fmicb-12-682685 May 20, 2021 Time: 15:23 # 1 ORIGINAL RESEARCH published: 21 May 2021 doi: 10.3389/fmicb.2021.682685 Biogenesis of Outer Membrane Vesicles Concentrates the Unsaturated Fatty Acid of Phosphatidylinositol in Capnocytophaga ochracea Divya Naradasu1†, Waheed Miran1†, Shruti Sharma1,2†, Satoshi Takenawa1, Takamitsu Soma3, Nobuhiko Nomura3,4, Masanori Toyofuku3,4 and Akihiro Okamoto1,5* 1 International Center for Materials Nanoarchitectonics, National Institute for Materials Science, Tsukuba, Japan, 2 Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States, 3 Graduate School Edited by: of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan, 4 Microbiology Research Center Satoshi Tsuneda, for Sustainability, University of Tsukuba, Tsukuba, Japan, 5 Graduate School of Chemical Sciences and Engineering, Waseda University, Japan Hokkaido University, Sapporo, Japan Reviewed by: Arif Tasleem Jan, Bacterial outer membrane vesicles (OMVs) are spherical lipid bilayer nanostructures Baba Ghulam Shah Badshah University, India released by bacteria that facilitate oral biofilm formation via cellular aggregation Aleksandr G. Bulaev, and intercellular communication. Recent studies have revealed that Capnocytophaga Federal Center Research Fundamentals of Biotechnology ochracea is one of the dominant members of oral biofilms; however, their potential for (RAS), Russia OMV production has yet to be investigated. This study demonstrated the biogenesis *Correspondence: of OMVs in C. ochracea associated with the concentration of unsaturated fatty Akihiro Okamoto acids of phosphatidylinositol (PI) and characterized the size and protein profile of
[email protected] OMVs produced at growth phases. Transmission electron microscopy showed isolated †These authors have contributed equally to this work spherical structures from cells stained with heavy metals, indicating the production of OMVs with a size ranging from 25 to 100 nm.