The Demography and Interactions of Ecklonia Radiata in Southern New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

The Demography and Interactions of Ecklonia Radiata in Southern New Zealand THE DEMOGRAPHY AND INTERACTIONS OF ECKLONIA RADIATA IN SOUTHERN NEW ZEALAhTD A thesis submitted to the University of Canterbury for the degree of Doctor of Philosophy by Howard Royston Lees 2001 - Not an herb which carpeted the ground, not a branch which clothed the trees, was either broken or bent, nor did they extend horizontally; all stretched up to the surface of the ocean. Not a filament, not a ribbon, however thin they might be, but kept as straight as a rod of iron. The fuci and llianas grew in rigid perpendicular lines, due to the density of the element which had produced them. Motionless yet, when bent to one side by the hand, they directly resumed their former position. Truly it was the region of perpendicularity! - Jules Verne Twenty Thousand Leagues Under the Sea Chapter XVI - A Submarine Forest I:: 1\ DO '1lln? List of Figures ............... 00& •••• (/.(/.0 ••••• IIo •• oe ••••• o •••••••••• o •••• "." •• " •• ".,&.o".",.&.o •• ss •• u.a •• " •• e.II •••••• II.e •••••• OIl.itf1.a.iii List of Tables 0"' •• ee •• 0 ••••••• IH' •••••••••• ell •• e •••• e ••••••• 410<l ••• eo •• ea.a •••••• ee& •• O& ••• QQQ.Q •••• ".&a •• G•• a •••••••••••• e ••••• aGaaa •••• vii Ackn.owledgements .... e" ••• IHI ••• "II ••••••• iJ ••• o ••• Ga ••• o.ea ••• Q ••• Q""., ••••• &•••• " •• Q ••••• oo ••• oO •••••••••••• ClI ••••••••••••••••••••• ix Abstract & ••• 0 ••••••••••••••••• && •••••••••••••••••••••••••••• & ••••• 0.0 •• 0 ••••••••••• 00 •••••••••••• 0.0 ••• 0 ••• 0 •••••••••••••••••••••• a.a •••••• X Chapter 1: General IntroductionG .... G.......•... .." ... It ••••• ClI •••••• ,IIt •••••••••• a'.... a ••••••••••••••••••••••••••••••••• l 1.1 General Introduction to Thesis ............................................................................................. 2 1.2 Thesis Outline ...................................................................................................................... 5 1.3 Study Organism ............................... ,., ..... ,......... ,... ,.............................................................. 6 1.4 Study Sites ............................................................................................................................ 8 1.5 Plates .................................................................................................................................. 11 Chapter 2: General Demography . ..,O ••• CI •••• e •••••••• o •••••••••••••••••• o." ••• o ••••••••• 'u, •••• 01t1J •• oooo •••• oo ••••••• 12 2.1 Introduction ........................................................................................................................ 13 2.2 Methods .............................................................................................................................. 15 2.2.1 Sampling Methods ......................................................................................................... 15 2.2.1.1 Taggedplants ........................................................................................................ 15 2.2.1.2 Destructive Sanlpling ............................................................................................ 16 2.2.1.3 Randorll Transects ................................................................................................. 16 2.2.1.4 Recruitnlent ........................................................................................................... 17 2.2.2 Derivations ..................................................................................................................... 17 2.2.2.1 Derivation ofEcklonia Growth Rates ................................................................... 17 2.2.2.2 Derivation ofEcklonia Age (non-destructive) ....................................................... 17 2.2.2.3 Derivation of Biomass (non-destructive) .............................................................. 19 2.2.2.4 Derivation of Reproductive Output ....................................................................... 20 2.2.2.5 Derivation of Productivity ..................................................................................... 20 2.2.2.6 Transition Matrices ............................................................................................... 21 2.2.2.7 Life and Fertility Tables ........................................................................................ 22 2.2.3 Analysis ......................................................................................................................... 22 2.2.4 Definitions ...................................................................................................................... 22 2.3 Results ................................................................................................................................ 23 2.3.1 Spatial Patterns in Morphology, Biomass, and Density ................................................. 23 2.3.2 Temporal Patterns in Morphology, Biomass, and Density ............................................ 24 2.3.3 Growth ........................................................................................................................... 26 2.3.4 Survival .......................................................................................................................... 29 2.3.5 Reproduction and Recruitment ...................................................................................... 31 2.3.6 Stable Size-Distributions ............................................................................................... 33 2.3.7 Stable Age-Distributions ................................................................................................ 37 2.4 Discussion .......................................................................................................................... 40 Chapter 3: Canopy InteractiollS O •••••• IHII •• OIIIO •• OO •• "."' ••••• O •• IUO •••••••••• illG ••• 1HIQe ••• OD.OCH'I\IIIIO •••••••••• 000.00." .. 49 3.1 Introduction ........................................................................................................................ 50 3.2 Methods .............................................................................................................................. 52 3.2.1 Series I - Orthogonal Canopy Removals ....................................................................... 53 3.2.2 Series II Macrocystis Canopy Removal. ..................................................................... 54 3.2.3 Series III Substrate Clearances ................................................................................... 54 3.2.4 Environmental Parameters ........................................................................................... .. 3.2.5 Analysis ,........................................................................................................................ 55 3.3 Results .................................................................... ,........................................................... 57 3.3.1 Series Ia Orthogonal Canopy Removal ....................................................................... 57 3.3.1.1 Recruitment ........................................................................................................... 57 3.3.1.2 Juvenile Abundance ............................................................................................... 58 3.3.1.3 Growth ................................................................................................................... 60 3.3.1.4 Mortality ................................................................................................................ 63 Contents ii 3.3.1.5 Mature Ecklonia Abundance ................................................................................. 63 3.3.2 Series Ib Recovery of Ecklonia following canopy removaL ...................................... 64 3.3.3 Series II - Macrocystis Surface Canopy Removal ......................................................... 65 3.3.3.1 Recruitnlent ........................................................................................................... 65 3.3.3.2 Growth. .................................................................................................................. 65 3.3.3.3 Juvenile Abundance.......................................................................... ..................... 66 3.3.3.4 Mature Ecklonia Abundance ................................................................................. 67 3.3.3.5 MOltality ................................................................................................................ 68 3.3.4 Abundance of Other Algae within Series I & II ............................................................ 68 3.3.4.1 Cape Three Points ................................................................................................. 70 3.3.4.2 Tory Channel. ........................................................................................................ 70 3.3.5 Series III - Substrate Clearances .................................................................................... 71 3.3.6 Light ............................................................................................................................... 74 3.3.7 Sediment ........................................................................................................................ 74 3.3.8 Temperature & Rainfall ................................................................................................
Recommended publications
  • Mechanisms of Ecosystem Stability for Kelp Beds in Urban Environments
    Mechanisms of ecosystem stability for kelp beds in urban environments By Simon E Reeves November 2017 Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Institute for Marine and Antarctic Studies I DECLARATIONS This declaration certifies that: (i) This thesis contains no material that has been accepted for a degree or diploma by the University or any other institution. (ii) The work contained in this thesis, except where otherwise acknowledged, is the result of my own investigations. (iii) Due acknowledgement has been made in the text to all other material used (iv) The thesis is less than 100,000 words in length, exclusive of tables, maps, bibliographies and appendices. Signed: (Simon Reeves) Date: 1/12/2017 Statement of authority of access This thesis may be available for loan and limited copying in accordance with the Copyright Act 1968. Signed: (Simon Reeves) Date: 1/12/2017 II 20/7/18 ABSTRACT Ecologists have long been interested in determining the role biotic relationships play in natural systems. Even Darwin envisioned natural systems as "bound together by a web of complex relations”, noting how “complex and unexpected are the checks and relations between organic beings” (On the Origin of Species, 1859, pp 81-83). Any event or phenomenon that alters the implicit balance in the web of interactions, to any degree, can potentially facilitate a re-organisation in structure that can lead to a wholescale change to the stability of a natural system. As a result of the increasing diversity and intensity of anthropogenic stressors on ecosystems, previously well-understood biotic interactions and emergent ecological functions are being altered, requiring a reappraisal of their effects.
    [Show full text]
  • SDSU Template, Version 11.1
    THE EFFECTS OF IRRADIANCE IN DETERMINING THE VERTICAL DISTRIBUTION OF ELK KELP PELAGOPHYCUS PORRA _______________ A Thesis Presented to the Faculty of San Diego State University _______________ In Partial Fulfillment of the Requirements for the Degree Master of Science in Biology _______________ by Stacie Michelle Fejtek Fall 2008 SAN DIEGO STATE UNIVERSITY The Undersigned Faculty Committee Approves the Thesis of Stacie Michelle Fejtek: The Effects of Irradiance in Determining the Vertical Distribution of Elk Kelp, Pelagophycus porra _____________________________________________ Matthew S. Edwards, Chair Department of Biology _____________________________________________ Todd W. Anderson Department of Biology _____________________________________________ Douglas A. Stow Department of Geography ______________________________ Approval Date iii Copyright © 2008 by Stacie Michelle Fejtek All Rights Reserved iv DEDICATION This thesis is dedicated to my family and friends who have encouraged and supported me through the trials and challenges that accompany such an undertaking. A special thanks to Colby Smith who believed in me even when I didn’t believe in myself. v “Whatever you are be a good one” -Abraham Lincoln vi ABSTRACT OF THE THESIS The Effects of Irradiance in Determining the Vertical Distribution of Elk Kelp, Pelagophycus porra by Stacie Michelle Fejtek Master of Science in Biology San Diego State University, 2008 Elk Kelp, Pelagophycus porra, is commonly observed in deep (20-30 m) water along the outer edge of Giant Kelp, Macrocystis pyrifera, beds in southern California, USA and northern Baja California, MEX, but rarely occurs in shallower water or within beds of M. pyrifera. Due to the nature of P. porra’s heteromorphic life history that alternates between a macroscopic diploid sporophyte and a microscopic haploid gametophyte, investigations of both life history stages were needed to understand P.
    [Show full text]
  • Macrocystis Pyrifera: Interpopulation Comparisons and Temporal Variability
    MARINE ECOLOGY PROGRESS SERIES Published December 15 Mar. Ecol. Prog. Ser. Copper toxicity to microscopic stages of giant kelp Macrocystis pyrifera: interpopulation comparisons and temporal variability ' Institute of Marine Sciences, University of California, Santa Cruz. California 95064, USA Marine Pollution Studies Laboratory, California Department of Fish and Game, Coast Route 1, Granite Canyon, Monterey, California 93940, USA* ABSTRACT: Experiments were conducted to evaluate temporal and geographic variation in sensitivity of microscopic stages of giant kelp Macrocystis pyrifera to copper. Spores from kelp sporophylls collected from different locations and at different times of the year were exposed to series of copper concentrations following a standard toxicity test procedure. After 48 h static exposures, toxicity was determined by measuring 2 test endpoints: germination success and growth of germination tubes. The sensitivity of these endpoints to copper was also compared with the sensitivity of longer-term reproduc- tive endpoints: sporophyte production and sporophyte growth. No significant differences in response to copper were found among spores from different collection sites. Variability between 4 tests conducted quarterly throughout the year was greater than that between 3 tests done consecutively within 1 mo, indicating temporal variability in response to copper. Long-term reproductive endpoints were more sensitive to copper than were short-term vegetative endpoints, with No Observed Effect Concentrations of < 10 pg 1-' for sporophyte production, 10 yg 1-I for sporophyte growth, 10 yg 1-' for germ-tube growth, and 50 yg 1-I for germination inhibition. INTRODUCTION ductive failure, or growth of sensitive life stages (Bay et al. 1983, Lussier et al. 1985, ASTM 1987, Dinnel et al.
    [Show full text]
  • Marine Ecology Progress Series 483:117
    Vol. 483: 117–131, 2013 MARINE ECOLOGY PROGRESS SERIES Published May 30 doi: 10.3354/meps10261 Mar Ecol Prog Ser Variation in the morphology, reproduction and development of the habitat-forming kelp Ecklonia radiata with changing temperature and nutrients Christopher J. T. Mabin1,*, Paul E. Gribben2, Andrew Fischer1, Jeffrey T. Wright1 1National Centre for Marine Conservation and Resource Sustainability (NCMCRS), Australian Maritime College, University of Tasmania, Launceston, Tasmania 7250, Australia 2Biodiversity Research Group, Climate Change Cluster, University of Technology Sydney, Sydney, New South Wales 2007, Australia ABSTRACT: Increasing ocean temperatures are a threat to kelp forests in several regions of the world. In this study, we examined how changes in ocean temperature and associated nitrate concentrations driven by the strengthening of the East Australian Current (EAC) will influence the morphology, reproduction and development of the widespread kelp Ecklonia radiata in south- eastern Australia. E. radiata morphology and reproduction were examined at sites in New South Wales (NSW) and Tasmania, where sea surface temperature differs by ~5°C, and a laboratory experiment was conducted to test the interactive effects of temperature and nutrients on E. radiata development. E. radiata size and amount of reproductive tissue were generally greater in the cooler waters of Tasmania compared to NSW. Importantly, one morphological trait (lamina length) was a strong predictor of the amount of reproductive tissue, suggesting that morphological changes in response to increased temperature may influence reproductive capacity in E. radiata. Growth of gametophytes was optimum between 15 and 22°C and decreased by >50% above 22°C. Microscopic sporophytes were also largest between 15 and 22°C, but no sporophytes developed above 22°C, highlighting a potentially critical upper temperature threshold for E.
    [Show full text]
  • Cultivating the Macroalgal Holobiont: Effects of Integrated Multi-Trophic Aquaculture on the Microbiome of Ulva Rigida (Chlorophyta)
    fmars-07-00052 February 10, 2020 Time: 15:0 # 1 ORIGINAL RESEARCH published: 12 February 2020 doi: 10.3389/fmars.2020.00052 Cultivating the Macroalgal Holobiont: Effects of Integrated Multi-Trophic Aquaculture on the Microbiome of Ulva rigida (Chlorophyta) Gianmaria Califano1, Michiel Kwantes1, Maria Helena Abreu2, Rodrigo Costa3,4,5 and Thomas Wichard1,6* 1 Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Jena, Germany, 2 ALGAplus Lda, Ílhavo, Portugal, 3 Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal, 4 Centre of Marine Sciences, University of Algarve, Faro, Portugal, 5 Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, University of California, Berkeley, Berkeley, CA, United States, 6 Jena School for Microbial Communication, Jena, Germany Ulva is a ubiquitous macroalgal genus of commercial interest. Integrated Multi-Trophic Aquaculture (IMTA) systems promise large-scale production of macroalgae due to Edited by: their high productivity and environmental sustainability. Complex host–microbiome Bernardo Antonio Perez Da Gama, interactions play a decisive role in macroalgal development, especially in Ulva spp. Universidade Federal Fluminense, due to algal growth- and morphogenesis-promoting factors released by associated Brazil bacteria. However, our current understanding of the microbial community assembly and Reviewed by: Alejandro H. Buschmann, structure in cultivated macroalgae is scant. We aimed to determine (i) to what extent University of Los Lagos, Chile IMTA settings influence the microbiome associated with U. rigida and its rearing water, (ii) Henrique Fragoso Santos, to explore the dynamics of beneficial microbes to algal growth and development under Universidade Federal Fluminense, Brazil IMTA settings, and (iii) to improve current knowledge of host–microbiome interactions.
    [Show full text]
  • Safety Assessment of Brown Algae-Derived Ingredients As Used in Cosmetics
    Safety Assessment of Brown Algae-Derived Ingredients as Used in Cosmetics Status: Draft Report for Panel Review Release Date: August 29, 2018 Panel Meeting Date: September 24-25, 2018 The 2018 Cosmetic Ingredient Review Expert Panel members are: Chair, Wilma F. Bergfeld, M.D., F.A.C.P.; Donald V. Belsito, M.D.; Ronald A. Hill, Ph.D.; Curtis D. Klaassen, Ph.D.; Daniel C. Liebler, Ph.D.; James G. Marks, Jr., M.D.; Ronald C. Shank, Ph.D.; Thomas J. Slaga, Ph.D.; and Paul W. Snyder, D.V.M., Ph.D. The CIR Executive Director is Bart Heldreth, Ph.D. This report was prepared by Lillian C. Becker, former Scientific Analyst/Writer and Priya Cherian, Scientific Analyst/Writer. © Cosmetic Ingredient Review 1620 L Street, NW, Suite 1200 ♢ Washington, DC 20036-4702 ♢ ph 202.331.0651 ♢ fax 202.331.0088 [email protected] Distributed for Comment Only -- Do Not Cite or Quote Commitment & Credibility since 1976 Memorandum To: CIR Expert Panel Members and Liaisons From: Priya Cherian, Scientific Analyst/Writer Date: August 29, 2018 Subject: Safety Assessment of Brown Algae as Used in Cosmetics Enclosed is the Draft Report of 83 brown algae-derived ingredients as used in cosmetics. (It is identified as broalg092018rep in this pdf.) This is the first time the Panel is reviewing this document. The ingredients in this review are extracts, powders, juices, or waters derived from one or multiple species of brown algae. Information received from the Personal Care Products Council (Council) are attached: • use concentration data of brown algae and algae-derived ingredients (broalg092018data1, broalg092018data2, broalg092018data3); • Information regarding hydrolyzed fucoidan extracted from Laminaria digitata has been included in the report.
    [Show full text]
  • Marine Macroalgal Biodiversity of Northern Madagascar: Morpho‑Genetic Systematics and Implications of Anthropic Impacts for Conservation
    Biodiversity and Conservation https://doi.org/10.1007/s10531-021-02156-0 ORIGINAL PAPER Marine macroalgal biodiversity of northern Madagascar: morpho‑genetic systematics and implications of anthropic impacts for conservation Christophe Vieira1,2 · Antoine De Ramon N’Yeurt3 · Faravavy A. Rasoamanendrika4 · Sofe D’Hondt2 · Lan‑Anh Thi Tran2,5 · Didier Van den Spiegel6 · Hiroshi Kawai1 · Olivier De Clerck2 Received: 24 September 2020 / Revised: 29 January 2021 / Accepted: 9 March 2021 © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A foristic survey of the marine algal biodiversity of Antsiranana Bay, northern Madagas- car, was conducted during November 2018. This represents the frst inventory encompass- ing the three major macroalgal classes (Phaeophyceae, Florideophyceae and Ulvophyceae) for the little-known Malagasy marine fora. Combining morphological and DNA-based approaches, we report from our collection a total of 110 species from northern Madagas- car, including 30 species of Phaeophyceae, 50 Florideophyceae and 30 Ulvophyceae. Bar- coding of the chloroplast-encoded rbcL gene was used for the three algal classes, in addi- tion to tufA for the Ulvophyceae. This study signifcantly increases our knowledge of the Malagasy marine biodiversity while augmenting the rbcL and tufA algal reference libraries for DNA barcoding. These eforts resulted in a total of 72 new species records for Mada- gascar. Combining our own data with the literature, we also provide an updated catalogue of 442 taxa of marine benthic
    [Show full text]
  • Interaction Between the Canopy Dwelling Echinoid Holopneustes Purpurescens and Its Host Kelp Ecklonia Radia Ta
    MARINE ECOLOGY PROGRESS SERIES Vol. 127: 169-181, 1995 Published November 2 Mar Ecol Prog Ser 1 Interaction between the canopy dwelling echinoid Holopneustes purpurescens and its host kelp Ecklonia radia ta Peter D. Steinberg* School of Biological Science, University of Sydney, Sydney, New South Wales 2006, Australia ABSTRACT: I examined the interaction between the unusual, canopy dwelling echinoid Holopneustes purpurescens and its main host plant, the kelp Ecklonia radiata. During a 4 yr study at Cape Banks, New South Wales, Australia, H. purpurescens reached densities as high as 1 ind. per thallus of E. rad~ataand >l7 mw2,with densities declining strongly in the latter years of the study. These sea urchins also occurred, although at lower densities, on the dictyotalean alga Homoeostrichus sinclairii. H. pur- purescens consumed laminae of E. radiata in the field at the rate of -1 g large ind.-l (diameter >40 mm) d'l Consumption by the sea urchins was not affected by variation in phlorotannin levels among lami- nae. The impact of feeding by H. purpurescens on E. radiata, measured as (1) changes in the biomass of the kelps and (2) changes in thallus elongation rates, was examined in field experiments done in 2 seasons in which different numbers and sizes of sea urchins were caged with individual E. radiata. In spring, all densities and sizes of H. purpurescens caused significant damage (biomass) to E. radiata after 4 wk, and higher densities (2 per kelp thallus) of large sea urch~nsresulted in kelp mortality. No measurable damage occurred in autumn, with all kelps losing large amounts of biomass.
    [Show full text]
  • Effect of Environmental History on the Habitat-Forming Kelp Macrocystis
    www.nature.com/scientificreports OPEN Efect of environmental history on the habitat‑forming kelp Macrocystis pyrifera responses to ocean acidifcation and warming: a physiological and molecular approach Pamela A. Fernández1*, Jorge M. Navarro2, Carolina Camus1, Rodrigo Torres3 & Alejandro H. Buschmann1 The capacity of marine organisms to adapt and/or acclimate to climate change might difer among distinct populations, depending on their local environmental history and phenotypic plasticity. Kelp forests create some of the most productive habitats in the world, but globally, many populations have been negatively impacted by multiple anthropogenic stressors. Here, we compare the physiological and molecular responses to ocean acidifcation (OA) and warming (OW) of two populations of the giant kelp Macrocystis pyrifera from distinct upwelling conditions (weak vs strong). Using laboratory mesocosm experiments, we found that juvenile Macrocystis sporophyte responses to OW and OA did not difer among populations: elevated temperature reduced growth while OA had no efect on growth − and photosynthesis. However, we observed higher growth rates and NO3 assimilation, and enhanced − expression of metabolic‑genes involved in the NO3 and CO2 assimilation in individuals from the strong upwelling site. Our results suggest that despite no inter‑population diferences in response to OA and − OW, intrinsic diferences among populations might be related to their natural variability in CO2, NO3 and seawater temperatures driven by coastal upwelling. Further work including additional populations and fuctuating climate change conditions rather than static values are needed to precisely determine how natural variability in environmental conditions might infuence a species’ response to climate change. Anthropogenic climate change, such as global warming and ocean acidifcation (OA) are altering the structure and functioning of terrestrial and marine ecosystems, causing shifs in the distribution and relative abundance of species1–4.
    [Show full text]
  • Type of the Paper
    1 Supplementary Materials: 2 Dereplication by High-Performance Liquid 3 Chromatography (HPLC) with Quadrupole-Time-of- 4 Flight Mass Spectroscopy (qTOF-MS) and Antiviral 5 Activities of Phlorotannins from Ecklonia cava 6 Hyo Moon Cho 1,†, Thi Phuong Doan 1,†, Thi Kim Quy Ha 1, Hyun Woo Kim 1, Ba Wool 7 Lee 1, Ha Thanh Tung Pham 1, Tae Oh Cho 2 and Won Keun Oh 1,* 8 1 Korea Bioactive Natural Material Bank, Research Institute of Pharmaceutical Sciences, College of 9 Pharmacy, Seoul National University, Seoul 08826, Korea; [email protected] (H.M.C.); 10 [email protected] (T.P.D.); [email protected] (T.K.Q.H.); [email protected] (H.W.K.); 11 [email protected] (B.W.L.); [email protected] (H.T.T.P.) 12 2 Marine Bio Research Center, Department of Life Science, Chosun University, Gwangju 501-759, 13 Korea; [email protected] 14 * Correspondence: [email protected]; Tel.: +82-02-880-7872 15 † These authors contributed equally. 16 2 of 33 17 Contents 18 Figure S1. HRESIMS spectrum of compound 1 ............... Error! Bookmark not defined. 19 Figure S2. IR spectrum of compound 1. ............................................................................. 5 1 20 Figure S3. H NMR spectrum of compound 1 (800 MHz, DMSO-d6) ............................... 6 13 21 Figure S4. C NMR spectrum of compound 1 (200 MHz, DMSO-d6)Error! Bookmark 22 not defined. 23 Figure S5. HSQC spectrum of compound 1 (800 MHz, DMSO-d6)Error! Bookmark not 24 defined. 25 Figure S6. HMBC spectrum of compound 1 (800 MHz, DMSO-d6) ..............................
    [Show full text]
  • Biomass Rather Than Growth Rate Determines Variation in Net Primary Production by Giant Kelp
    Ecology, 89(9), 2008, pp. 2493–2505 Ó 2008 by the Ecological Society of America BIOMASS RATHER THAN GROWTH RATE DETERMINES VARIATION IN NET PRIMARY PRODUCTION BY GIANT KELP 1,3 2 2 DANIEL C. REED, ANDREW RASSWEILER, AND KATIE K. ARKEMA 1Marine Science Institute, University of California, Santa Barbara, California 93111 USA 2Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, California 93111 USA Abstract. Net primary production (NPP) is influenced by disturbance-driven fluctuations in foliar standing crop (FSC) and resource-driven fluctuations in rates of recruitment and growth, yet most studies of NPP have focused primarily on factors influencing growth. We quantified NPP, FSC, recruitment, and growth rate for the giant kelp, Macrocystis pyrifera,at three kelp forests in southern California, USA, over a 54-month period and determined the relative roles of FSC, recruitment, and growth rate in contributing to variation in annual NPP. Net primary production averaged between 0.42 and 2.38 kg dry massÁmÀ2ÁyrÀ1 at the three sites. The initial FSC present at the beginning of the growth year and the recruitment of new plants during the year explained 63% and 21% of the interannual variation observed in NPP, respectively. The previous year’s NPP and disturbance from waves collectively accounted for 80% of the interannual variation in initial FSC. No correlation was found between annual growth rate (i.e., the amount of new kelp mass produced per unit of existing kelp mass) and annual NPP (i.e., the amount of new kelp mass produced per unit area of ocean bottom), largely because annual growth rate was consistent compared to initial FSC and recruitment, which fluctuated greatly among years and sites.
    [Show full text]
  • Sympatric Kelp Species Share a Large Portion of Their Surface Bacterial Communities
    Environmental Microbiology (2018) 20(2), 658–670 doi:10.1111/1462-2920.13993 Sympatric kelp species share a large portion of their surface bacterial communities Matthew A. Lemay,1,2* Patrick T. Martone,1,2 divergent bacterial communities. These data provide Patrick J. Keeling,1,2 Jenn M. Burt,2,3 the first community-scale investigation of kelp forest- Kira A. Krumhansl,2,3 Rhea D. Sanders1,2 and associated bacterial diversity. More broadly, this Laura Wegener Parfrey1,2,4 study provides insight into mechanisms that may 1Department of Botany and Biodiversity Research structure bacterial communities among closely Centre, University of British Columbia, 3529-6270 related sympatric host species. University Blvd, Vancouver, BC, Canada V6T 1Z4. 2Hakai Institute, PO Box 309, Heriot Bay, BC, Canada V0P 1H0. Introduction 3School of Resource and Environmental Management, Multicellular organisms have evolved in tandem with vast Simon Fraser University, 8888 University Drive, communities of microbes, resulting in complex mutualisms Burnaby, BC, Canada V5A 1S6. that are essential for each other’s survival (Russell et al., 4Department of Zoology, University of British Columbia, 2014). Understanding how microbial communities are 4200-6270 University Blvd, Vancouver, BC, Canada structured among closely related host species provides V6T 1Z4. insight into the mechanisms by which microbial associa- tions are assembled and maintained. For example, differences in bacterial assemblages among closely Summary related host taxa have been identified in a diversity of sys- Kelp forest ecosystems are biodiversity hotspots, tems including mammals (Ley et al., 2008; Ochman et al., providing habitat for dense assemblages of marine 2010), amphibians (McKenzie et al., 2012; Kueneman organisms and nutrients for marine and terrestrial et al., 2014; Walke et al., 2014), sponges (Lee et al., 2011) food webs.
    [Show full text]