合計 3,270MW の開発が計画されている。

2.3 政府の政策とプログラム フィリピン国における再生可能エネルギーの積極的な開発は、フィリピン政府がエネル ギー自給のために達成しなければならない重要な戦略である。近年、電源構成における地 熱と水力発電の確実な増加は、輸入燃料への依存を減少させている。政府の地方電化施策 においても、ソーラー、マイクロ水力、風力、バイオマス発電は再生可能エネルギー資源 として利用が拡大されている。このように優れた特徴を持つ再生可能エネルギーが持続可 能なシステムに移行することが出来るよう促進することは重要な政府の政策となっている。 政府はこのような背景のもと、「再生可能エネルギー資源開発、利用、商業化促進法案」 の下院議会通過を強力に進めている。国際市場での価格変動が経済に影響を与えないうち にエネルギーシステムにおける輸入燃料への依存を減らすために、再生可能エネルギー開 発を推進する目的でこの法案の提案を行い現在上下院で協議しているところである。この 法案の成立によりは再生可能エネルギーの使用が増加することは確実である。同様に最近 実施された改正付加価値税法あるいは共和国法 No9337 のもと再生可能エネルギーの非課税 措置は再生可能エネルギーによる電化の競争力を高めることになる。

- 91 - 2.4 地域社会への影響 フィリピン政府は、発電所の建設が遅滞している事態に対処するため、1990 年代に2つ の建設促進策を策定した。

(地方自治法による制度) 第1の政策は 1991 年成立した地方自治法による制度である。これによると、発電事業者 は事業による売上げ1%、または国富税、ロイヤリティ、または料金の 40%を地元自治体に おさめる必要がある。地元自治体は次の 2 つの方法で発電事業者から得られた売り上げを 使用することができる。この収入は、80%を住民の電気代の助成金や配電線のリハビリなど を通じ、地元の電気代を下げるのに使用することができる。また、残る 20%は開発と生活 向上プロジェクトに使用することができる。1992 年から 2004 年の間に水力開発からの国富 税により徴収された総売り上げは 1,019,715,354.53 ペソである。

ただし、有識者によると、この政策は担当者の実施能力と評価能力の欠乏によってうま く機能していないと評価されている。地元自治体の行政境界のわかる正確な地図の欠如、 基金を管理する国家予算当局の基金の執行の遅れ、いくつかの自治体職員の国富税体系に 対する認識不足などがこれらの原因となっている。

(ER 1-94 による利益還元) 2 番目の政策は、エネルギー省令(Energy Regulation(ER))1-94 として発電所地元自治 体に対する利益還元制度である。この省令によると発電事業者は、販売電力量 1kWh 当た り 0.01Peso を積み立てなければならない。この資金は次の割合で次の基金に充当される。

①電化基金 (Electrification Fund)<50%> この電化基金は、発電所のため住民移転が行われた地域、発電所立地集落(バ ランガイ:Barangy)、立地市(Municipality or City)、立地県(Province)、 立地州(Region)の順に、各地域の電化事業に当てられる。

②開発・生計基金(Development and Livelihood Fund)<25%> この開発・生計基金は、地元地域の福祉の向上プログラムに使用される。この 基金は、住民移転地域:5%、発電所立地集落(バランガイ):20%、立地市: 35%、立地県:30%、立地州 10%で配分される。

③植林・流域管理・保健・環境向上基金(Reforestation, Watershed management, Health and Environment Enhancement Fund):<25%> この基金は文字通り、地元自治体における植林・流域管理・保健・環境の向上 のために使用される。配分方法は開発・生計基金と同じである。

ER 1-94 基金の資金量は 2005 年 3 月には 3,360,000,000 ペソに至っている。うち 1,500,000,000 は積立の義務量であるため、残る 1,800,000,000 ペソが地元自治体で利用可 能となっており 1,877 件のプロジェクトが ER 1-94 資金で承認され完成された。

- 92 - 3. 地方電化の状況

3.1 地方電化の現状 フィリピンにおける地方電化は、農村及び遠隔地域における住民の生活水準の向上や新 規収入源の創出により貧困削減につながるとして、政府の重要政策として取り上げられて きた。フィリピン政府は 1960 年に国策として地方電化に取り組むことを宣言し、電化庁を 設立した。さらに 1969 年、地方電化法を制定し国家電化庁(NEA)に改組し、地方電化に 本腰を入れることとなった。フィリピンの配電事業は民間会社によってなされていたため、 経済性の高い人口集中地区の都市部に集中し、都市部と地方部との格差が広がっていた。 このため、NEA では法に基づき地方に設立される地方電化組合を通じて地方電化を推進し ていくこととなった。

1970 年代には政府と援助機関からの多額の援助により地方電化は急速に進展し、1980 年には電化組合数は現在の 119 組合に至った。しかし、一方で財政基盤の脆弱な電化組合 が設立され、また、電気料金の徴収率が悪い組合も多数あり、財務面では多くの課題を抱 えながらの電化の拡大が行われてきている。

1997 年には国内のすべての町(Municipality)レベルでの電化が達成されたが、バラン ガイ(村落:Barangay)レベルでの電化率は約 72%にとどまっていた。このため、フィリ ピン政府は引き続き地方電化を推進するため、2000 年に O-ILAW と称する地方電化推進プ ログラムを開始し、2003 年 4 月からは新たに ER(Expanded Rural Electrification)計画 をスタートさせた。これは「2008 年にまでにすべてのバランガイの電化達成」を目標に掲 げるとともに(当初は 2004 年目標だったものが、2006 年に延長され、現在は 2008 年目標 とされている)、新たに「2017 年に世帯ベースでの電化率 90%達成」という目標も設定し たものである。フィリピンには 41,995 バランガイが存在するとされている。2000 年末現 在ではこのうち 19.8%に相当する約 8,300 バランガイが未電化であった。このため、フィ リピン政府は毎年の電化バランガイ数を約 1,500 に加速しようとしている。

フィリピンでは、従来、①バランガイの中の 10 戸以上に電気が供給されている、②無電 化のバランガイに配電線が通過している(電力供給は可能であり、電化するか否かは需要 家の判断によるとの考えに基づく)、のいずれかの条件が満たされるとそのバランガイは電 化されたと判断されていた。しかし、最近DOEではこの定義を見直し、①独立系統の場 合、持続可能なエネルギーにより 30~40 件が電化されていること、(持続可能エネルギー とは、ソーラー、バッテリーチャージステーション(BSC)、ディーゼルによる小規模発 電機セット、などである)、②グリッドからの電化の場合はバランガイに配電線が通過しア クセス可能であること、とした。すなわち、②は従来通りであるものの、①は電化受益者 数を引き上げた。しかしながら、依然、バランガイ単位での電化率で 100%を達成したとし ても実体は依然多くの家屋の電化がなされていない状態が続くことには変わりない。実際、 1つのバランガイで電化される世帯数は平均 30~40 戸程度とされ、バランガイの一部世帯 の電化というケースがほとんどのようである。

2006 年 10 月現在、バランガイ総数 41,945 のうち、電化されたバランガイは 39,590 で

- 93 - 電化率は全国平均で 94.4%となっている。電化率は地方により大きな差があり、ルソン地 域では 97.1%、ビサヤス地域では 96.0%、ミンダナオ地域では 87.0%となっている。これ を電化実施の責任者である配電事業者別にみると、最も多い電化組合(ECs)では 93.8%、 MERALCO では 98.5%、その他民間事業者/地方自治体/その他で 97.7%となっている。

3.2 地方電化の推進方策 地方電化は O-ILAW プログラム及び ER 計画に基づき、DOE が中心となって各関係機関が実 施している。地方電化の進め方はまず大統領と DOE 長官が年間の電化目標を立てる。この 電化目標を DOE 等によるプログラムチーム(PT)が関係機関に割り振り、これに基づいて地 方電化組合、民営電力会社等の実施機関が実施に行っている。

O-ILAW プログラム及び ER 計画では地方電化を効率的に進めるために、政府機関や電気 事業者以外の組織にも地方電化事業に参加する機会を与えている。またその資金も国の一 般予算、ER1-94 基金、地方自治体予算、NGO や外国援助による支援、など多様な資金源 によっている。さらに、IPP にも参加の機会を与えると共にその資金力にも期待している。 ER1-94 基金を用いて実施した地方電化の例としては、2000 年に PNOC-EDC がレイテ島 の Ormoc 周辺で約 10 のバランガイの電化を実施したのをはじめ、米国の Southern Energy がケソンにある石炭火力発電所周辺のバランガイ電化を実施した例、セブでマレーシア East Asia が行った例などが報告されている

なお、地方電化は当該地域に配電事業権利を有する者(Franchise Distribution Unit、具 体的には EC など)が基本的に実施するものであるが、配電事業権利者が採算性から当該地 域に当面電化計画はない、と表明した地位に対しては Missionary 電化制度により電化を進 めることとしている。Missionary 電化は、EC 以外の者にやってもらうことになり、例え ば民間企業にも期待している。このような場合、その地方電化の実施者は QTP(Qualified Third Party 有資格第3者)と呼ばれる。近年はバタンガス州イリハン火力発電所の主要企 業である韓国電力(KEPCO)も QTP として貢献をしているとのことである。QTP が現れ なければ最後の手段として NPC-SPUG が実施する。Missionary 電化は採算のとれない地 域を対象としていることから継続した補助金が必要であり、ユニバーサルチャージによる 資金が充てられる。ユニバーサルチャージとは電気料金の一部として全需要家に転化され 徴収される資金であり、その額はエネルギー規制委員会(ERC)が決定している。

3.3 地方電化の課題 フィリピンの配電事業は 119 の電化組合、16 の民間配電事業者、3 つの市営電気事業者 の合計 138 の配電事業者のサービス地区に分割されている。電化組合のうちバランガイ電 化 100%を達している組合は 15 組合(12.6%)にすぎず、75 組合(63.0%)はバランガイ 電化率が 90%に達していない。また、いずれの組合も世帯電化率は 100%に達していない。

電化事業は送配電系統の延伸と分散型電源を活用する方法に分けられる。2000 年末時点 で未電化である約 8,300 バランガイのうち、約 45%に相当する約 4,000 バランガイは既存 系統からかなり離れた地域に存在している。これらの地域では集落も分散して存在してお り系統の延伸は困難であるうえ、所得水準も低いことから電化にかかるコストは高く、投

- 94 - 資効率は極めて低い状態にある。このような地域においてはオフグリッドの分散型電源の 活用に頼らざるを得ない状態である。分散型電源としては、包蔵水力がある地点では小水 力を活用し、その他の地点では太陽光を中心に風力、バイオマスなどの新・再生可能エネ ルギー発電によるミニグリッドを活用し、また、SHS(Solar Home System)による戸別 電化の取り組みを強化することとしている。なお、1999 年から 2002 年の間に電化された 5,082 バランガイのうち 81.8%に相当する 4,159 バランガイは系統の延伸により電化され、 残りの 18.2%、923 バランガイはミニグリッドによる電化であった。ミニグリッドによる電 化のうち約7割が新・再生可能エネルギーによる電化であった。

系統延伸による電化にせよ、ミニグリッドによる電化にせよ、今後の電化対象となるバ ランガイは電力需要の規模も小さく、電力の供給コストは高いものとなっている。また、 このようなバランガイの住民の所得は小さいことから配電事業者にとって電化事業の魅力 は極めて小さいものとなっている。しかしながら、住民の生活水準の向上の観点からこの ような地域においてどのように電化を進めていくかが今後の大きな課題となっている。

3.4 地方電化の効果 国際協力銀行が実施したフィリピン「NEA 地方電化事業」に関する「円借款案件事後評 価報告書(2004 年)」によると、フィリピンにおける地方電化は次のような効果をもたらし たとされている。

a)就業機会および収入の増加 本事業によって電化が完了したバランガイでは、電気を活用して新しい仕事を始め たり、収入を増やしたりしている事例がみられる。また、経営している雑貨店を夜遅 くまで開くことができるようになった、冷凍庫を使用してアイスキャンディーを作り 販売している、パン屋を開業したなどの事例がみられた。

b)教育環境の改善 本事業では一般の世帯ではなく、バランガイの保育園、小学校などの教育施設も同 時に電化されている。インタビュー調査を実施した16のバランガイでは、合計13カ所 の保育園・小学校、4カ所の高校が電化されている。また各家庭においても従来のケ ロシンランプよりはるかに明るい蛍光灯・白熱電球を使用できるようになったため、 夜間でも勉強を行えるようになった。

c)利便性の向上と娯楽の増加 電化後、ほとんどの世帯が蛍光灯、電球等の照明を購入している。そのほかにも、 住民は冷蔵庫、アイロン、洗濯機、電子ジャー、生活用水くみ上げ用電気ポンプ等、 利便性を高め、家事労働を軽減することができる家電製品を購入している。また、テ レビ、ビデオ、ラジオ、ラジカセ、カラオケなど余暇を楽しむための電気製品を購入 している。電化されるまでの昼間畑で働き、暗くなったら寝るという生活から、電化 後には、娯楽や家族、近所とのコミュニケーションが向上したと回答した世帯が数多 くみられた。

- 95 - d)安価で安全な光源の確保 電化される以前、各世帯は照明として、ほとんどの家庭がケロシンランプを使用し ていた。電化後は、蛍光灯や白熱電球等が使用されている。60W白熱電球は、明るさ の面でケロシンランプの7~70倍もの明るさがあるのに対し、1時間あたりの費用は約 2分の1~9分の1倍も安価である。また、ケロシンランプは火災の原因、排煙による悪 臭、咳・目のかゆみ等の健康被害、室内への煤の付着などの問題が生じていた。多く の住民は電化によりケロシンランプの排煙による被害や火災の心配がなくなったと 考えている。

4. 対象地域の状況

4.1 北サマール州の状況 北サマール州は、レイテ州、南レイテ州、ビリラン州、東サマール、西サマールと並ぶ 東ビサヤス地域の一部である。北サマール州はフィリピン諸島の東部に位置し、北はサン ベルナディノ海峡、西はサマール海、東は太平洋、南部は西サマール州、東サマール州に 接している。

図-1 北サマール州概略図

北サマール州は、ルソンからビサヤス及びミンダナオへのゲートウェイで、バスとフェ リーを使いマニラから 14 時間かかるが最近ではマニラと州都であるカタルマンの間で航空 機が週 4 便利用可能となりアクセスが良くなった。 北サマール州は面積 3,498km 2、25 の Municipalitiy(町)、569 の Barangay(村)から構 成されたおり、人口は500,639 人(年率2.11%で増加)、世帯数は 94,410 世帯である(2000 年調査)。

北サマール州は、フィリピンの中でも、経済・社会開発の最も遅れた地域の一つであり (フィリピン全70州のうち約20を数える貧困州の一つ)、住民一人当たりの所得水準が 全国平均の5割未満となっている。また、北部山間地域は、世帯数から見た電化率は 20% 以下でフィリピンの中でも最も開発が遅れている地域であるため、再生可能エネルギーを

- 96 - 利用した地方電化を図り、農業生産の拡大や観光産業の発展を目指している。 同州の産業は農業が主体であり、米、とうもろこし、ココナツ、バナナ、キャッサバな どが主な収穫物である。しかし、農業が主な収入源であるにもかかわらず、米の州内自給 が達成されておらず、近隣のレイテ州等からの移入に頼っている状況である。また、排水 状況が悪いため住民が住血吸虫病にかかるなど、劣悪な保健衛生状態も開発の妨げとなっ ている。さらに、当地域の道路は未舗装のため雨季に水没するなどほとんど通行が出来ず、 農産物を市場に運搬することもままならず、収入確保の道まで閉ざされている状況である。

北サマール州は元来、土壌・水質ともに農業に適していることから、中部ルソン平野や ミンダナオ島と並び農産物増産の潜在力が最も高い地域として期待されてきた経緯があり、 1970 年代には、世銀などの支援のもと、道路、上水道整備、農業開発などの開発計画が作 成された。しかしながら、共産ゲリラの活発な活動などの治安問題により実際には開発に 着手されず、現在も道路やかんがい施設の未整備が原因で作物収量が伸び悩み、農民が貧 困から脱却できない状況にある。現在ではその治安上の問題も解消されて、かんがい施設 などの基礎インフラを整備することにより、農民の収入増加を図ることが求められている。 さらに農業インフラに加え、電力設備、上水道整備、運輸インフラ整備、住血吸虫病対策 などの保健衛生施設整備を行うことにより、農民の居住環境・生活向上を図ることが緊急 の課題となっている。

4.2 北サマール州の電力事情 北サマール州を含む東ビサヤス地域の電力供給は、レイテ州のトンゴナン No1,2,3 地熱 発電所からとなっており、総発電容量は 700MW を超えている。ここで発電された電力は、 ルソン-レイテ連系線、レイテ-サマール連系線、レイテ-ボホール-セブ-ネグロス- パナイ連系線により各地へ供給されている。

北サマール州の電力供給は、北サマール配電組合(NORSAMELCO)により行われており、 2005 年末現在で、北サマール州の 569 の Barangay のうち 73%に相当する 415 の Barangay で電化が行われている。世帯数に対しての約 50%の電化率である。配電組合の詳細は5章に 示す。

5. 再生可能エネルギーによる地方電化の可能性検討

5.1 対象地域における地方電化の状況 5.1.1 北サマール州の地方電化の状況 今回調査の対象地域は北サマール州 Catubig 川流域であり、行政区域でいうと北サマー ル州 Catubig 町および Las Navas 町である。

北サマール州は東ビサヤスの Region VIII に属する。2006 年 7 月現在における Region VIII のバランガイ電化率は全体で 90.8%であり、特に地熱発電所を有するレイテ島の各電 化組合はほぼ 100%の電化率になっている。しかしながら、北サマール州を管轄地域とする 配電組合 NORSAMELCO においては電化率は 73.1%にすぎず、Region VIII の最低となってい る( 表-2 )。

- 97 - また、2004 年末時点での北サマール州内の各自治体別電化状況を見ると Catubig 町は北 サマール州平均を若干超える 60.9%であるものの、Las Navas 町は同州内の最低の電化率 (11.3%)となっており、電化促進が喫緊の課題となっていることが分かる( 表-3 )。

表-2 RegionⅧの Barangay 電化率

Electric Number of Barangays Cooperatives Covered Energized %

Region VIII 4390 3984 90.8 DORELCO 499 494 99.0 LEYECO II 196 196 100.0 LEYECO III 285 285 100.0 LEYECO IV 245 242 98.8 LEYECO V 416 416 100.0 SOLECO 500 483 96.6 BILECO 132 132 100.0 SAMELCO I 427 366 85.7 SAMELCO II 524 482 92.0 ESAMELCO 597 472 79.1 NORSAMELC 569 416 73.1 (as of 2006,July,31) (Source: NEA)

表-3 北サマール州の Brangay 電化率

(as of 2004.12.31) Municipality Cooperative Number of Barangays Potential Members House Connections Energized Covered Energized % Households Total % Total % Allen 20 19 95.0 3,217 2,140 66.52 2,529 78.6 Biri 8 2 25.0 1,317 376 28.55 397 30.1 Bobon 18 13 72.2 2,613 1,710 65.44 1,598 61.2 Capul 12 5 41.7 1,780 504 28.31 446 25.1 Catarman 55 37 67.3 9,228 7,465 80.90 8,145 88.3 Catubig 46 28 60.9 4,050 1538 37.98 1596 39.4 Gamay 26 12 46.2 3,119 992 31.81 1104 35.4 Laoang 56 33 58.9 7,968 3,707 46.52 3,905 49.0 Lapinig 15 5 33.3 1,396 441 31.59 476 34.1 Las Navas 53 6 11.3 4,286 451 10.52 479 11.2 Lavezares 26 20 76.9 3,635 1,565 43.05 1,624 44.7 Lope de Vega 22 5 22.7 1,621 309 19.06 374 23.1 Mapanas 13 7 53.8 1,326 472 35.60 471 35.5 Mondragon 25 14 56.0 3,987 1,985 49.79 1,927 48.3 Palapag 32 23 71.9 4,019 2,181 54.27 2,259 56.2 Pambujan 26 12 46.2 3,349 1,396 41.68 1,470 43.9 Rosario 11 7 63.6 1,196 596 49.83 629 52.6 San Antonio 10 10 100.0 1,423 723 50.81 665 46.7 San Isidro 14 13 92.9 3,591 2,155 60.01 2,291 63.8 San Jose 16 16 100.0 2,099 1,356 64.60 1,385 66.0 San Roque 16 10 62.5 2,493 1257 50.42 1288 51.7 San Vicente 7 3 42.9 1,178 195 16.55 196 16.6 Silvino Lobos 26 3 11.5 1,601 12 0.75 12 0.7 Victoria 16 13 81.3 1,873 956 51.04 945 50.5 Total 569 316 55.5 72,365 34,482 47.65 36,211 50.0 Source : Northern Samar Electric Cooperative (NORSAMELCO), Inc., Bobon, Northern Samar

- 98 - 5.1.2 電力供給設備 NORSAMELCO は主にレイテ島の Tongonan 地熱発電所1号機(蒸気開発 PNOC-EDC,発電 NPC、 出力 112.5MW)からの電力をサマール州 Wright 変電所にて 138kV から 69kV に降下させ、69kV 送電線を経由して Dalakit、Lawaan、Allen の3変電所にて受電し管内に供給している。 NORSAMELCO の所管は変電所受電端以降である。Catubig 町や Las Navas 町への電力供給は Lawaan 変電所(69kV/13.2kV 容量 3.75MW)から行われ、ここから約 30km の配電線を介して Las Navas まで供給している。

また、Catubig 町や LasNavas町においては、ソーラーシステムや小規模なディーゼル発 電機セットによる電化、あるいはソーラーシステムや系統からの電力を自動車用バッテリ ー(12v)に充電し各戸で利用するというバッテリー・チャージ・システム(BCS)による 戸別電化も行われている。ソーラーシステムによる BCS は PNOC-EDC や NPC により提 供されているとのことである。BCS の充電価格は系統からの電力の場合1回当たり 50-70 ペソ、ソーラーシステムの場合 20 ペソ程度である。また、ディーゼル発電機セットは地場 の民間企業がビジネスとして行っており、電気料金は 10W 当たり月 100 ペソ、運転は4時 間(18:00-21:00、5:00-6:00)である。なお、当地の家庭の平均月収は 4,000-6,000 ペソ程 度であり、電気料金は収入に比較するとかなり高いものとなっている。しかし、利便性向 上のため、電気利用を希望するものが多いとのことである。ソーラーシステムはパネル1 枚 75Wp(1.2m×1.7m)が標準であるが、1枚 150Wp のパネルも普及が始まっていると のことである。

5.1.3 NORSAMELCO の概要 NORSAMELCO 配電組合は、北サマール州を供給区域とする電化組合であり、1977 年 に設立された。供給区域面積は 3,498km、供給対象の Municipality 数は 24、Barangay 数 は 569 であるが、うち、23 Municiparity、316 Barangay に供給している。未電化の 1 Municiparity も 2007 年中には電化される予定である。供給区域内の世帯数は約 72,000 世 帯であるが、2004年現在、36,211世帯が受電契約を行っている。需要家構成は家庭用が 67%、 商業用が 18%、官公庁用が 9%、産業用 1%、街灯 4%となっている。

NORSAMELCO の販売電力量は 2004 年で 31,249MWh であり、72.4%が家庭用である。 最新のデータでは1カ月 3,717,900kWh(2006 年 10 月)とされているので、年間 44,615MWh に相当する。最大需要電力は 2006 年で 8,133kW である。電化の進展に伴い、 NORSAMELCO ではシステムロスが大きくなる問題も出ており、平均システムロスは 21% にも達している。技術的なロスに加え、電力計の故障など非技術的ロスも大きいとのこと である。

NORSAMELCO の 2004 年の電気料金は、家庭用が最も高く 6.13 ペソ/kWh、商業用が 最も安く 5.41 ペソ/kWh、全体で 5.60 ペソ/kWh である。また、最新の電力料金では 2006 年 10 月現在で 6.23 ペソ/kWh に上がっている。なお、NORSAMELCO が NPC から購入 している買電単価は 4.66 ペソ/kWh である。

- 99 - NORSAMELCO の収支状況は、営業利益▲1,550,085Peso の赤字(2004 年)で、2年 連続赤字を記録している。なお、赤字幅は縮小してきている。また、需要家件数は年率約 13%、最大電力は年率約 7%で増加するものと見られており、2008 年には全バランガイの 電化率達成を目標にしている。

5.1.4 カトービッグ町及びラスナバス町の電化の概要 Catubig 町には 47 の Barangay が存在する。このうち 28 Barangay が電化されている。 また、La Navas 町には 53 の Barangay が存在し、うち 26 Barangay が電化されている。 また、両町とも未電化の Barangay に対し、QTP による電化計画を有している。しかし、 QTP による電化に対し、支援策あるいは罰則のような措置はないため、この電化計画が予 定通り実施されるかは予断を許さない。

5.2 地方電化に伴う電力需要の想定 Catubing 町および Las Navas 町においては「Catubig 農業総合開発事業(Help for Catubig Agricultural Advancement Project;HCAAP)」がわが国の円借款を活用して実施されている。 これにより約 4,500Ha にのぼる灌漑・排水施設の整備が行われ、幹線道路も約 65km にわた り整備される予定である。この結果、当地の農業生産性は従来の稲作単位生産量 1 トン/ha 未満から 5 トン/ha へと大幅に改善することが期待されている。

本調査は同プロジェクトにより整備された灌漑水路における小規模水力ポテンシャル、 農業生産性向上に伴うバイオ廃棄物の発生などに注目し、これらの再生可能エネルギー資 源を当地域に多数存在する未電化 Barangay の電化に有効利用できないかを検討するもので ある。

まず、Barangay の電化に伴い、どの程度の電力需要が発生するであろうか。3 章で見た とおり、ひとたび電化が行われると住民は、照明、TV、冷蔵庫などの家電製品を購入し、 生活の利便性を高めようとする。また、電動かんな、電動のこぎりなどの器具を整備し、 労働力の軽減や付加価値の高い製品を生産しようとする。このため、ある程度のまとまっ た電力需要が発生することが観測されている。

ここでは、世帯数 50 戸の Barangay をモデルとし、電化が行われた場合、家庭用照明機 器、TV、冷蔵庫などの家電製品がある程度の家庭に普及するものと考え、また、Barangay 内においても街灯設置、簡易水道用ポンプ整備などが行われ、さらには、精米業者や氷製 造業者の発生などが起こるものと想定した(表-4)。これにより、村落全体として約 9.6kW のピーク需要が発生するものと考えられる。また、これらの需要による模式的日負荷曲線 は図-2 のように想定される。この需要の負荷率は 48.8%である。

- 100 - 表-4 村落電化による需要想定

(kWh/ <Energy Denmand in Barangay> coverage (kW) (hour) Remarks day) Number of Households 50 Households Household Light (40Wx4) 160 W 0.8 6.4 4 25.6 Peak Household TV 70 W 0.5 1.75 4 7.0 Peak Households Refrigerator (50L 100 W 0.3 0.45 24 10.8 Peak & Base (Refrigerator Availability) ( 0.3 ) Street Light (40WX25) 40 W 25 1 12 12.0 Peak & Base Pump for Water Well 250 W 1unit 0.25 20 5.0 Non-Peak Ice Manufacturer 1,250 W 1unit 1.25 20 25.0 Non-Peak Rice Miller 3,000 W 1unit 3 9 27.0 Non-Peak Total 112.4 (Peak Demand 9.6 kW 44.6 ) (Base Demand 5.0 kW 67.8 )

図-2 村落電化による電力需要想定(日負荷曲線)

Daily Power Demand in Barangay (50 Households)

12

10

8

6

Demand (kW) 4

2

0

1 2 3 4 5 6 7 8 9 101112131415161718192021222324 hour

HH Ref St Light HH Light HH TV Pump Ice Rice

5.3 配電線延長による電化計画とコスト想定 再生可能エネルギーによる電化を検討するに当たり、配電線の延長による電化にはどの 程度のコストがかかっているかを検討する必要がある。検討の結果、配電線延長方式の電 化コストは 19.8¢/kWh から 32.2¢/kWh まで幅があることが分かった。特に、村落規模の 小さい場合や配電線延長距離の長い場合は 25¢/kWh を上回る場合も出現する。これらの配 電線延長方式による電化コストの高い Barangay については再生可能エネルギー利用の独立 系統による電化方式が競争力を有する場合があるものと考えられる。

- 101 - 5.4 再生可能エネルギーによる電化計画とコスト想定 5.4.1 マイクロ水力による電化計画とコスト想定 5.2 で述べたように村落電化による電力需要はピーク時で約 10kW、ベース時で約 5kW で ある。これをマイクロ水力により発電を行う場合、すべてをまかなうことを前提に発電所 を建設すると、出力 10kW の発電設備が必要となる。この場合、非ピーク時には設備が有効 利用されないことから、設備利用率は 46.8%となる。10kW の発電に必要なエネルギー源と しては、流量 0.2 m3/s、落差 7m程度のポテンシャルが必要である。他方、電力需要のうち ベース分のみを水力発電により負担すると考えた場合は、5kW の発電設備の設置が適切であ る。この場合、設備利用率は 66.5%になり、5kW の発電に必要なエネルギー源としては、 流量 0.1 m3/s、落差 7m程度のポテンシャルが必要となる。

水力発電設備による電化コストは次の要素からなる。すなわち、 ①水車・発電機の設置に要する資本費(建設費込み) ②配電線(240V による低圧配電を前提とする)設置に要する資本費 ③水車・発電機、配電線等の維持管理費(O&M 費) ④運転員費用 このうち、 ①に関しては、水車単価を 8,000$/kW と想定し、さらに耐用年 45 年、割引率 12% を用いて算出した年経費率 0.1078 を用いて年経費換算した。 ②に関しては、配電線延長方式の場合と同様の単価を用い算出した。 ③に関しては、水車・発電機、配電設備の維持管理費は年間に建設費の 1.5%相当 額が必要であるものとした。 ④に関しては、運転員1名、給与月額 4,000 ペソと想定した。

これらの経費を受益する消費者の年間電力使用量で除すことで、マイクロ水力利用方式 による電化の長期限界費用(LRMC)が求められる。10kW の設備を設置してすべての需要を 水力のみでまかなう方式の場合の電化コストは 27.7¢/kWh と試算された。また、5kW のベ ース対応の発電設備を設置し、ベース負荷のみをまかなう場合は 22.1¢/kWh と試算された。

なお、HCAAP 計画により整備される灌漑水路における水力ポテンシャルは概ね 5kW 程度と 判明した。このため、10kW のエネルギー源確保の観点からは困難が伴うものと考えられる。

5.4.2 バイオガス利用による電化計画とコスト想定 フィリピンでは豚、牛、鶏などの家畜糞をメタン発酵して処理するシステムが既に商業 利用段階にある。これらの技術は環境面から家畜糞処理技術として利用されていたが、発 生するメタンガスをエネルギー面から有効利用することも行われている。DOE によると、大 小様々な家畜糞の処理システムがフィリピン全体で 650 カ所以上にわたり導入されている とのことである。大規模利用の代表例としては、農地 40Ha、豚 6 万頭を飼育する民間企業 である Maya 農場で、発酵メタンを利用した発電を行い、場内の照明、冷蔵庫などに利用し ている事例がある。また、農家による小規模飼育の場合にはコンクリート製の簡易消化槽 が推奨されている。このような家畜糞処理消化槽のメーカーはフィリピン国内に 9 社ほど 存在しているようである。

- 102 - 近年、フィリピン国内では豚糞のメタン発酵処理事業を CDM 事業として計画する事例が 増加している。このように豚糞処理によるバイオガス発電は技術的に実用段階に入ってお り、Catubig 町においても豚の飼育は一般に行われている。今後、HCAAP 計画の進展に伴 い農家の所得水準の向上が図られた場合、各農家が副業として豚の飼育数を増加させるこ とは大いに考えられるシナリオである。このため、ここでは再生可能エネルギーとして豚 糞利用によるバイオガス発電を検討した。

このバイオガス利用により発電を行う場合、マイクロ水力の場合と同様に、すべてをま かなうことを前提に発電所を建設すると、出力 10kW のバイオガス発電設備が必要となる。 この場合、設備利用率は 46.8%となる。10kW の発電に必要なエネルギー源としては、豚1,800 頭、容量 3,600m3 程度のバイオガス発生消化槽、バイオガス発生量 100 m3/日の設備と豚飼 育数が必要である。

他方、電力需要のうちピーク分のみをバイオガス発電により負担すると考えた場合は、 5kW のバイオガス発電設備の設置が適切である。この場合、設備利用率は 11.9%と少ないも のであるが、ガスホルダーの利用により豚飼育数は 500 頭、容量 1,000 m3 程度のバイオガ ス発生消化槽、バイオガス発生量 28 m3/日程度の設備ですむこととなる。

バイオガス発電設備による電化コストは次の要素からなる。すなわち、 ①バイオガス発生設備の設置に要する資本費(建設費込み) ②ガスエンジン・発電機設置に要する資本費(建設費込み) ③配電線(240V による低圧配電を前提とする)設置に要する資本費 ④バイオガス発生設備、ガスエンジン・発電機、配電線等の維持管理費(O&M 費) ⑤運転員費用

このうち、 ①に関しては、CIGER 装置建設費単価を 7.4$/m3 と想定し、さらに耐用年 20 年、割引 率 12%を用いて算出した年経費率 0.1195 を用いて年経費換算した。 ②に関しては、ガスエンジン・発電機設置費に対し、①と同様に年経費率 0.1195 を用 い年経費換算した。 ③に関しては、配電線延長方式の場合と同様の単価を用い算出した。 ④に関しては、CIGER 装置、ガスエンジン・発電機、配電設備の維持管理費は年間に建 設費の 2.0%相当額が必要であるものとした。 ⑤に関しては、運転員 2 名、給与月額 4,000 ペソと想定した。

これらの経費を受益する消費者の年間電力使用量で除すことで、バイオガス発電方式に よる電化の長期限界費用(LRMC)が求められる。10kW の設備を設置してすべての需要をバ イオガス発電のみでまかなう方式の場合の電化コストは 20.5¢/kWh と試算された。また、 5kW のピーク対応の発電設備を設置し、ピーク負荷のみをまかなう場合は 41.5¢/kWh と試 算された。この結果、10kW のバイオガス発電により電力需要をすべて賄う方式で電化した 場合、電化コストは配電線延長方式と同レベルであると考えられる。しかし、必要となる 豚糞を集めるため 1,800 頭という飼育数の確保に課題が残るものと考えられる。

- 103 - 5.4.3 籾殻発電による電化計画とコスト想定 HCAAP 計画により当地の農業生産性は従来の稲作単位生産量 1 トン/ha 未満から 5 トン/ha へと大幅に改善することが期待されている。この結果大量に生じる籾殻を電化に利用する ことも検討に値する。フィリピンでは籾殻は家庭調理用などに小規模に利用することはあ っても、大規模に利用する事例はまだない。DOE によると現在、Bulacan 州で 35MW の籾殻 発電が、また、Nueva Ecija 州で 25-30MW の籾殻発電が計画されている段階である。

籾殻発電を検討する場合、従来の技術であるボイラー及び蒸気発電を利用した場合、設 備容量がどうしても大規模になってしまう。事実、上記の計画中の事例も 25-35MW クラス であり、また、タイで稼働中の籾殻発電も 10MW~20MW クラスである。このような大規模の 発電設備を設置する場合、大量の籾殻を効率的に収集するシステムが必要となるが、HCAAP 計画においてはそのような籾殻収集システム(例えば大規模ポストハーベスト施設の建設) が計画されていない現状では村落電化の電源とするには適当とは言えない。

現在、小規模なバイオマス燃料を有効利用する技術としてスターリングエンジンが注目 され始めている。スターリングエンジンとはガソリンエンジンやディーゼルエンジンなど のようにシリンダー内で燃料を燃やしてピストンを駆動するいわゆる内燃機関とは異なり、 シリンダー内の気体に外部から熱を加え膨張させることによりピストンを駆動するいわゆ る外燃機関である。現在、軸出力 5 馬力、発電出力 3kW 程度の小規模なシステムが実証段 階にある。今回調査の対象となる小規模 Barangay の電化には適切な規模であるため、ここ では籾殻をこのスターリングエンジンを利用して電化に利用する可能性を検討した。

このスターリングエンジン籾殻発電を行う場合、できるだけ設備利用率を高めることが 経済性を高めるうえで有利になるため、発電出力 3.3kW の設備を 3 基導入し合計 10kW の 設備とするものとした。この場合、設備利用率は 46.8%となる。スターリングエンジンの仕 様をに示す。また、10kW の発電に必要な籾殻量としては年間 180 トンと推計され、これは HCAAP 計画により整備された農地 130ha から生じる籾殻量に相当する。

スターリングエンジン籾殻発電による電化コストは次の要素からなる。すなわち、 ①スターリングエンジン・発電機設置に要する資本費(建設費込み) ②籾殻貯蔵庫建設に要する資本費 ③配電線(240V による低圧配電を前提とする)設置に要する資本費 ④スターリングエンジン・発電機、配電線等の維持管理費(O&M 費) ⑤運転員費用

このうち、 ①に関しては、現在、スターリングエンジンは実証試験中であり商業価格が設定され ていない。このため暫定値として1基 35,000$と想定した。さらに耐用年 20 年、割 引率 12%を用いて算出した年経費率 0.1195 を用いて年経費換算した。 ②に関しては、5,000$と想定し、①と同様に年経費率 0.1195 を用い年経費換算した。 ③に関しては、配電線延長方式の場合と同様の単価を用い算出した。 ④に関しては、スターリングエンジン・発電機、配電設備の維持管理費は年間に建設

- 104 - 費の 2.0%相当額が必要であるものとした。 ⑤に関しては、運転員 3 名、給与月額 4,000 ペソと想定した。

これらの経費を受益する消費者の年間電力使用量で除すことで、スターリングエンジン 籾殻発電方式による電化の長期限界費用(LRMC)が求められる。これによると 10kW の設 備を設置した場合の電化コストは 47.1¢/kWh と試算された。この価格は他の方式による電 化コストより高いものとなっているが、スターリングエンジンの価格を暫定的に設定した ためであり、仮にスターリングエンジンが普及し、価格が1基 10,000$程度まで低下した とすればこれによる電化コストは 20¢/kWh 程度まで大幅に低下する。これは配電線延長に よる電化コストと遜色ないレベルであり、スターリングエンジンの実用化、普及が大いに 期待されるものである。

5.4.4 マイクロ水力とバイオガスのハイ ブリッド発電による電化計画とコスト想定 5.4.1 及び 5.4.2 から、50 世帯の標準 Barangay をマイクロ水力のみで電化するだけの水 力ポテンシャルはこの地ではあまり期待できない。また、豚糞バイオガスのみを利用して 電化するだけの豚飼育数も期待できない状態である。他方、技術的特性としてマイクロ水 力は 24 時間の発電が可能であり、豚糞バイオガスはガスホルダーを利用することでガスを ため必要なときに発電が可能である。このため、両者を組み合わせ、マイクロ水力をベー ス電源として、豚糞バイオガス発電をピーク電源として組み合わせるハイブリッドシステ ムを検討する。

5kW のマイクロ水力と 5kW の豚糞バイオガス発電を組み合わせて村落電化を行った場合、 建設に要する総コストは約 61,600$と想定される。また既に各節で示した方法により年間 の必要経費を試算すると約 10,400$と試算される。これを年間の利用可能電力量 41.0MW hで除すことでこのハイブリッド方式の電化コスト(長期限界費用)は 25.4¢/kWh と試算 される。

5.4.5 再生可能エネルギーによる電化対象 Barangay の抽出 5.3 で検討したように配電線延長方式による電化コストは概ね 20¢/kWh~32¢/kWh であ ったが、中には 25¢/kWh を越える Barangay も存在する。他方、マイクロ水力と豚糞バイ オガス発電を組み合わせた再生可能エネルギー発電による電化の場合、電化コストは概ね 25¢/kWh 程度であることが判明した。このことから以下の 7 Barangay がこのシステムの導 入可能性のある地域といえる。 表-5 電化対象 Barangay Barangay 人口世帯数 Palanas 16435 Rufino 20035 Tangan-ayan 316 60 Epaw 44259 San Jose 179 36 San-od 18833 San Antonio 228 45

- 105 - 6. 再生可能エネルギーによる地方電化計画

6.1 マイクロ水力ポテンシャル HCAAP 計画は、Catubig Sercvice Area(3,565.5ha)、Bulao Service Area (742.2ha)、 Hagbay Service Area(665.3ha)の3地域の灌漑計画からなっている。このうち、今回、 Catubig Sercvice Area に関する灌漑用水路の水量及び水路落差のデータが入手できた。こ れから判断されるマイクロ水力のポテンシャルは、表-6 の通りである。

この結果、前章で検討した再生可能エネルギー利用の可能性がある Barangay のうち、 Palanas、Tagan-ayan、Epaw、San Jose の4Barangay において、マイクロ水力を利用で きる可能性がある。 表-6 マイクロ水力ポテンシャル

Site No. Discharge Head Output Nearest (m3/s) (m) (kW) Barangay 1 0.11 2.6 1.7 San Isidro 2 0.19 2.8 3.2 Epaw

3 0.19 1.5 1.8 San Jose 4 0.17 4.5 4.3 Tagan-Ayan 5 0.24 4.2 6.0 Tagan-Ayan 6 0.22 2.0 2.6 Tagan-Ayan 7 0.10 3.0 1.8 Palanas 8 0.14 3.4 2.8 Rizal

6.2 各 Barangay におけるハイブリッド発電計画 Palanas、Tagan-ayan、Epaw、San Jose の4Barangay について、前章の住戸数 50 世 帯の標準 Barangay で検討した電力需要が同様に発生するとした場合の電力需要を表-2 の Demand Side 欄に示す。また、この需要に対し、マイクロ水力発電及びバイオガス発電に より電力を供給する場合の仕様を同表の Suply Side 欄に示す。

これによると、Palanas Barangay では、ピーク需要 6.7kW、電力量需要(日量)78.7kWh が想定され、これに対し、水路7番サイトにおいて 1.8kW のマイクロ水力が期待できるた めこれによりベース需要を賄うと共に、4.9kW の不足分をバイオガス発電により賄うハイ ブリッド発電計画が考えられる。この場合、必要な豚飼育数は約 540 頭(一戸当たり約 15 頭)であり、消化槽は容量 1,100m3 の CIGER 消化槽を設置することが必要である。

同様に Tagan-ayan Barangay では、ピーク需要 11.5kW、電力量需要(日量)134.9kWh が想定され、これに対し、水路5番サイトにおいて 6.0kW のマイクロ水力が期待できるた めこれによりベース需要を賄うと共に、5.5kW の不足分をバイオガス発電により賄うハイ ブリッド発電計画が考えられる。この場合、必要な豚飼育数は約 600 頭(一戸当たり約 10 頭)であり、消化槽は容量 1,200m3 の CIGER 消化槽を設置することが必要である。

同様に Epaw Barangay では、ピーク需要 8.4kW、電力量需要(日量)98.9kWh が想定 され、これに対し、水路2番サイトにおいて 3.2kW のマイクロ水力が期待できるためこれ

- 106 - によりベース需要を賄うと共に、5.2kW の不足分をバイオガス発電により賄うハイブリッ ド発電計画が考えられる。この場合、必要な豚飼育数は約 440 頭(一戸当たり約 10 頭)で あり、消化槽は容量 900m3 の CIGER 消化槽を設置することが必要である。

同様に San Jose Barangay では、ピーク需要 6.9kW、電力量需要(日量)80.9kWh が 想定され、これに対し、水路3番サイトにおいて 1.8kW のマイクロ水力が期待できるため これによりベース需要を賄うと共に、5.1kW の不足分をバイオガス発電により賄うハイブ リッド発電計画が考えられる。この場合、必要な豚飼育数は約 580 頭(一戸当たり約 16 頭) であり、消化槽は容量 1,200m3 の CIGER 消化槽を設置することが必要である。表-7 に 各 Barangay におけるハイブリッド発電の基本仕様を示す。

- 107 -

Demand Side Supply Side Daily Daily Base Hydro Energy Energy Household Peak Base Micro Hydro Biogas Necessary Capacity of Barangay Energy Energy Site production by Production s Demand Demand Potential Generation No. of Swine Digester Demand Demand No. Micro Hydro by Biogas (house) (kW) (kW) (kWh) (kWh) (kW) (kWh) (kW) (kWh) (Head) (m3) (a) (b) (c) (d) (e) (f) (g) (h)=(b)-(f) (i)=(d)-(g) (j) (k)

Palanas 35 6.7 3.5 78.7 55.9 1.8 7 43.2 4.9 35.5 540 1,100 Tagan-ayan 60 11.5 6.0 134.9 95.8 6.0 5 95.8 5.5 39.1 600 1,200 Epaw 44 8.4 4.4 98.9 70.2 3.2 2 70.2 5.2 28.7 440 900 San Jose 36 6.9 3.6 80.9 57.5 1.8 3 43.2 5.1 37.7 580 1,200

Note 1. Peak demand (b) is calculated by 9.6kW x (Households No./ 50) 2. Base demand (c) is calculated by 5.0kW x (Households No./ 50) 3. Daily energy demand (d) is calculated by 112.4 kWh x (Households No./ 50) 4. Daily base energy demand (e) is calculated by 79.8 kWh x (Households No./ 50) 5. Energy production by Micro hydro (g) is smaller number of either micro hydro potential (f) x 24h or daily base energy demand (e). 6. Biogas generation (h) is the balance of peak demand (b) and Micro hydro potential (f). 7. Energy production by biogas (i) is the balance of daily energy demand (d) and energy production by micro hydro (g). 8. Necessary No. of swine (j) is calculated by energy production by biogas (i) divided by 6.54 kWh/day/100 swine head. 9. Capacity of digester (k) is calculated by energy production by biogas (i) multipled by 31.0 m3/kWh/day.

- 108 - 北サマール州山岳地域における再生可能エネルギーによる地方電化計画可能性調査

1. セクター 2. プロジェクト地点 電力 フィリピン国、北サマール州、カトゥビグ 及びラスナバス地方 3. 実施機関 フィリピン国営石油公社;PNOC 4. 背景及び目的 本地方電化プロジェクト可能性調査の対象地域は東ビサヤス地域の北サマール州に位置 するフィリピンにおいても未開発地域である。当該地域の一人当たりの収入はフィリピン 全体平均値の 50%程度である。北サマール州の山岳地域における家屋電化率は 20%以下で あることから、同州では農業生産性の向上及び観光産業の発展を促進させるため電化率の 向上を目標に掲げている。 本調査は、カトゥビグ川、潅漑施設からの水を利用したマイクロ水力及び農産物から発 生するバイオマスエネルギー等の再生可能エネルギーによる地方電化の可能性を検討す る。カトゥビグ流域においては、現在実施されている包括的農業開発計画(ECDP)により 農産物の生産性向上が期待されている。

5. プロジェクト概要 (1) プロジェクト名:再生可能エネルギーによる地方電化計画 (2) ハイブリッド発電による最大出力 バランガイ パラナス : P=6.7kW (マイクロ水力: 1.8kW、 バイオガス: 4.9kW) バランガイ タガンアヤン : P=11.5kW (マイクロ水力: 6.0kW、 バイオガス: 5.5kW) バランガイ エパウ : P=8.4kW (マイクロ水力: 3.2kW、 バイオガス: 5.2kW) バランガイ サンホセ : P=6.9kW(マイクロ水力: 1.8kW、 バイオガス: 5.1kW)

6. プロジェクト実施期間 可能性調査から工事完了まで約 2 年間(建設期間:0.5 年間)

7. 期待される便益及び受益者 受益者 ; 地域住民 便益 ; 家畜糞の有効利用、建設工事による雇用創出、 電化による地域産業の発展、生産性改善による貧困削減

8. 環境への影響 9. プロジェクト費用 影響なし 約 0.5 百万米ドル

- 109 -