Measurement of Lung Volumes by Plethysmography

Total Page:16

File Type:pdf, Size:1020Kb

Measurement of Lung Volumes by Plethysmography Eur Respir J, 1997, 10, 1415–1427 Copyright ERS Journals Ltd 1997 DOI: 10.1183/09031936.97.10061415 European Respiratory Journal Printed in UK - all rights reserved ISSN 0903 - 1936 ERS/ATS WORKSHOP REPORT SERIES Measurement of lung volumes by plethysmography A.L. Coates*, R. Peslin**, D. Rodenstein+, J. Stocks++ CONTENTS Theory Thermal drift Assumptions................................................................ 1416 Frequency response................................................... 1422 Types of plethysmograph Measurement techniques........................................... 1423 Variable pressure plethysmograph............................. 1417 Quality control.......................................................... 1424 Volume displacement plethysmograph...................... 1419 Plethysmograph in infants Flow plethysmographs............................................... 1420 Measurement techniques........................................... 1425 Variable pressure-flow plethysmographs................... 1421 Conclusions.................................................................... 1425 Material and methods References...................................................................... 1425 Calibration.................................................................. 1421 There are various ways of measuring absolute lung plethysmography (FRCpleth) by subtracting or adding volume. These range from measurements derived from the appropriate volume correction. In normal children chest radiographs to the more common laboratory mea- and adults, there should be no difference in FRC bet- surements employing either gas dilution or plethysmo- ween gas dilution techniques and plethysmography. How- graphy. The principal difference between the latter two ever, in patients with lung disease associated with methods is that gas dilution techniques measure gas gas-trapping and in normal infants [3], FRCpleth gen- that is in free communication with the airway opening, erally exceeds FRC measured by gas dilution. whilst plethysmography measures all intrathoracic gas. Once the absolute lung volume is known, the other lung volumes can be measured from the change in volume Theory during specific respiratory manoeuvres. Work on this article was undertaken as part of a joint In 1956, DUBOIS et al. [4] described a technique for European Respiratory Society/American Thoracic Society measuring the volume of gas in the thorax by using the effort to develop a joint "Statement" on the measurement measurement of a volume change when a gas is com- of lung volumes. It will review the principles, practice pressed, as assessed by Boyle's Law. Boyle's Law states and limitations of plethysmography, and recommend that, under isothermal conditions, when gas in a closed standards for the plethysmographic measure of lung vol- container is compressed, its volume decreases while the umes. These standards will include equipment specifi- pressure inside the container increases, such that the cations and measurement techniques over the age range product of volume and pressure, at any given moment, from infancy to adulthood. is constant. Isothermal conditions imply that, during For the purpose of this review, functional residual ca- either compression or rarefaction, heat is exchanged pacity (FRC) is defined as the absolute volume of gas across the walls of the container so that the tempera- in the lung at the end of a normal expiration. Thora- ture of the gas remains the same. If no heat is lost, cic gas volume (TGV) is defined as the volume of intra- changes in gas temperature occur and conditions are thoracic gas at the time the airway is occluded for the considered to be adiabatic and follow the Ideal Gas plethysmographic measurement; while this is usually at Law. This states that the product of pressure (P) and FRC, in special circumstances it may not be [1, 2]. volume (V) divided by temperature remains constant. Irrespective of where in the volume cycle TGV is mea- Conditions in between these two extremes are poly- sured, it should be adjusted to the FRC derived from tropic. For plethysmography, Boyle's Law is: *Dept of Pediatrics, McGill University, Faculty of Medicine, Montréal, Québec, Canada. **INSERM U14, Vandoeuvre les Nancy, France. +Université Catholique de Louvin, Clinical Universitaires Saint-Luc, Bruxelles, Belgium. ++Portex Anaesthesia, Intensive Care and Respiratory Medicine Unit, Institute of Child Health, London, UK. Correspondence: A.L. Coates, The Montreal Children's Hospital, Division of Respiratory Medicine, Room D-380, 230 Tupper Street, Montréal, Québec, H3H 1P3, Canada Keywords: Infant pulmonary function test, lung volumes, plethysmography Received: June 24 1996; Accepted after revision August 19 1996 This publication evolved from a workshop on "measurement of lung volumes" convened by the European Respiratory Society and the American Thoracic Society, with additional support from the National Heart, Lung and Blood Institute (Grant No. R13 HL48384). 1416 A.L. COATESETAL. P1 × V1 = P2 × V2 (1) generally assumed that the discrepancy between PA1 and PB during a panting manoeuvre is small so that the where the smaller script "1" and "2" denote the first solution for TGV1 is reduced to: and second condition of the gas. Applied to the deter- mination of TGV, the subject is placed in an enclosed TGV = -(∆V/∆P) × PB (5) space, the plethysmograph, and is instructed to pant against an obstruction at the airway opening at a fre- The term ∆V/∆P is the slope of the pressure volume quency of approximately 1 Hz [5–7], resulting in the relationship and is always negative. While technically rarefaction and compression of the gas in the thorax. a hyperbola, it is so close to being a straight line over During these manoeuvres, changes in thoracic volume the range of interest, that few errors are introduced when (measured from the plethysmograph) and pressure mea- it is treated as such. This "simplified" equation is the sured at the airway opening (Pao) are recorded. Assum- one used in most automated plethysmographs. ing that Pao is representative of alveolar pressure (PA), Because of the problems experienced with the pant- TGV can be calculated using the following application ing technique, particularly the difficulty in obtaining of Boyle's Law: even gentle pants at a frequency of 1 Hz, a single inspi- ratory effort has been proposed as an alternative [8]. × × (PA1-PH2O) TGV1 = (PA2-PH2O) TGV2 (2) However, this method of determining TGV may give rise to changes in pressure that are of sufficient mag- where the smaller script denotes differing values of nitude (i.e. up to 5 kPa) that the ∆P ×∆V should not pressure and volume during the respiratory manoeuvre. be ignored [9]. An additional consideration when cal- PA1 and PA2 are expressed as absolute pressures, not culating TGV is that where PA1 differs from PB, such the differences between barometric pressure (PB) and as will occur if the occlusion is not performed at FRC, Pao. PH O represents water vapour pressure of saturated 2 a correction factor (PA1/PB) may be needed to convert gas at 37°C (6.3 kPa). Water vapour pressure is sub- TGV to body temperature and pressure saturated (BTPS). tracted from all pressures because, in saturated gas, its Hence, Equation (3c) can be rewritten as: magnitude relates only to temperature, passing in and out of the vapour state as the total pressure changes. TGV = -(∆V/∆P) × PA2 × (PA1/PB) (6) Hence, under fully saturated conditions, water vapour does not behave as a compressible gas. For the sake of This is the "complete" equation and it contains both PH O clarity in the development of this theoretical basis, 2 the ∆P ×∆V term and volume correction necessary will not appear in the subsequent equations, but must should PA1 be different from PB. As mentioned pre- be subtracted from all measurements of PA or PB. viously, PH O should be subtracted from PA1, PA2 and A more common way to write Equation (2) is: 2 PB. With today's modern computing facilities, there is no reason to use the simplified version of Boyle's Law, PA1 × TGV1 = (PA1 + ∆P) × (TGV1 + ∆V) (3) Equation (5), rather than the complete version, Equa- which, when all term are multiplied becomes: tion (6). The errors introduced by the simplified version during panting are small (in the order of 3%) and cen- PA1×TGV1=PA1×TGV1+∆V×PA1+∆P×TGV1+∆P×∆V tred around zero. For the single inspiratory manoeuvre, ∆ × ∆ ∆ they are in the order of 5%, systematically greater than or - P TGV1= V(PA1+ P) (3a) zero and related to the magnitude of the pressure gen- erated during the manoeuvre [9]. Furthermore, such sys- where PA1 is the alveolar pressure at the start of the tematic errors are unnecessary [9]. manoeuvre, and ∆P is the change in the alveolar pres- sure measured at the airway opening under conditions of no flow during the panting manoeuvre, so that ∆P Assumptions = PA2 - PA1. ∆V is the resulting change in volume of the thorax, and is equal to TGV2 - TGV1. The plethysmographic method of determining FRCpleth Solving Equation (3) for TGV1: is based on a number of assumptions, which are as fol- TGV1 = -(∆V/∆P) × (PA1 + ∆P) (3b) lows: Since ∆P=(PA2-PA1), this can be further simplified to: 1. There is no gas flow, and hence no flow-resistive losses of pressure in the airways, during the respira- TGV1 = -(∆V/∆P) × PA2 (3c) tory efforts against an occluded airway. Hence, Pao is equal to PA. When performing a panting manoeuvre, it is frequ- This assumption has been challenged [10, 11]. In ently assumed that the
Recommended publications
  • Maximum Expiratory Flow Rates in Induced Bronchoconstriction in Man
    Maximum expiratory flow rates in induced bronchoconstriction in man A. Bouhuys, … , B. M. Kim, A. Zapletal J Clin Invest. 1969;48(6):1159-1168. https://doi.org/10.1172/JCI106073. Research Article We evaluated changes of maximum expiratory flow-volume (MEFV) curves and of partial expiratory flow-volume (PEFV) curves caused by bronchoconstrictor drugs and dust, and compared these to the reverse changes induced by a bronchodilator drug in previously bronchoconstricted subjects. Measurements of maximum flow at constant lung inflation (i.e. liters thoracic gas volume) showed larger changes, both after constriction and after dilation, than measurements of peak expiratory flow rate, 1 sec forced expiratory volume and the slope of the effort-independent portion of MEFV curves. Changes of flow rates on PEFV curves (made after inspiration to mid-vital capacity) were usually larger than those of flow rates on MEFV curves (made after inspiration to total lung capacity). The decreased maximum flow rates after constrictor agents are not caused by changes in lung static recoil force and are attributed to narrowing of small airways, i.e., airways which are uncompressed during forced expirations. Changes of maximum expiratory flow rates at constant lung inflation (e.g. 60% of the control total lung capacity) provide an objective and sensitive measurement of changes in airway caliber which remains valid if total lung capacity is altered during treatment. Find the latest version: https://jci.me/106073/pdf Maximum Expiratory Flow Rates in Induced Bronchoconstriction in Man A. Bouiuys, V. R. HuNTr, B. M. Kim, and A. ZAPLETAL From the John B. Pierce Foundation Laboratory and the Yale University School of Medicine, New Haven, Connecticut 06510 A B S T R A C T We evaluated changes of maximum ex- rates are best studied as a function of lung volume.
    [Show full text]
  • Testing Regimes 3364-136-PF-01 Respiratory Care Approving Officer
    Name of Policy: Testing Regimes Policy Number: 3364-136-PF-01 Department: Respiratory Care Approving Officer: Associate VP Patient Care Services / Chief Nursing Officer Responsible Agent: Director, Respiratory Care Scope: Effective Date: June 1, 2020 The University of Toledo Medical Center Initial Effective Date: July 1, 1979 Respiratory Care Department New policy proposal X Minor/technical revision of existing policy Major revision of existing policy Reaffirmation of existing policy (A) Policy Statement Pulmonary function testing is to be ordered according to these regimes or as individual procedures. All tests may be ordered individually. (B) Purpose of Policy To standardize the ordering procedures for pulmonary function testing. (C) Procedure 1. Pulmonary Function Test I: a. Nitrogen washout test: Determination •Functional Residual Capacity (FRC) • Indirect calculation of Residual Volume (RV) • In conjunction with the Slow Vital Capacity, determination of all lung volumes. b. Carbon Monoxide single breath test: • Determination of diffusing capacity (DLCO-sb) c. Slow Vital Capacity: determination of • Slow Vital Capacity (SVC) • Expiratory Reserve Volume (ERV) • Inspiratory Capacity (IC) d. Flow/Volume Loop: determination of the mechanics of breathing: • Forced Vital Capacity (FVC). • Forced Expiratory Volume in one second (FEV-1) %FEV-1/FVC • Average Forced Expiratory Flow between 25% and 75% of vital capacity (FEF 25-75%) • Maximum Forced Expiratory Flow (FEF-max) • Forced Expiratory Flow at 25%, 50% and 75% of vital capacity (FEF 25%, FEF 50%, FEF 75%) • Forced Inspiratory Vital Capacity (FIVC) • Average Forced Inspiratory Flow between 25% and 75% of FIVC (FIF 25-75%), Forced Inspiratory Flow at 25%, 50% and 75% of FIVC (FIF 25%, FIF 50%, FIF 75%) • FIVC/FVC ratio Policy 3364-136-PF- 01 Testing Regimes Page 2 •FIF 50/FEF 50 ratio e.
    [Show full text]
  • Pulmonary Adaptations the Respiratory System
    Dr. Robergs Fall, 2010 Pulmonary Adaptations The Respiratory System Pulmonary Physiology 1 Dr. Robergs Fall, 2010 This is a cast of the airways that conduct air to the lungs. Why is this morphology potentially detrimental to air conductance into and from the lungs? Note; The respiratory zone has the greatest surface area and a dense capillary network. Pulmonary Physiology 2 Dr. Robergs Fall, 2010 Note the density of the alveoli and Note the dense capillary their thin walls. network that surrounds alveoli. Surfactant A phospholipoprotein molecule, secreted by specialized cells of the lung, that lines the surface of alveoli and respiratory bronchioles. Surfactant lowers the surface tension of the alveoli membranes, preventing the collapse of alveoli during exhalation and increasing compliance during inspiration. Respiration The process of gas exchange, which for the human body involves oxygen (O2) and carbon dioxide (CO2). Internal respiration - at the cellular level External respiration - at the lung Pulmonary Physiology 3 Dr. Robergs Fall, 2010 The distribution of surfactant is aided by holes that connect alveoli called Pores of Kohn. Ventilation The movement of air into and from the lung by the process of bulk flow. Ventilation (VE) (L/min) = frequency (br/min) x tidal volume (L) For rest conditions, VE (L/min) = 12 (br/min) x 0.5 (L) = 6 L/min For exercise at VO2max, VE (L/min) = 60 (br/min) x 3.0 (L) = 180 L/min Compliance - the property of being able to increase size or volume with only small changes in pressure. Pulmonary Physiology 4 Dr. Robergs Fall, 2010 Ventilation During Rest Inspiration is controlled by a repetitive discharge of action potentials from the inspiratory center.
    [Show full text]
  • Medicare National Coverage Determinations Manual, Part 1
    Medicare National Coverage Determinations Manual Chapter 1, Part 1 (Sections 10 – 80.12) Coverage Determinations Table of Contents (Rev. 10838, 06-08-21) Transmittals for Chapter 1, Part 1 Foreword - Purpose for National Coverage Determinations (NCD) Manual 10 - Anesthesia and Pain Management 10.1 - Use of Visual Tests Prior to and General Anesthesia During Cataract Surgery 10.2 - Transcutaneous Electrical Nerve Stimulation (TENS) for Acute Post- Operative Pain 10.3 - Inpatient Hospital Pain Rehabilitation Programs 10.4 - Outpatient Hospital Pain Rehabilitation Programs 10.5 - Autogenous Epidural Blood Graft 10.6 - Anesthesia in Cardiac Pacemaker Surgery 20 - Cardiovascular System 20.1 - Vertebral Artery Surgery 20.2 - Extracranial - Intracranial (EC-IC) Arterial Bypass Surgery 20.3 - Thoracic Duct Drainage (TDD) in Renal Transplants 20.4 – Implantable Cardioverter Defibrillators (ICDs) 20.5 - Extracorporeal Immunoadsorption (ECI) Using Protein A Columns 20.6 - Transmyocardial Revascularization (TMR) 20.7 - Percutaneous Transluminal Angioplasty (PTA) (Various Effective Dates Below) 20.8 - Cardiac Pacemakers (Various Effective Dates Below) 20.8.1 - Cardiac Pacemaker Evaluation Services 20.8.1.1 - Transtelephonic Monitoring of Cardiac Pacemakers 20.8.2 - Self-Contained Pacemaker Monitors 20.8.3 – Single Chamber and Dual Chamber Permanent Cardiac Pacemakers 20.8.4 Leadless Pacemakers 20.9 - Artificial Hearts And Related Devices – (Various Effective Dates Below) 20.9.1 - Ventricular Assist Devices (Various Effective Dates Below) 20.10 - Cardiac
    [Show full text]
  • Standardisation of Spirometry
    Eur Respir J 2005; 26: 319–338 DOI: 10.1183/09031936.05.00034805 CopyrightßERS Journals Ltd 2005 SERIES ‘‘ATS/ERS TASK FORCE: STANDARDISATION OF LUNG FUNCTION TESTING’’ Edited by V. Brusasco, R. Crapo and G. Viegi Number 2 in this Series Standardisation of spirometry M.R. Miller, J. Hankinson, V. Brusasco, F. Burgos, R. Casaburi, A. Coates, R. Crapo, P. Enright, C.P.M. van der Grinten, P. Gustafsson, R. Jensen, D.C. Johnson, N. MacIntyre, R. McKay, D. Navajas, O.F. Pedersen, R. Pellegrino, G. Viegi and J. Wanger CONTENTS AFFILIATIONS Background ............................................................... 320 For affiliations, please see Acknowledgements section FEV1 and FVC manoeuvre .................................................... 321 Definitions . 321 CORRESPONDENCE Equipment . 321 V. Brusasco Requirements . 321 Internal Medicine University of Genoa Display . 321 V.le Benedetto XV, 6 Validation . 322 I-16132 Genova Quality control . 322 Italy Quality control for volume-measuring devices . 322 Fax: 39 103537690 E-mail: [email protected] Quality control for flow-measuring devices . 323 Test procedure . 323 Received: Within-manoeuvre evaluation . 324 March 23 2005 Start of test criteria. 324 Accepted after revision: April 05 2005 End of test criteria . 324 Additional criteria . 324 Summary of acceptable blow criteria . 325 Between-manoeuvre evaluation . 325 Manoeuvre repeatability . 325 Maximum number of manoeuvres . 326 Test result selection . 326 Other derived indices . 326 FEVt .................................................................. 326 Standardisation of FEV1 for expired volume, FEV1/FVC and FEV1/VC.................... 326 FEF25–75% .............................................................. 326 PEF.................................................................. 326 Maximal expiratory flow–volume loops . 326 Definitions. 326 Equipment . 327 Test procedure . 327 Within- and between-manoeuvre evaluation . 327 Flow–volume loop examples. 327 Reversibility testing . 327 Method .
    [Show full text]
  • Residual Volume and Total Lung Capacity to Assess Reversibility in Obstructive Lung Disease
    Residual Volume and Total Lung Capacity to Assess Reversibility in Obstructive Lung Disease Conor T McCartney MD, Melissa N Weis MD, Gregg L Ruppel MEd RRT RPFT FAARC, and Ravi P Nayak MD BACKGROUND: Reversibility of obstructive lung disease is traditionally defined by changes in FEV1 or FVC in response to bronchodilators. These may not fully reflect changes due to a reduction in hyperinflation or air-trapping, which have important clinical implications. To date, only a handful of studies have examined bronchodilators’ effect on lung volumes. The authors sought to better characterize the response of residual volume and total lung capacity to bronchodilators. METHODS: Responsiveness of residual volume and total lung capacity to bronchodilators was assessed with a retrospective analysis of pulmonary function tests of 965 subjects with obstructive lung disease as defined by the lower limit of normal based on National Health and Nutritional Examination Survey III prediction equations. RESULTS: A statistically significant number of subjects demonstrated response to bronchodilators in their residual volume independent of re- sponse defined by FEV1 or FVC, the American Thoracic Society and European Respiratory Society criteria. Reduced residual volume weakly correlated with response to FEV1 and to FVC. No statistically significant correlation was found between total lung capacity and either FEV1 or FVC. CONCLUSIONS: A significant number of subjects classified as being nonresponsive based on spirometry have reversible residual volumes. Subjects whose residual volumes improve in response to bronchodilators represent an important subgroup of those with obstructive lung disease. The identification of this subgroup better characterizes the heterogeneity of obstructive lung disease. The clinical importance of these findings is unclear but warrants further study.
    [Show full text]
  • The Large Lungs of Elite Swimmers: an Increased Alveolar Number?
    Eur Respir J 1993, 6, 237-247 The large lungs of elite swimmers: an increased alveolar number? J. Armour*, P.M. Donnelly**, P.T.P. Bye* The large lungs of elite swimmers: an increased alveolar number? J. Armour, P.M. * Institute of Respiratory Medicine, Donnelly, P.T.P. Bye. Royal Prince Alfred Hospital, ABSTRACT: In order to obtain further insight into the mechanisms relating Camperdown, NSW, Australia. to the large lung volumes of swimmers, tests of mechanical lung function, in­ ** University of Sydney, Sydney, NSW, cluding lung distensibility (K) and elastic recoil, pulmonary diffusion capacity, Australia. and respiratory mouth pressures, together with anthropometric data (height, Correspondence: P.M. Donnelly weight, body surface area, chest width, depth and surface area), were com­ Institute of Respiratory Medicine pared in eight elite male swimmers, eight elite male long distance athletes and Royal Prince Alfred Hospital eight control subjects. The differences in training profiles of each group were Camperdown NSW 2050 also examined. Australia There was no significant difference in height between the subjects, but the swimmers were younger than both the runners and controls, and both the Keywords: Alveolar distensibility swimmers and controls were heavier than the runners. Of all the training chest enlargement diffusion coefficient variables, only the mean total distance in kilometres covered per week was sig­ growth hormone nificantly greater in the runners. Whether based on: (a) adolescent predicted lung growth values; or (b) adult male predicted values, swimmers had significantly increased respiratory mouth pressures total lung capacity ((a) 145±22%, (mean±so) (b) 128±15%); vital capacity ((a) swimmers' lungs 146±24%, (b) 124±15%); and inspiratory capacity ((a) 155±33%, (b) 138±29%), but this was not found in the other two groups.
    [Show full text]
  • Spirometry (Adult) Guideline
    Document Number # QH-GDL-386:2012 Spirometry (Adult) Respiratory Science Custodian/Review Officer: 1. Purpose Chief Allied Health Officer This guideline provides recommendations regarding best practice to support high quality spirometry practice Version no: 1.0 throughout Queensland Health facilities. Applicable To: 2. Scope All Health Practitioners performing adult This guideline provides information for all health spirometry practitioners who perform adult spirometry as part of their clinical duties. Approval Date: 26/11/2012 This guideline provides the minimum requirements for obtaining acceptable and repeatable pre- and post- Effective Date: 26/11/2012 bronchodilator (reversibility) spirometric data using both volume and flow-measuring devices. Next Review Date: 26/11/2013 3. Related documents Authority: This guideline is primarily based on the following Chair – State-wide Clinical Measurements Network documents taken from the series “ATS/ERS Task Force: Standardisation of Lung Function Testing” Approving Officer General considerations for lung function testing 1 Chief Allied Health Officer (2005). Standardisation of spirometry (2005). 2 References from alternate sources of information have Supersedes: Nil been identified in this document. Key Words: spirometry, spiro, respiratory, Policy and Standard/s: measure, spirogram, spirometric, bronchodilator, flow-volume loop, peak Informed Decision-making in Healthcare (QH-POL- flow 346:2011) 3 Accreditation References: Procedures, Guidelines, Protocols EQuIP and other criteria and standards Australian Guidelines for the prevention and control of infection in healthcare (CD33:2010) 4 2005 American Thoracic Society and European Respiratory Society (ATS/ERS) guidelines 1, 2 Version No.: 1.0; Effective From: 26 November 2012 Page 1 of 31 Printed copies are uncontrolled Queensland Health: Spriometry (Adult) Queensland Health Paediatric Spirometry Guideline Forms and templates Nil 4.
    [Show full text]
  • Pulmonary Function Test (PFT)
    Pulmonary Function Test (PFT) St. James Mercy Hospital Respiratory Therapy, 1st Floor 411 Canisteo St. Hornell, NY 14843 607-324- 8159 To schedule an appointment: 607-324-2879 To fax to scheduling: 607-324-8221 What is pulmonary function testing and why is it done? Pulmonary function tests (also called PFTs or lung function tests) help determine how well your lungs are functioning. The results of these tests tell your physician how much air your lungs can hold, how quickly you can move air into and out of your lungs, and how well your lungs are able to use oxygen and get rid of carbon dioxide. The tests help your physician determine if you have a lung disease, help provide a measure of how significant your lung disease is, and can show how well the treatment for your lung disease is working. How is a pulmonary function test done? Pulmonary function testing is usually done by a specially trained respiratory therapist or technician. For most pulmonary function tests, you will be asked to wear a nose clip to make sure that no air passes through your nose during the test. You will be asked to breathe into a mouthpiece that is connected to a machine called a spirometer. The technician may encourage you to breathe deeply during parts of the test to get the best results. Following all of the technician's instructions will help provide the most accurate results. How do I prepare for my test? You should not eat a heavy meal just before this test. You should not smoke for six hours before the test.
    [Show full text]
  • Effect of Inspiratory Flow Rate on Bronchomotor Tone in Normal and Asthmatic Subjects
    Thorax: first published as 10.1136/thx.39.2.86 on 1 February 1984. Downloaded from Thorax 1984;39:86-92 Effect of inspiratory flow rate on bronchomotor tone in normal and asthmatic subjects W HIDA, M ARAI, C SHINDOH, Y-N LIU, H SASAKI, T TAKISHIMA From the First Department ofInternal Medicine, Tohoku University School of Medicine, Sendai, Japan ABSTRACT The effect of the inspiratory flow rate during deep inspiration on the regulation of bronchomotor tone was studied in nine normal and 22 asthmatic subjects. Changes in bronchial tone were assessed by respiratory resistance measured by an oscillation method. In normal subjects with bronchoconstriction induced by methacholine a rapid deep inspiration reduced respiratory resistance more than a slow deep inspiration. Asthmatic subjects with spontaneous airway narrowing showed an increase in respiratory resistance after deep inspiration that was greater after rapid than after slow deep inspiration. On the other hand, in asthmatics with methacholine induced bronchoconstriction, bronchodilatation occurred after deep inspiration and this was also greater after rapid than after slow deep inspiration. Lignocaine inhalation attenuated both bronchoconstriction and bronchodilatation induced by both slow and rapid deep inspiration. These results suggest that the effects of deep inspiration are mediated at least in part via receptors in the airways. It is suggested that in asthmatic patients with spontaneous broncho- constriction irritant receptor activity will be increased in proportion to the speed of inspiration. After methacholine induced bronchoconstriction stretch receptor activity is likely to behave in a similar fashion, leading to an opposite effect. http://thorax.bmj.com/ A deep inspiration has been reported to produce a carbachol induced bronchoconstriction, and they transient decrease in airway calibre in some asthma- suggested that this might have been due to greater tic subjects.' 2 In contrast, in the presence of phar- stimulation of stretch receptors at higher flows.
    [Show full text]
  • Interrelationship Between Lung Volume, Expiratory Flow, and Lung Transfer Factor in Fibrosing Alveolitis
    Thorax: first published as 10.1136/thx.36.11.858 on 1 November 1981. Downloaded from thorax 1981 ;36:858-862 Interrelationship between lung volume, expiratory flow, and lung transfer factor in fibrosing alveolitis JN PANDE From the Respiratory Laboratory, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, India ABSTRACT Fifty patients with fibrosing alveolitis studied on 104 occasions exhibited significant direct correlations between vital capacity (VC), maximum mid-expiratory flow rate (MMFR), and transfer factor for carbon monoxide (TLCO). Forced expired volume in the first second (FEV,)/VC ratio bore a weak negative correlation with VC. Peak expiratory flow, MMFR, and maximum flow rates at 50 % and 25 % of VC were often reduced in patients with severe grades of pulmonary dys- function. It appears that as the severity of the fibrotic process increases, the lung volumes shrink and the transfer factor for CO decreases. The total lung capacity decreases predominantly on account of reduction in VC. With a decrease in lung volume the MMFR also falls. Decrease in flow rates at low lung volumes is greater as compared to the fall in peak flow. The expiratory flow rates how- ever were normal or even increased when related to absolute lung volume. Some patients exhibit disproportionate expiratory slowing as evidenced by a decrease in MMFR which is out of propor- tion to the reduction in VC. These patients also have a reduced FEV1,/VC ratio. These changes are probably the consequence of associated peripheral airway narrowing. copyright. Increased elastic recoil of the lung limiting maximal 33 women. Their age ranged from 16-68 years (mean inflation is considered to be the main abnormality of ± SE 42-1 ± 1-7 years).
    [Show full text]
  • Effect of Chronic Bronchitis on Changes in Pulmonary Function Caused by Irradiation Ofthe Lungs
    Thorax: first published as 10.1136/thx.20.4.303 on 1 July 1965. Downloaded from Thorax (1965), 20, 303. Effect of chronic bronchitis on changes in pulmonary function caused by irradiation of the lungs B. I. HOFFBRAND,1 P. M. S. GILLAM,' AND P. J. D. HEAF' From the Chest Department, University College Hospital, London In a previous paper (Gillam, Heaf, Hoffbrand, and Group 3: A history of chronic cough with Hilton, 1964) it was shown that, contrary to wide- sputum and recurrent chest infections or breath- spread opinion, the presence of co-existing chronic lessness or both. This group will be referred to as bronchitis does not interfere with the treatment of the severe bronchitic group. A subgroup 3a was bronchial carcinoma by radiotherapy. Patients derived from group 3 and consisted of those with severe chronic bronchitis can be given the patients in group 3 with a forced expiratory same dose of irradiation as those with mild volume in one second (F.E.V.j.0) of 1,250 ml. or bronchitis or with previously normal lungs. less. Group 3a thus consisted largely of those Survival after radiotherapy for bronchial carci- patients with the severest bronchitis of all. noma is not shortened by co-existing chronic Group 1 was similar to groups 2 and 3 in bronchitis. The incidence of exacerbations of respect of age, sex, previous lung resections, and bronchitis both during and after radiotherapy is radiotherapy received. Group 1, however, con- no more than might be expected in such a group tained a higher proportion of patients with more extensive and more anaplastic tumours.
    [Show full text]