On the Foundations of Arithmetic in Euclid

Total Page:16

File Type:pdf, Size:1020Kb

On the Foundations of Arithmetic in Euclid On the Foundations of Arithmetic in Euclid David Pierce Draft of January , Mathematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Summary The geometry presented in the thirteen books of Euclid’s Elements is founded on five postulates; but the arithmetic in Books vii, viii, and ix makes no explicit use of postulates. Nonetheless, Euclid proves rigorously the commutativity of multiplication in any ordered ring whose positive elements are well ordered: such is one conclusion of this monograph, worked out in the third and last chapter. The various contents of the chapters and their sections might be summarized as follows. The study of Euclid is an instance of doing history. As such, the study can both benefit from, and illustrate, the philosophy of history developed by R. G. Collingwood in several of his books. .. Studying the Elements is like studying an ancient building, such as the Hagia Sophia in Istanbul: it is a kind of archeology. Archeology is in turn a kind of history. Historical inference actually resembles mathematical inference; but the way to understand this is by ac- tually doing history and mathematics—which we do by studying Euclid. .. The present study of Euclid is motivated by questions such as: Can students today learn number theory from Euclid? Does Euclid cor- rectly prove such results as the commutativity of multiplication, and “Euclid’s Lemma”? .. We cannot decide whether a particular statement or argument of Euclid is correct or incorrect without first understanding what it means. The meaning is not always obvious. .. In studying Euclid, we have to re-enact his thoughts, as best we can. .. In reading Euclid (or any philosopher), we cannot just say that he is wrong (if we think he is), without also offering a correction that (in our best judgment) he can agree with. Mathematicians used to learn mathematics from Euclid. Since this Summary no longer happens, we may be better able now to understand Euclid prop- erly. Nonetheless, some students do still learn mathematics from Euclid. Among those students are undergraduates in my own mathematics de- partment in Istanbul: reading with them brings out certain features of Euclid. .. Dedekind did not learn his construction of the real numbers from Euclid. Unlike some of his contemporaries, he understood Euclid well enough to see that what he was doing was different. .. Looking back at Euclid’s Greek (for the sake of translating this into Turkish) brings out some misleading features of the standard En- glish translation by Heath. Heath aids the reader by typographical means; but this may cause us to think wrongly that Euclid’s propo- sitions are like modern theorems. Euclid may have established a pattern for modern mathematical exposition; but this does not mean he is obliged to follow it. .. Contrary to modern mathematical practice, Euclid’s equality is not sameness or identity. Thinking about what equality really means, one can see that Euclid’s Proposition i., the “Side Angle Side” the- orem of triangle congruence, is a real theorem. .. According to Hilbert, Euclid’s Fourth Postulate, the equality of all right angles, is really a theorem. Examining Hilbert’s proof of this theorem shows how different is his way of thinking of geometry from Euclid’s. We turn to Book vii of Euclid’s Elements and to the specific inves- tigation of questions raised earlier. .. The definition of unity may well be a late addition to this book. .. By definition, if a number is of a second number the same part or parts that a third number is of a fourth, then the four numbers are proportional. Whatever else it means, a proportion is not an equation of ratios, but an identification of them. .. Euclid’s numbers are finite nonempty sets. Euclid distinguishes be- tween dividing numbers into parts and measuring numbers by num- bers. It turns out that for infinite sets, being divisible into two equipollent subsets is logically stronger than being measurable by a two-element set. .. If a number is parts of a number, this does not mean that the one number is a fraction of the other. .. When the numbers in Euclid’s diagrams appear as line segments, it is useful to think of these as lyre strings. The ancient musical treatise called Sectio Canonis suggests a way of thinking about numerical ratios that is useful for understanding the Elements. .. Lying behind the notion of a ratio is the alternating subtraction or anthyphaeresis used in the Euclidean Algorithm. .. Proposition , that the less number is either part or parts of the greater, should be understood as an explanation of what being the same parts means in the definition of proportion: it means that application of the Euclidean Algorithm requires the same pattern of alternating subtractions in either case. .. With this understanding, the proof of the commutativity of multi- plication, Proposition , unfolds logically. .. So does the proof of “Euclid’s Lemma,” Proposition . .. The last three propositions of Book vii may be a late addition. In any case, they are written by somebody who is starting to think of mathematics as symbol-manipulation. Contents Summary Philosophy of History . Archeology .......................... . Questions ........................... . Evidence............................ . Re-enactment......................... . Science............................. Euclid in History . DedekindandHilbert . . FromacourseofEuclid . . Equality............................ . Rightangles.......................... Euclid’s Foundations of Arithmetic . Unity ............................. . Proportion .......................... . Sets .............................. . Parts.............................. . Music ............................. . The Euclidean Algorithm . . PartorParts ......................... . Multiplication......................... . Euclid’sLemma........................ . Symbolic mathematics . List of Figures . Proposition i. ........................ . Proposition i. ........................ . Proposition i......................... . Proposition i......................... . Proposition i.asEucliddoesit . . Proposition i. ........................ . Proposition i. ........................ . Postulate .......................... . Multiplication of points . . Multiplication of straight lines . . Lyrestrings .......................... . Proposition vii. ....................... . Proposition vii. ....................... . Proposition i. ........................ Philosophy of History . Archeology We are going to investigate foundational aspects of Euclid’s arithmetic, as presented in Books vii, viii, and ix of the thirteen books of the Elements. Our investigation might be called archeology, though it will require no actual digging. We want to know something about the Elements, and in particular its theory of numbers; however, we have no first-hand tes- timony about what Euclid was doing, or trying to do. We just have the Elements itself. As for the earlier tradition that Euclid came out of, we have only traces of it. We have later works about Euclid, especially Proclus’s Commentary on the First Book of Euclid’s Elements. We shall make some use of this commentary, but it was written centuries after the Elements. Euclid himself does not provide testimony about what he is doing; he just does it. If proper history requires such testimony, then we cannot make an historical study of Euclid’s arithmetic. We can still make an archeological study. We can read the Elements itself, for evidence of what Euclid was trying to do there. In the same way, one might read the Constantinopolitan Church of St Sophia, for evidence of the aims of its master builders, Anthemius of Tralles and Isidore of Miletus: for, the basilica itself can still be visited in Istanbul. Concerning this basilica, called the Hagia Sophia or Ayasofya, we do also have some written testimony. Procopius saw the church constructed in the sixth century, at the command of Emperor Justinian, after an A Wikipedia article requires testimony in a broader sense. Because of the rule of No Original Research, a Wikipedia article about a book must be based on what other people have said about the book. . Archeology earlier church had been destroyed in the so-called Nika Insurrection. Jus- tinian spared no expense to build a new church, says Procopius, so finely shaped, that if anyone had enquired of the Christians before the burning if it would be their wish that the church should be destroyed and one like this should take its place, shewing them some sort of model of the building we now see, it seems to me they would have prayed that they might see their church destroyed forthwith, in order that the building might be converted to its present form. [, I.i., p. ] We might infer that Anthemius and Isidore did actually show Justinian a model of the basilica that they planned to build. Like this model, or like the old church that the new Hagia Sophia would replace, some kind of mathematics came before the Elements as we have it now; but we have only hints (as in Plato’s Meno) of what this was like. About the construction of the Hagia Sophia itself, from Procopius we know it was not with money alone that the Emperor built it, but also with labour of the mind and with the other powers of the soul, as I shall straightway show. One of the arches which I just now mentioned (lôri the master-builders call them), the one which stands towards the east, had already been built up from either side, but it had not yet been wholly
Recommended publications
  • Mathematicians
    MATHEMATICIANS [MATHEMATICIANS] Authors: Oliver Knill: 2000 Literature: Started from a list of names with birthdates grabbed from mactutor in 2000. Abbe [Abbe] Abbe Ernst (1840-1909) Abel [Abel] Abel Niels Henrik (1802-1829) Norwegian mathematician. Significant contributions to algebra and anal- ysis, in particular the study of groups and series. Famous for proving the insolubility of the quintic equation at the age of 19. AbrahamMax [AbrahamMax] Abraham Max (1875-1922) Ackermann [Ackermann] Ackermann Wilhelm (1896-1962) AdamsFrank [AdamsFrank] Adams J Frank (1930-1989) Adams [Adams] Adams John Couch (1819-1892) Adelard [Adelard] Adelard of Bath (1075-1160) Adler [Adler] Adler August (1863-1923) Adrain [Adrain] Adrain Robert (1775-1843) Aepinus [Aepinus] Aepinus Franz (1724-1802) Agnesi [Agnesi] Agnesi Maria (1718-1799) Ahlfors [Ahlfors] Ahlfors Lars (1907-1996) Finnish mathematician working in complex analysis, was also professor at Harvard from 1946, retiring in 1977. Ahlfors won both the Fields medal in 1936 and the Wolf prize in 1981. Ahmes [Ahmes] Ahmes (1680BC-1620BC) Aida [Aida] Aida Yasuaki (1747-1817) Aiken [Aiken] Aiken Howard (1900-1973) Airy [Airy] Airy George (1801-1892) Aitken [Aitken] Aitken Alec (1895-1967) Ajima [Ajima] Ajima Naonobu (1732-1798) Akhiezer [Akhiezer] Akhiezer Naum Ilich (1901-1980) Albanese [Albanese] Albanese Giacomo (1890-1948) Albert [Albert] Albert of Saxony (1316-1390) AlbertAbraham [AlbertAbraham] Albert A Adrian (1905-1972) Alberti [Alberti] Alberti Leone (1404-1472) Albertus [Albertus] Albertus Magnus
    [Show full text]
  • The Geodetic Sciences in Byzantium
    The geodetic sciences in Byzantium Dimitrios A. Rossikopoulos Department of Geodesy and Surveying, Aristotle University of Thessaloniki [email protected] Abstract: Many historians of science consider that geodeasia, a term used by Aristotle meaning "surveying", was not particularly flourishing in Byzantium. However, like “lo- gistiki” (practical arithmetic), it has never ceased to be taught, not only at public universi- ties and ecclesiastical schools, as well as by private tutors. Besides that these two fields had to do with problems of daily life, Byzantines considered them necessary prerequisite for someone who wished to study philosophy. So, they did not only confine themselves to copying and saving the ancient texts, but they also wrote new ones, where they were ana- lyzing their empirical discoveries and their technological achievements. This is the subject of this paper, a retrospect of the numerous manuscripts of the Byzantine period that refer to the development of geodesy both in teaching and practices of surveying, as well as to mat- ters relating to the views about the shape of the earth, the cartography, the positioning in travels and generally the sciences of mapping. Keywords: Geodesy, geodesy in Byzantium, history of geodesy, history of surveying, history of mathematics. Περίληψη: Πολλοί ιστορικοί των επιστημών θεωρούν ότι η γεωδαισία, όρος που χρησι- μοποίησε ο Αριστοτέλης για να ορίσει την πρακτική γεωμετρία, την τοπογραφία, δεν είχε ιδιαίτερη άνθιση στο Βυζάντιο. Ωστόσο, όπως και η “λογιστική”, δεν έπαψε ποτέ να διδά- σκεται όχι μόνο στα κοσμικά πανεπιστήμια, αλλά και στις εκκλησιαστικές σχολές, καθώς επίσης και από ιδιώτες δασκάλους. Πέρα από το ότι οι δύο αυτοί κλάδοι είχαν να κάνουν με προβλήματα της καθημερινής ζωής των ανθρώπων, οι βυζαντινοί θεωρούσαν την διδα- σκαλία τους απαραίτητη προϋπόθεση ώστε να μπορεί κανείς να παρακολουθήσει μαθήμα- τα φιλοσοφίας.
    [Show full text]
  • Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar Ve Yorumlar
    Thales of Miletus Sources and Interpretations Miletli Thales Kaynaklar ve Yorumlar David Pierce October , Matematics Department Mimar Sinan Fine Arts University Istanbul http://mat.msgsu.edu.tr/~dpierce/ Preface Here are notes of what I have been able to find or figure out about Thales of Miletus. They may be useful for anybody interested in Thales. They are not an essay, though they may lead to one. I focus mainly on the ancient sources that we have, and on the mathematics of Thales. I began this work in preparation to give one of several - minute talks at the Thales Meeting (Thales Buluşması) at the ruins of Miletus, now Milet, September , . The talks were in Turkish; the audience were from the general popu- lation. I chose for my title “Thales as the originator of the concept of proof” (Kanıt kavramının öncüsü olarak Thales). An English draft is in an appendix. The Thales Meeting was arranged by the Tourism Research Society (Turizm Araştırmaları Derneği, TURAD) and the office of the mayor of Didim. Part of Aydın province, the district of Didim encompasses the ancient cities of Priene and Miletus, along with the temple of Didyma. The temple was linked to Miletus, and Herodotus refers to it under the name of the family of priests, the Branchidae. I first visited Priene, Didyma, and Miletus in , when teaching at the Nesin Mathematics Village in Şirince, Selçuk, İzmir. The district of Selçuk contains also the ruins of Eph- esus, home town of Heraclitus. In , I drafted my Miletus talk in the Math Village. Since then, I have edited and added to these notes.
    [Show full text]
  • Neutral Geometry
    Neutral geometry And then we add Euclid’s parallel postulate Saccheri’s dilemma Options are: Summit angles are right Wants Summit angles are obtuse Was able to rule out, and we’ll see how Summit angles are acute The hypothesis of the acute angle is absolutely false, because it is repugnant to the nature of the straight line! Rule out obtuse angles: If we knew that a quadrilateral can’t have the sum of interior angles bigger than 360, we’d be fine. We’d know that if we knew that a triangle can’t have the sum of interior angles bigger than 180. Hold on! Isn’t the sum of the interior angles of a triangle EXACTLY180? Theorem: Angle sum of any triangle is less than or equal to 180º Suppose there is a triangle with angle sum greater than 180º, say anglfle sum of ABC i s 180º + p, w here p> 0. Goal: Construct a triangle that has the same angle sum, but one of its angles is smaller than p. Why is that enough? We would have that the remaining two angles add up to more than 180º: can that happen? Show that any two angles in a triangle add up to less than 180º. What do we know if we don’t have Para lle l Pos tul at e??? Alternate Interior Angle Theorem: If two lines cut by a transversal have a pair of congruent alternate interior angles, then the two lines are parallel. Converse of AIA Converse of AIA theorem: If two lines are parallel then the aliilblternate interior angles cut by a transversa l are congruent.
    [Show full text]
  • History of Mathematics Log of a Course
    History of mathematics Log of a course David Pierce / This work is licensed under the Creative Commons Attribution–Noncommercial–Share-Alike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ CC BY: David Pierce $\ C Mathematics Department Middle East Technical University Ankara Turkey http://metu.edu.tr/~dpierce/ [email protected] Contents Prolegomena Whatishere .................................. Apology..................................... Possibilitiesforthefuture . I. Fall semester . Euclid .. Sunday,October ............................ .. Thursday,October ........................... .. Friday,October ............................. .. Saturday,October . .. Tuesday,October ........................... .. Friday,October ............................ .. Thursday,October. .. Saturday,October . .. Wednesday,October. ..Friday,November . ..Friday,November . ..Wednesday,November. ..Friday,November . ..Friday,November . ..Saturday,November. ..Friday,December . ..Tuesday,December . . Apollonius and Archimedes .. Tuesday,December . .. Saturday,December . .. Friday,January ............................. .. Friday,January ............................. Contents II. Spring semester Aboutthecourse ................................ . Al-Khw¯arizm¯ı, Th¯abitibnQurra,OmarKhayyám .. Thursday,February . .. Tuesday,February. .. Thursday,February . .. Tuesday,March ............................. . Cardano .. Thursday,March ............................ .. Excursus.................................
    [Show full text]
  • Geometry by Its History
    Undergraduate Texts in Mathematics Geometry by Its History Bearbeitet von Alexander Ostermann, Gerhard Wanner 1. Auflage 2012. Buch. xii, 440 S. Hardcover ISBN 978 3 642 29162 3 Format (B x L): 15,5 x 23,5 cm Gewicht: 836 g Weitere Fachgebiete > Mathematik > Geometrie > Elementare Geometrie: Allgemeines Zu Inhaltsverzeichnis schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. 2 The Elements of Euclid “At age eleven, I began Euclid, with my brother as my tutor. This was one of the greatest events of my life, as dazzling as first love. I had not imagined that there was anything as delicious in the world.” (B. Russell, quoted from K. Hoechsmann, Editorial, π in the Sky, Issue 9, Dec. 2005. A few paragraphs later K. H. added: An innocent look at a page of contemporary the- orems is no doubt less likely to evoke feelings of “first love”.) “At the age of 16, Abel’s genius suddenly became apparent. Mr. Holmbo¨e, then professor in his school, gave him private lessons. Having quickly absorbed the Elements, he went through the In- troductio and the Institutiones calculi differentialis and integralis of Euler. From here on, he progressed alone.” (Obituary for Abel by Crelle, J. Reine Angew. Math. 4 (1829) p. 402; transl. from the French) “The year 1868 must be characterised as [Sophus Lie’s] break- through year.
    [Show full text]
  • Euclid Transcript
    Euclid Transcript Date: Wednesday, 16 January 2002 - 12:00AM Location: Barnard's Inn Hall Euclid Professor Robin Wilson In this sequence of lectures I want to look at three great mathematicians that may or may not be familiar to you. We all know the story of Isaac Newton and the apple, but why was it so important? What was his major work (the Principia Mathematica) about, what difficulties did it raise, and how were they resolved? Was Newton really the first to discover the calculus, and what else did he do? That is next time a fortnight today and in the third lecture I will be talking about Leonhard Euler, the most prolific mathematician of all time. Well-known to mathematicians, yet largely unknown to anyone else even though he is the mathematical equivalent of the Enlightenment composer Haydn. Today, in the immortal words of Casablanca, here's looking at Euclid author of the Elements, the best-selling mathematics book of all time, having been used for more than 2000 years indeed, it is quite possibly the most printed book ever, apart than the Bible. Who was Euclid, and why did his writings have such influence? What does the Elements contain, and why did one feature of it cause so much difficulty over the years? Much has been written about the Elements. As the philosopher Immanuel Kant observed: There is no book in metaphysics such as we have in mathematics. If you want to know what mathematics is, just look at Euclid's Elements. The Victorian mathematician Augustus De Morgan, of whom I told you last October, said: The thirteen books of Euclid must have been a tremendous advance, probably even greater than that contained in the Principia of Newton.
    [Show full text]
  • Equivalents to the Euclidean Parallel Postulate in This Section We Work
    Equivalents to the Euclidean Parallel Postulate In this section we work within neutral geometry to prove that a number of different statements are equivalent to the Euclidean Parallel Postulate (EPP). This has historical importance. We noted before that Euclid’s Fifth Postulate was quite different in tone and complexity from his first four postulates, and that Euclid himself put off using the fifth postulate for as long as possible in his development of geometry. The history of mathematics is rife with efforts to either prove the fifth postulate from the first four, or to find a simpler postulate from which the fifth postulate could be proved. These efforts gave rise to a number of candidates that, in the end, proved to be no simpler than the fifth postulate and in fact turned out to be logically equivalent, at least in the context of neutral geometry. Euclid’s fifth postulate indeed captured something fundamental about geometry. We begin with the converse of the Alternate Interior Angles Theorem, as follows: If two parallel lines n and m are cut by a transversal l , then alternate interior angles are congruent. We noted earlier that this statement was equivalent to the Euclidean Parallel Postulate. We now prove that. Theorem: The converse of the Alternate Interior Angles Theorem is equivalent to the Euclidean Parallel Postulate. ~ We first assume the converse of the Alternate Interior Angles Theorem and prove that through a given line l and a point P not on the line, there is exactly one line through P parallel to l. We have already proved that one such line must exist: Drop a perpendicular from P to l; call the foot of that perpendicular Q.
    [Show full text]
  • Bibliography
    Bibliography Afshar, Iraj: Bibliographie des Catalogues des Manuscrits Persans. Tehran: 1958. Almagest: see Ptolemy. Apollonius: Apollonii Pergaei quae Graece exstant cum commentariis Eutocii (ed. J. L. Heiberg), 2 vols. Leipzig: 1891, 1893. Arberry, A. J. : The Chester Beatty Library, A Handlist of the Arabic Manuscripts, Vol. VII. Dublin: 1964. Archimedes: Archimedis Opera Omnia cum commentariis Eutocii, (iterum ed. J. L. Heiberg), 3 vols. Leipzig: 1910-1915. Archimedes: see also Heath. Aristarchus of Samos: On the Sizes and Distances of the Sun and Moon (ed. T. Heath). Oxford: 1913. Aristotle, Nicomachean Ethics: Aristotelis Ethica Nicomachea (ed. I. Bywater). Oxford: 1894. Aristotle, Prior Analytics: Aristotelis Analytica Priora et Posteriora (ed. W. D. Ross and L. Minio-Paluello). Oxford: 1964. Autolycus: J. Mogenet, Autolycus de Pitane. Louvain, 1950 (Universite de Louvain, Recueil de Travaux d'Histoire et de Philologie, 3e. Serie Fasc. 37). Awad, Gurgis: "Arabic Manuscripts in American Libraries". Sumer 1, 237-277 (1951). (Arabic). Bachmann, Peter: Galens Abhandlung dariiber, dal3 der vorziigliche Arzt Philosoph sein mul3. Gottingen: 1965 (Ak. Wiss. Gottingen, Nachrichten Phil. -hist. Kl. 1965.1). Belger, C.: "Ein neues Fragmentum Mathematicum Bobiense". Hermes 16, 261-84 (1881). Boilot, D. J.: "L'oeuvre d'al-Beruni, essai bibliographique". Melanges de l'Institut Dominicain d'Etudes Orientales du Caire ~, 161-256 (1955). Bretschneider, C. A.: Die Geometrie und die Geometer vor Eukleides. Leipzig: 1870. 217 Bib Ziography Brockelmann, Carl: Geschichte der Arabischen Litteratur, zweite den Supplementbanden angepasste Aunage, 2 vols. Leiden: 1943, 1949 [GAL] [and] Supplementbande I-III. Leiden: 1937, 1938, 1942 [S]. Bulmer-Thomas, I.: "Conon of Samos". Dictionary of Scientific Biography III, (New York), 391 (1971).
    [Show full text]
  • On Some Borrowed and Misunderstood Problems in Greek Catoptrics
    On Some Borrowed and Misunderstood Problems in Greek Catoptrics by ALEXANDERJONES Optics was one of the first sciences to which ancient Greek mathe- maticians attempted to apply the apparatus of geometry. They were most successful in describing geometrically certain phenomena of per- spective (as in Euclid’s Optics and parts of Pappus’s Collection, Book 6),less so in catoljtrics, the study of mirrors.’ The problems typically encountered in the surviving writings on catoptrics fall into two classes: those dealing with the reflection of rays cast from a luminous source such as the sun upon minors of plane or curved surface, and those involving the projection of lines of sight from the eye by way of a minor to an object. The most basic problem of the first class, to make a burning mirror, is solved correctly in Diocles’s On Burning Mirrors (ca. 200 B.C.) with both spherical and parabolic mirrors; other prob- lems were investigated by Diocles, by Anthemius (ca. A.D. 620) in his On Paradoxical Devices, and doubtless by other authors in the cen- turies between.2 In general these problems were amenable to geo- metrical treatment in antiquity because Hellenistic geometers were equipped to study the tangent lines to a wide range of curves (or the tangent planes to analogous surfaces) and the behaviour of straight lines in a given direction or through a given point .and inflected at the curve or surface at equal angles to the tangent at the point of in- cidence. Problems of the other class, in which it was required to make an ar- rangement of mirrors or a mirror with a special curvature, such that a *Institute for the History and Philosophy of Science and Technology, Victoria College, Univer- sity of Toronto, Toronto, Canada MSS 1K7.
    [Show full text]
  • A Short History of Greek Mathematics
    Cambridge Library Co ll e C t i o n Books of enduring scholarly value Classics From the Renaissance to the nineteenth century, Latin and Greek were compulsory subjects in almost all European universities, and most early modern scholars published their research and conducted international correspondence in Latin. Latin had continued in use in Western Europe long after the fall of the Roman empire as the lingua franca of the educated classes and of law, diplomacy, religion and university teaching. The flight of Greek scholars to the West after the fall of Constantinople in 1453 gave impetus to the study of ancient Greek literature and the Greek New Testament. Eventually, just as nineteenth-century reforms of university curricula were beginning to erode this ascendancy, developments in textual criticism and linguistic analysis, and new ways of studying ancient societies, especially archaeology, led to renewed enthusiasm for the Classics. This collection offers works of criticism, interpretation and synthesis by the outstanding scholars of the nineteenth century. A Short History of Greek Mathematics James Gow’s Short History of Greek Mathematics (1884) provided the first full account of the subject available in English, and it today remains a clear and thorough guide to early arithmetic and geometry. Beginning with the origins of the numerical system and proceeding through the theorems of Pythagoras, Euclid, Archimedes and many others, the Short History offers in-depth analysis and useful translations of individual texts as well as a broad historical overview of the development of mathematics. Parts I and II concern Greek arithmetic, including the origin of alphabetic numerals and the nomenclature for operations; Part III constitutes a complete history of Greek geometry, from its earliest precursors in Egypt and Babylon through to the innovations of the Ionic, Sophistic, and Academic schools and their followers.
    [Show full text]
  • Welcome to the Complete Pythagoras
    Welcome to The Complete Pythagoras A full-text, public domain edition for the generalist & specialist Edited by Patrick Rousell for the World Wide Web. I first came across Kenneth Sylvan Guthrie’s edition of the Complete Pythagoras while researching a book on Leonardo. I had been surfing these deep waters for a while and so the value of Guthrie’s publication was immediately apparent. As Guthrie explains in his own introduction, which is at the beginning of the second book (p 168), he was initially prompted to publish these writings in the 1920’s for fear that this information would become lost. As it is, much of this information has since been published in fairly good modern editions. However, these are still hard to access and there is no current complete collection as presented by Guthrie. The advantage here is that we have a fairly comprehensive collection of works on Pythagoras and the Pythagoreans, translated from the origin- al Greek into English, and presented as a unified, albeit electronic edition. The Complete Pythagoras is a compilation of two books. The first is entitled The Life Of Py- thagoras and contains the four biographies of Pythagoras that have survived from antiquity: that of Iamblichus (280-333 A.D.), Porphry (233-306 A.D.), Photius (ca 820- ca 891 A.D.) and Diogenes Laertius (180 A.D.). The second is entitled Pythagorean Library and is a complete collection of the surviving fragments from the Pythagoreans. The first book was published in 1920, the second a year later, and released together as a bound edition.
    [Show full text]