New York Seagrass Experts Meeting

Total Page:16

File Type:pdf, Size:1020Kb

New York Seagrass Experts Meeting New York Seagrass Experts Meeting Meeting Proceedings and Priority Recommendations May 22, 2007 Photo by: Cornell Cooperative Extension of Suffolk County Marine Program East Setauket, NY Acknowledgements This meeting was sponsored by the New York State Department of Environmental Conservation, New York Sea Grant, Peconic Estuary Program, Cornell Cooperative Extension, The Nature Conservancy and the Long Island Sound Study. A special thank you to members of the Steering Committee for their many months of strategic planning, and the Experts Panel for their unsurpassed dedication and enthusiasm. Table of Contents Introduction 1 Workshop Format 2 Agenda 4 Appendix A: New York State Seagrass Taskforce Legislation 6 Appendix B: Expert Panel Bios 10 Appendix C: Presenter Bios 14 Appendix D: List of Meeting Attendees 17 Appendix E: Presentation Abstracts/Slides 20 Appendix F: Research, Management, and Monitoring Priorities 68 Appendix G: Pre-Meeting Potential Research Questions 73 Appendix H: Other Supplemental Materials 76 Maps Research Conducted in the Peconic Estuary Regarding Eelgrass Actions and Recommendations Involving Eelgrass in the Peconic Estuary Comprehensive Conservation and Management Plan Local Management Affecting Eelgrass in the Peconic Estuary New York State Management Impacting Eelgrass Long Island Estuary Systems: Snapshot Introduction Seagrasses are rooted, underwater vascular plants which grow in shallow coastal waters. While several different species of seagrasses exist, the two most commonly found species in New York’s coastal waters are eelgrass (Zostera marina) and widgeon grass (Ruppia maritime). These submerged aquatic vegetation (SAV’s), are considered to be some of the most productive ecosystems in the world and are biologically, ecologically and economically important. Seagrass beds stabilize benthic sediments, support nutrient cycling, oxygenate waters, improve water quality, and provide critical habitat for aquatic species (e.g., fluke, bluefish, bay scallops and hard clams). The presence of seagrass is often used as an indicator of estuarine health and high water quality. Long Island marine waters once supported bountiful populations of seagrass. The onset of a wasting disease (Labyrinthula zostorae) in the early 1930’s was responsible for the significant decline of eelgrass beds along the entire Atlantic seaboard. Light shading effects of Brown Tide occurrences in the 1980’s further decimated eelgrass populations. Long Island seagrass populations may also continue to be impacted by nutrient enrichment, fishing and shellfishing practices, and recreational use of shallow waterways. Despite management and restoration efforts and significant improvements in water quality, populations are still declining and have not rebounded. Monitoring efforts in Long Island Sound, the Peconic Bays, and the South Shore Estuary indicate that these individual estuarine systems have each experienced separate and distinct trends. If qualitative and quantitative improvements in eelgrass beds are sought, these systems and their respective trends must be examined further. Acknowledging the importance of seagrass and the necessity to protect and restore this valuable natural resource, Governor George Pataki enacted Chapter 404 of the Laws of 2006 on July 26, 2006, which established a New York Seagrass Task Force within the New York Department of Environmental Conservation. This Task Force is charged with examining the current state and make recommendations on means of restoring, preserving, and properly managing seagrass. Task Force meetings have since commenced in early 2008; the legislation can be found in Appendix A. In the meantime, several representatives from various agencies and organizations decided to proceed with heightening awareness of declining seagrass trends, and drawing attention to the need of directing resources to foster an increased understanding. Consequently, a Steering Committee was formed. Members included: Rick Balla, United States Environmental Protection Agency/ Peconic Estuary Program Marci Bortman, The Nature Conservancy Jerry Churchill, Adelphi University Karen Chytalo, NYS Department of Environmental Conservation, Bureau of Marine Resources Corey Garza, National Oceanic and Atmospheric Administration/Long Island Sound Study Jack Mattice, New York Sea Grant Brad Peterson, State University of New York Chris Pickerell, Cornell Cooperative Extension Cornelia Schlenk, New York Sea Grant Laura Stephenson, NYS Department of Environmental Conservation/Peconic Estuary Program 1 This Steering Committee would organize a Seagrass Experts Meeting that would help establish a body of background information look at past and current trends, facilitate discussion between local seagrass experts, and gain insights from nationally renowned seagrass scientists and managers. Meeting Format The main goal of the Seagrass Experts Meeting was to have a scientific panel of experts reach a consensus about what information gaps would be the most important to fill in order for New York to move forward most efficiently and effectively toward preserving and/or restoring seagrass habitat. The first step was to establish a panel of seagrass experts. In an attempt to create a diverse panel, individuals were selected based on unique expertise and complementary knowledge and experience. The Steering Committee was extremely fortunate in being able to secure the interest and participation of several key, nationally-recognized seagrass experts; some located on Long Island, while others based in Alabama, Florida, Maryland, New Hampshire and North Carolina (see Figure 1). Brief biographies of Expert Panel members can be found in Appendix B. The Expert Panel was asked to attend a meeting to learn about conditions in New York, synthesis and integrate information through discussion, and then develop recommendations on research, management and monitoring priorities. Figure 1- Experts Panel (L to R): Paul Carlson (Florida Fish and Wildlife Conservation Commission), Bradley Peterson (Stony Brook University), William Dennison (University of Maryland), Kenneth Heck, Jr., (University of South Alabama), Mark Fonseca (NOAA National Ocean Service), Chris Pickerell (Cornell Cooperative Extension), A. Coolidge Churchill (Adelphi University), Fred Short (University of New Hampshire). 2 The next step was to identify local scientists, researchers, and managers to present the local context and set the stage for the Experts Panel’s deliberations. These individuals were to address the relevant physical, biological, and chemical characteristics of Long Island Sound, the Peconic Bays, and the South Shore Estuary, as well as past and current status of seagrasses in those systems. Brief biographies of those presenters may be found in Appendix C. The New York Seagrass Experts Meeting was held on May 22, 2007 at the New York State Department of Environmental Conservation Bureau of Marine Resources Headquarters located in East Setauket, New York. To keep the Meeting as focused and productive as possible, invitees were limited essentially to the Steering Committee, the local presenters, and the Experts Panel (see Appendix D). The agenda (see following page) began with presentations of local information to set the stage (see Appendix E for presentation abstracts and slides). Question and answer periods followed, proceeded by Expert Panel deliberations which continued late into the evening. The output of the Expert Panel deliberations was a table of priority actions (see Appendix F) which identifies: • The ranked order of priority; • Whether it is a research, monitoring or management activity; • What the recommended action is; • Tasks to be undertaken to accomplish the action; • An estimate of the time period required; and • An estimate of the costs involved Expectations of the Steering Committee were well exceeded. An incredible amount of information was shared and valuable new connections between individuals made. Most importantly, priority recommendations reflect those of informed, interested, and impartial experts. Those recommended actions provide a needed, well-founded direction for New York’s future efforts to preserve and restore the seagrass beds of its estuarine waters. 3 AGENDA Seagrass Experts Meeting May 22nd, 2007 NYSDEC Bureau of Marine Resources 8:00am Registration and Continental Breakfast 8:30am Welcome Jack Mattice, Ph.D- Director, NY Sea Grant Overview of Meeting Karen Chytalo- Section Chief, Marine Habitat Protection, New York State Department of Environmental Conservation, Bureau of Marine Resources 8:45am Snapshot of Long Island Marine Waters: Physical Characteristics Short presentations, each followed by questions/discussion 1. Water Quality-Nutrients, Phytoplankton (approx 8:45-9:00am) Chris Gobler, Ph.D.- Associate Professor, Marine Sciences Research Center, Stony Brook University 2. Linking Groundwater, Pesticides and SAV’s (approx 9:00-9:15am) Ron Paulsen- Hydrogeologist. Suffolk County Department of Health Services, Office of Water Resources 3. Marine Sediment Geo-chemistry (approx 9:15-9:30am) Kirk Cochran, Ph.D.- Professor, Marine Sciences Research Center, Stony Brook University 4. Habitat Modification & Loss of Suspension Feeders (approx 9:30- 9:45am) Brad Peterson, Ph.D.- Assistant Professor, Marine Sciences Research Center, Stony Brook University 9:55am Break Display of current and historical eelgrass maps 10:10am Status, Historical Distributions, and Current Management and Research Approaches 1. South Shore (approx 10:10-10:25am)
Recommended publications
  • Long Island South Shore Estuary Reserve Coordinated Water Resources Monitoring Strategy Long Island SOUTH SHORE ESTUARY RESERVE
    Long Island South Shore Estuary Reserve Coordinated Water Resources Monitoring Strategy New York Suffolk Nassau Long Island SOUTH SHORE ESTUARY RESERVE Open-File Report 2017–1161 U.S. Department of the Interior U.S. Geological Survey Cover. The Long Island South Shore Estuary Reserve (orange) stretches west to east from the Nassau-Queens county line to the town of Southampton. South to north, it extends from mean high tide on the ocean side of the barrier islands to the inland limits of the watersheds that drain into the bays. Image courtesy of the New York State Department of State Office of Planning, Development and Community Infrastructure. Long Island South Shore Estuary Reserve Coordinated Water Resources Monitoring Strategy By Shawn C. Fisher, Robert J. Welk, and Jason S. Finkelstein Prepared in cooperation with the New York State Department of State Office of Planning, Development and Community Infrastructure and the South Shore Estuary Reserve Office Open-File Report 2017–1161 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey James F. Reilly II, Director U.S. Geological Survey, Reston, Virginia: 2018 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S.
    [Show full text]
  • Great South Bay Ecosystem-Based Management Plan
    Great South Bay Ecosystem-based Management Plan Prepared by The Nature Conservancy, Long Island Chapter Prepared for The New York State Department of State with funds provided by the Environmental Protection Fund 2008 Draft Final 2012 EXECUTIVE SUMMARY Great South Bay (GSB) on the South Shore of Long Island is teeming with life, but it is also degraded compared to historical conditions. Conservation and management measures are needed to preserve and restore the health of the bay. The Long Island Chapter of the Nature Conservancy (TNC), under contract to the New York State Department of State (DOS), developed this Ecosystem-based Management (EBM) Plan for Great South Bay. Ecosystem-based Management is a management approach that considers the entire ecosystem, including humans. It promotes ecosystem viability and integrity, biodiversity, sustainability, and social values and principles. TNC’s analysis relies on choosing a set of ecological surrogates, representative species, and groups of species, or habitat types that can represent the ecological status of the biodiversity in Great South Bay. For each surrogate, specific measurable objectives are developed that describe the intended ecological state of Great South Bay with respect to each surrogate. The measurable objectives are achieved through the implementation of strategic actions and action steps described in the plan. Overarching objectives and strategic actions are also developed to address water quality, global climate change, and education. The surrogates chosen to represent the GSB ecosystem in the plan are: Hard clams Salt marshes Seagrass meadows Barrier island complex Predatory fishes Winter flounder Alewives Piping plovers Horseshoe crabs This report was originally drafted in 2008 followed by an update in 2012 to each surrogate’s current status, strategic actions and action steps.
    [Show full text]
  • Appendix H 1. References Used for Chapter Iv 2
    APPENDIX H 1. REFERENCES USED FOR CHAPTER IV 2. EARLY COORDINATION REQUIREMENTS 3. PROGRAMMATIC SECTION 4(f) EVALUATION 3b. COORIDINATION WITH OFFICIALS HAVING JURISDICTION OVER SECTION 4(f) SOURCES 4. COASTAL ASSESSMENT FORM AND POLICY ANALYSIS 5. NEPA CHECKLIST 6. FISH AND WILDLIFE SERVICE CORRESPONDENCE 7. INVASIVE SPECIES APPENDIX H.1 –REFERENCES USED FOR CHAPTER IV ~oo~ i ~, G5 55 i 1W is ~ Cl bY d1~ Q)IWllluaiiy donI_tele! by OI!W or 1i19f'Il; ap:de.$ ~ edmtb6 w ~~ L~tioIua' &I~ ] b/;mplu; Fire SeeAbore. Suffolk 5hJICed trees. C!laraacristic ioch&dc Col,&.ftly; Nb~e 8~ suncuc COlmty. beach-plum (~ILI mantlm«)p ~ (RG1's lIlpilJ). 'i!li!d rose (It ~A&). btI)bcny So~u; An 19'6; ~DaOlJ!. 1985; Significant (Myrka~). 085tCZQ 1:'ed oot1v (Iunipuus Ha'j)jut Unif Silo. vilPJOlfJlNl). llbiaiDs; allllDM (Nllu eopJlllIPlum). poisoiJ i1#y (TDziC<NU1'IdIoIr ~). black chctty I (PruI'lW 300dn4). hiBb~ b~(~ JL G. ~ rjunes: lllj Q)\'lmllllulty dominaaed by l:~bomm). Amencu holly (f!Arz ~). ISDd ] ~ ~ bel low ghm~ that CCUIn OD active aQd sbadbusb (A,"d~lIchier C/Jlltldeflsi.s). stabilized dimes lIIlong the. ~ aJaSt. This Qaraderistir:: biIdrJ iKIwk great egret ccmmWLil)' a!ft:;.is15 0 lit llIJGUlic or vegetBlioa (Ouwt,fOdius e./buJ) IUSd bIKk-a~d lI1igbl­ Pitches. Tills ~..... ,... ............. beroft (Nyeticona IJ)II:dcDfWr). we!! as sand ~ l3ad d'!~ rmsr-- The ~ ud ~ of «he ~. ~ d~ seawMi or a~ Coutel ~tlltion is vaiiablct~ 0& RaWflt,y of the LowIamd! 1CCOZCI1le. dwaell, -.moWlfS of ~011 ud erosion" ami diwma: rl/'D8lll t ocem. Cbal"'adcNtile RtRM.· v4 S4 lipoda of abo activls: wbcR ~ lDoYO~g is 8r~(c.:.\I, include, bcacbg'lW (A.JwG'nOphilfJi Examp'e: Fare 1daPd,.
    [Show full text]
  • 5. Appendix D
    Long Island Duck Farm History and Ecosystem Restoration Opportunities Suffolk County, Long Island, New York February 2009 US Army Corps of Engineers Suffolk County, NY New York District APPENDIX D APPENDIX D Duck Farm Industry and Impacts Report prepared by Suffolk County Department of Planning H. Lee Dennison Building - 4th Floor 100 Veterans Memorial Highway P.O. Box 6100 Hauppauge, New York 11788 DeWitt S. Davies, Ph.D. Chief Environmental Analyst Duck Farm Industry Impacts on the Environment Introduction As documented in the historical overview section, the duck farm industry in Suffolk County was an extremely intensive land use along stream and bay shorelines. Inventory work by the Department of Planning indicates that approximately 2,000 acres of upland property and almost 20 miles of shoreline along freshwater creeks/rivers and estuary tributaries – primarily in the Towns of Brookhaven, Riverhead and Southampton – were utilized during the last century in Suffolk County for duck production. The impacts of duck farming were dramatic, both on-site and off-site. Extensive landform alterations were made to construct animal pens, feed lots and swim ponds, which were often located in or directly adjacent to streams/coves of the bays. Waste effluent discharges from the farms created thick organic matter deposits, degraded water quality and altered phytoplankton and benthic population in near-by surface waters. Duck Farms – An Intensive Land Use The significance of the impacts is reflected by the magnitude of the industry and the waste load generated. Effluent waste loadings from the farms in the form of suspended solids, nutrients and coliform bacteria were huge, especially prior to the required use of treatment technology under water pollution control laws.
    [Show full text]
  • The Baymen of the Great South Bay, New York; a Preliminary Ecological
    The Baymen of the Great South Bay, New 'Ilosk of life may have to be abandoned (extinction for other species). A Preliminary Ecological Profile An ecological profile defines the fishermen's unique lifestyle and cultural re- quirements and thenconsiders them as predators on fish or shellfish, as competi- tors with each other and other species, and subjected to environmental variabili- Jeffrey Kassner ty. It shows therefore how the fishermen function within their environment and Town of Brookhaven, Division of Environmental Protection how they respond to it. The advantage to the ecological profile is that it high- lights the various interactions and constraints, ensuring that all relevant factors impacting the fishermen are considered. It is a comprehensive assessment and ABSTRACTEcology is the study of the interactions among organisms and their environ- does not consider fishermen in isolation. ment. Various theories and concepts taken from ecology, for example, optimal foraging the- The Great South Bay is an embayment located on the south shore of Long ory, have been used in theanthropological study of fishermen. While this approach canpro- Island, New York. The bay supports a significant commercial fishery for the vide useful insights, it removes the fishermen from their environment so that potentially hard clam (Mereenaria mereenaria) which is harvested by fishermen, known lo- significant factors may be taken out of context or omitted. An ecological profileof a fisher- cally as baymen or clam diggers, who are self-employed and work individually men population would present a more comprehensiveecological study, examining theecolog- from small boats (less than 10 m) on open access public bay bottom using hand ical processes of predation, competition and adaptation from the perspective of the fisher- operated rakes and tongs.
    [Show full text]
  • Breaking Through
    Photo courtesy of George Proios Breaking Through Nothing is more constant than in business and municipal practices that change itself… may have led to a decline in commercial shellfish populations. And nowhere can this be demonstrated more graphically than along Long Island’s barrier Looking long-term at the effects that beaches where the dynamic interactions future breaches along barrier beaches between shifting sands and crashing ocean might have on these estuarine ecosys- waves constantly reshape the thin strands of tems, New York Sea Grant has funded beach and periodically form new inlets. When four novel research projects. Each has new inlets form, salty water from the ocean a different approach and thus provides a enters the calmer, shallow waters of Long different piece of the puzzle. Island’s south shore estuaries (LISSE), po- Continued on page 4 tentially changing the delicate balance of the estuaries’ ecosystems. In recent decades, Breaking Through page 1 by Patrick Dooley and Barbara A. Branca each of these estuarine ecosystems has Funding Breakthrough Research page 3 by Barbara A. Branca, Patrick Dooley already undergone change due to increased and Lane Smith community development along Long Island’s NYSG a Sounding Board for Governor on Ocean Report page 6 populated south shore coupled with changes by Barbara A. Branca and Jack Mattice Are Marshes Losing Ground? page 7 by Barbara A. Branca CoastWatch: page 8 Great Lakes Student Summit by Paul C. Focazio Botulism Update page 10 by Helen Domske and Lane Smith Currents Stakeholders Set Great Lakes Priorities Paul C. Focazio page 12 Earthstock 2004 by Susan M.
    [Show full text]
  • Analysis of the Population Dynamics of Placida Dendritica and Codium Fragile in the Gulf of Maine and a Theoretical Discussion of Invasive Species
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Winter 2020 ANALYSIS OF THE POPULATION DYNAMICS OF PLACIDA DENDRITICA AND CODIUM FRAGILE IN THE GULF OF MAINE AND A THEORETICAL DISCUSSION OF INVASIVE SPECIES Seth Goodnight University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Goodnight, Seth, "ANALYSIS OF THE POPULATION DYNAMICS OF PLACIDA DENDRITICA AND CODIUM FRAGILE IN THE GULF OF MAINE AND A THEORETICAL DISCUSSION OF INVASIVE SPECIES" (2020). Doctoral Dissertations. 2546. https://scholars.unh.edu/dissertation/2546 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. ANALYSIS OF THE POPULATION DYNAMICS OF PLACIDA DENDRITICA AND CODIUM FRAGILE IN THE GULF OF MAINE AND A THEORETICAL DISCUSSION OF INVASIVE SPECIES BY SETH GOODNIGHT B.A.: Biology and Chemistry – University of Colorado at Colorado Springs, 2006 M.S.: Zoology – University of New Hampshire, 2012 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy In Biological Sciences: Marine Biology Option December 2020 ii This thesis/dissertation was examined and approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Biological Sciences: Marine Biology Option by: Dissertation Director: Larry G. Harris Ph.D. Professor Emeritus, Biological Sciences. University of New Hampshire Dissertation Committee: Jessica A.
    [Show full text]
  • Chapter 2: Brown Tide Management Plan
    Peconic Estuary Program C H A P T E R TWO BROWN TIDE MANAGEMENT PLAN OBJECTIVES 1) Determine the chemical, physical and biological factors responsible for producing, sustaining and ending blooms of the Brown Tide organism, Aureococcus anophagefferens. 2) Determine what management actions can be undertaken to prevent or, if that is not possible, to mitigate the effects of recurrent Brown Tide blooms on the ecosystem and economy of the Peconics. C H A P T E R T W O 2-1 Peconic Estuary Program CCMP MEASURABLE GOALS The PEP’s measurable goals with respect to Brown Tide blooms include: • Continue to better coordinate, focus, and expand Brown Tide research efforts (measured by funding appropriated, frequency of Brown Tide symposiums, frequency of updating the Brown Tide Workplan and coordinations within the Brown Tide Steering Committee). [See Action B-1] • Continue the current level of water quality sampling in the Peconic Estuary (measured by the number and frequency of samples taken per year and the number of bays and peripheral embayments sampled). Currently, the Suffolk Department of Health Services conducts biweekly monitoring at 32 stations in the Peconic Estuary throughout the year, resulting in over 830 samples taken annually. [See Action B-1] Measurable goals related to natural resources are found in the Habitat and Living Resources Chapter (Chapter 4). C H A P T E R T W O 2-2 Peconic Estuary Program CCMP INTRODUCTION Brown Tide is a marine microalgal bloom. Microalgae, or phytoplankton, are microscopic, single- cell plants that are found in all natural freshwater and marine ecosystems.
    [Show full text]
  • Revised Draft Subwatersheds Wastewater Plan Executive Summary
    REVISED DRAFT SUBWATERSHEDS WASTEWATER PLAN EXECUTIVE SUMMARY “We are in a county that will no longer allow our water quality crisis to go unaddressed, but will come together to Reclaim Our Water” Suffolk County Executive Steve Bellone 2014 State of the County Suffolk County Department of Health Services August 2019 This document was prepared with funding provided by the New York State Department of Environmental Conservation as part of the Long Island Nitrogen Action Plan and by New York State Department of State under the Environmental Protection Fund. Subwatersheds Wastewater Plan • Executive Summary Table of Contents Executive Summary ......................................................................................................... 5 1.0 Introduction ................................................................................................................................................................. 5 1.1 Background ........................................................................................................................................................ 5 1.2 Wastewater Management in Suffolk County ........................................................................................ 7 1.3 Innovative/Alternative Onsite Wastewater Treatment Systems ................................................ 9 1.4 Sewage Treatment Plants and Sewering ............................................................................................ 13 1.4.1 Sewer Expansion Projects ..........................................................................................................
    [Show full text]
  • Section 4. County Profile
    Section 4: County Profile Section 4. County Profile Profile information is presented and analyzed to develop an understanding of a study area, including the economic, structural, and population assets at risk and the particular concerns that may be present related to hazards analyzed later in this plan (e.g., significant coastal areas or low lying areas prone to flooding or a high percentage of vulnerable persons in an area). This profile describes the general information of the County (government, physical setting, population and demographics, general building stock, and land use and population trends) and critical facilities located within Suffolk County. 4.1 General Information Suffolk County was established on November 1, 1683, as one of the ten original counties in New York State. Suffolk County was named after the county of Suffolk in England, from where many of its earliest settlers originated (Suffolk County Department of Planning, 2005). Suffolk County’s western border is approximately 15 miles from the eastern border of New York City. According to the U.S. Census data, the Suffolk County estimated population in 2012 was 1,499,273. Suffolk County is one of the 57 counties in New York State and is comprised of 10 towns and 31 incorporated villages. Within each town and village, there are incorporated and unincorporated areas (Suffolk County Department of Planning, 2007). The population of Suffolk County is larger than ten states and ranks as the 24th most populated county in the country (U.S. Census Bureau, 2012). Suffolk County is bordered by Nassau County to the west and major water bodies to the north, south, and east.
    [Show full text]
  • Shellfishing Newsletter
    10/24/2018 Shellfishing Newsletter We only use cookies that are necessary for this site to function, and to provide you with the best experience. Learn more in our Cookie Statement. By continuing to use this site, you consent to the use of cookies. 5 Receive Updates Enter Email Address Go Shellfishing Newsletter The New York State Department of Environmental Conservation sent this bulletin on 10/23/2018 03:05 PM EDT DEC Delivers - Information to keep you connected and informed from the NYS Department of Environmental Conservation Share or view as a web page || Update preferences or unsubscribe Shellfishing Newsletter Bay Scallop Season Opens November 5 Bay scallops (Argopecten irradians) are New York’s official state shellfish, and a highly anticipated local seafood option this time of year. They get their name from the shallow waterbodies they’re found in, such as the Peconic, Gardiners and Shinnecock bays here in New York’s marine waters. Shellfish, which include scallops, clams, oysters, and mussels, can be harvested from certified waters in New York year-round, with the exception of bay scallops. Bay scallop season opens on the first Monday of November, which this year is November 5th and closes on March 31st. To retain bay scallops, they must be over 2-¼ inches in length from its mid-hinge to mid-bill and also display an annual growth ring (pictured), which ensures they have been able to reproduce prior to being harvested. Bay scallops have a relatively short life expectancy, averaging about 20-22 months but could live up to 26 months.
    [Show full text]
  • From Introduced Species to Invader: What Determines Variation in the Success of <Emphasis Type="Italic">Codium F
    HELGOL,~NDER MEERESUNTERSUCHUNGEN Helgol~inder Meeresunters. 52, 277-289 11999) From introduced species to invader: what determines variation in the success of Codiumfragile ssp. tomentosoides (Chlorophyta) in the North Atlantic Ocean? Annelise Sabine Chapman ~ * * Institute of Marine Sciences, University of Portsmouth, Ferry Rd., Eastney, Portsmouth P04 9LY, UK ABSTRACT: The green alga Codium fragile ssp. tomentosoides (Chlorophyta) has been introduced accidentally and successfully from Japan to many shores of the northern and southern hemi- spheres, including those of the Northeast and Northwest Atlantic Ocean. On most European coasts, Codium occurs regularly but at low abundances in the intertidal zone and is absent from subtidal habitats, tn contrast. Codium is extremely abundant in subtidal kelp beds in the Northwest Atlantic Ocean where it often reaches nuisance proportions. This differential success cannot be accounted for by either the properties of the invader or by physico-chemical differences between invaded coasts. A theoretical comparison between two regions on opposite sides of the Atlantic Ocean, i.e. Eastern Nova Scotia, Canada, and south central Britain, illustrates how the resident benthic com- munity may determine the difference in relative abundance of Codium in subtidal habitats be- tween northeast America and Europe. In this review, low floral species diversity, biological distur- bance and facilitation by a previous species invasion are suggested as potential factors for the es- tablishment, success and abundance of Codium in the Northwest Atlantic Ocean, but these require testing in field experiments. INTRODUCTION Studies of the ecology of species introductions into novel marine environments have often emphasized (1) the properties of successfully invading species, (2) the character- istics of frequently invaded communities or (3) the transport vectors involved in over- coming barriers of space, climate or habitat (e.g.
    [Show full text]