Functional Insights Into Chromatin Remodelling from Studies On

Total Page:16

File Type:pdf, Size:1020Kb

Functional Insights Into Chromatin Remodelling from Studies On Special Issue: Human Genetics Review Functional Insights into Chromatin Remodelling from Studies on CHARGE Syndrome 1, 2 M. Albert Basson, * and Conny van Ravenswaaij-Arts CHARGE syndrome is a rare genetic syndrome characterised by a unique com- Trends bination of multiple organ anomalies. Dominant loss-of-function mutations in the The expressivity and penetrance of gene encoding chromodomain helicase DNA binding protein 7 (CHD7), which is CHARGE phenotypes show little cor- relation with the CHD7 genotype. an ATP-dependent chromatin remodeller, have been identified as the cause of CHARGE syndrome. Here, we review recent work aimed at understanding the The hypothesis that mutations or poly- morphisms in other genes modify dis- mechanism of CHD7 function in normal and pathological states, highlighting ease phenotypes in humans remains in vivo results from biochemical and studies. The emerging picture from this work unproven. suggests that the mechanisms by which CHD7 fine-tunes gene expression are CHARGE-associated CHD7 mutations context specific, consistent with the pleiotropic nature of CHARGE syndrome. can affect its nucleosome remodelling activity in vitro. Molecular Origins of CHARGE Syndrome Advances in genomics over the past few years have led to impressive achievements in the The role of CHD7 in regulating nucleo- some positioning in vivo and the effects identification of mutations responsible for rare genetic diseases, especially those with simple, of this activity on gene expression monogenetic aetiologies [1]. The identification of the genetic cause of a disease represents a require further study. major milestone because biochemical and gene targeting approaches can then be used to explore the biological functions of the gene in question and investigate the molecular mecha- CHD7 pleiotropy may result from its interactions with cell type-specific tran- nisms that underlie the disease. Typically, the insights gained from these studies have wide- scription factors. reaching implications by revealing fundamental biological principles that control development and homeostasis. CHARGE syndrome (MIM 214800) is a good example of such a case. This CHD7 recruitment to cell type-specific syndrome is diagnosed in 1/10 000 live births and is characterised by dysmorphic features and enhancers may underlie context-spe- cific roles. congenital anomalies in multiple organs. The development of the nervous system (especially cranial nerves), ears and vestibular organs, eyes, heart, urogenital, and endocrine systems can be affected and growth retardation is often observed. The presence and severity of these anomalies show remarkable variation between patients. 1 King's College London, Department In 2004, shortly before the next-generation sequencing era, mutations in the CHD7 gene (MIM of Craniofacial Development and Stem Cell Biology and MRC Centre for 608892) were identified in patients with CHARGE syndrome [2]. CHD7 encodes a chromatin- Developmental Neurobiology, Floor remodelling factor (CRF), which implied an epigenetic aetiology for CHARGE syndrome. CRFs 27, Guy's Hospital Tower Wing, have evolved to deal with the additional complexity and hindrance that the tight association of London, SE1 9RT, UK 2 University of Groningen, University eukaryotic DNA with histone proteins imposes on replication and transcription (Box 1). CRFs Medical Center Groningen, perform several essential functions. For instance, the clearance of nucleosomes from promoters Department of Genetics, PO Box and other regulatory elements is necessary for the recruitment of some transcription factors (TFs) 30.001, 9700RB Groningen, The Netherlands and the core transcriptional machinery, and nucleosome eviction is essential for efficient transcriptional elongation. Conversely, the maintenance of heterochromatin is an important *Correspondence: mechanism for stable gene repression. Thus, different classes of CRF can have opposing [email protected] (M.A. Basson). 600 Trends in Genetics, October 2015, Vol. 31, No. 10 http://dx.doi.org/10.1016/j.tig.2015.05.009 © 2015 Elsevier Ltd. All rights reserved. Box 1. The Concept of Chromatin Remodelling Glossary Chromatin remodelling refers to the active process of changing the structure and organisation of chromatin. Histone 22q11del syndrome: most common subunits, termed H2A, H2B, H3, and H4, that comprise the core nucleosomal particles around which DNA is wound, are microdeletion (1.5-3MB) syndrome, globular proteins with exposed N-terminal ‘tails’ that contain several amino acid residues that are accessible to modifying also known as velocardiofacial or enzymes that catalyse the covalent addition of chemical moieties. These modifications include acetylation, methylation, DiGeorge syndrome. phosphorylation, ubiquitination, and ADP ribosylation, among others [66]. The linker histone H1 is also subject to covalent Absent, small, or homeotic-like 1 modification. Histone modifications can alter the chemical properties of the nucleosome and its interaction with DNA [67]. (ASH1): a member of the trithorax The combination of histone modifications carried by a nucleosomal array on chromatin creates unique binding sites, group and a histone-lysine N- which can affect CRF recruitment to this region. The most direct and dramatic changes in chromatin structure are methyltransferase. catalysed by chromatin-remodelling enzymes. These CRFs are ATP-dependent molecular machines that can alter the Choanal atresia: anatomical position of nucleosomes on chromatin. Repositioning nucleosomes, or even evicting them completely from chromatin at obstruction of the back of the nasal a given locus, changes the accessibility of specific DNA sequences. As a consequence, TF binding sites may either passage, interfering with the ability to become available for, or be obscured from, binding by their cognate TF (Figure 2, main text). These changes may affect breathe. chromatin architecture on a larger scale if the DNA–protein interactions that are altered upon the action of CRFs are Chromodomain: protein structural involved in maintaining higher order chromatin organisation, such as those mediated by insulating factors, including domain of approximately 40–50 CTCF. amino acid residues commonly found in proteins associated with chromatin fi ATP-dependent CRFs are classi ed in three different groups: SWI/SNF, ISWI, and CHD. CRFs typically function in large, remodelling. multi-subunit protein complexes. The composition of these complexes may differ between different cell types, thereby Coloboma: an embryonic closure altering the nature of the complex, as exemplified by the BAF complex [68]. The observation that active gene promoters defect of the eye (e.g., affecting the and enhancer elements can be identified empirically by nuclease-sensitivity assays as a proxy for DNA accessibility iris and/or the retina). In CHARGE implicates CRFs in the establishment and maintenance of chromatin structure at regulatory elements. syndrome, retinal coloboma results in partial or complete loss of sight. Germline mosaicism: a situation activities and functions, and local chromatin context can determine the effects of a CRF at a where germ cells in an individual specific locus [3]. differ with respect to a specific genetic feature, usually caused by a de novo mutation in one germ cell In this review, we summarise some of the most recent studies that link CHD7 to specific progenitor during development or developmental genes and pathways. We discuss in vitro experiments that provide insights into expansion. The chance of a disease- CHD7 mechanism and highlight the significant gaps in our understanding of how CHD7 acts in causing mutation being transmitted vivo to fine-tune gene expression and control development. However, we begin with the clinical to offspring depends on the proportion of mutated germ cells. data obtained from patients and summarise our current knowledge of CHD7 mutations that H3K27me3: Lysine 27 tri-methylation cause CHARGE syndrome. of histone 3, a post-translational modification typically associated with The Phenotypic Spectrum of CHARGE Syndrome repressed regulatory regions. H3K36me3: Lysine 36 tri-methylation CHARGE syndrome is characterised by a multitude of congenital aberrations that can vary in of histone 3, a post-translational both severity and presence. The most frequent features seen in patients with a CHD7 mutation modification typically associated with are: external ear malformations (97%); cranial nerve dysfunction (99%, causing facial palsy in gene bodies undergoing active 66%); semicircular canal anomalies (94%); coloboma (81%; see Glossary); choanal atresia transcription, used as an indicator of transcriptional elongation. (55%); cleft lip and/or palate (48%); anosmia (80%); genital hypoplasia (81%); congenital heart H3K4me3: modification typically defects (76%); and tracheoesophageal anomalies (29%). In addition, severe feeding problems associated with active promoter (82%), delayed motor development milestones (99%), intellectual disability (74%), and growth regions. Imitation switch (ISWI): a class of retardation (37%) are observed [4–8] (percentages according to [8]). ATP-dependent CRFs. Kallmann syndrome: a syndrome The clinical diagnosis of CHARGE syndrome is based on major and minor diagnostic criteria characterised by hypogonadism and formulated by Blake [9], which were later refined by Verloes [10]. Major criteria are the presence anosmia (inability to smell), due to failure of gonadotropin-releasing of coloboma, choanal atresia, characteristic
Recommended publications
  • Recombinant Human FLRT1 Catalog Number: 2794-FL
    Recombinant Human FLRT1 Catalog Number: 2794-FL DESCRIPTION Source Mouse myeloma cell line, NS0­derived human FLRT1 protein Ile21­Pro524, with a C­terminal 6­His tag Accession # Q9NZU1 N­terminal Sequence Ile21 Analysis Predicted Molecular 56.3 kDa Mass SPECIFICATIONS SDS­PAGE 70­80 kDa, reducing conditions Activity Measured by the ability of the immobilized protein to support the adhesion of Neuro­2A mouse neuroblastoma cells. Recombinant Human FLRT1 immobilized at 2.5 μg/mL, 100 μL/well, will meidate > 50% Neuro­2A cell adhesion. Optimal dilutions should be determined by each laboratory for each application. Endotoxin Level <0.10 EU per 1 μg of the protein by the LAL method. Purity >95%, by SDS­PAGE under reducing conditions and visualized by silver stain. Formulation Lyophilized from a 0.2 μm filtered solution in PBS. See Certificate of Analysis for details. PREPARATION AND STORAGE Reconstitution Reconstitute at 200 μg/mL in sterile PBS. Shipping The product is shipped at ambient temperature. Upon receipt, store it immediately at the temperature recommended below. Stability & Storage Use a manual defrost freezer and avoid repeated freeze­thaw cycles. l 12 months from date of receipt, ­20 to ­70 °C as supplied. l 1 month, 2 to 8 °C under sterile conditions after reconstitution. l 3 months, ­20 to ­70 °C under sterile conditions after reconstitution. BACKGROUND FLRT1 is one of three FLRT (fibronectin, leucine rich repeat, transmembrane) glycoproteins expressed in distinct areas of the developing brain and other tissues (1, 2). The 90 kDa type I transmembrane (TM) human FLRT1 is synthesized as a 646 amino acid (aa) precursor with a 20 aa signal sequence, a 504 aa extracellular domain (ECD), a 21 aa TM segment and a 101 aa cytoplasmic region.
    [Show full text]
  • Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
    cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Clinical Utility of Recently Identified Diagnostic, Prognostic, And
    Modern Pathology (2017) 30, 1338–1366 1338 © 2017 USCAP, Inc All rights reserved 0893-3952/17 $32.00 Clinical utility of recently identified diagnostic, prognostic, and predictive molecular biomarkers in mature B-cell neoplasms Arantza Onaindia1, L Jeffrey Medeiros2 and Keyur P Patel2 1Instituto de Investigacion Marques de Valdecilla (IDIVAL)/Hospital Universitario Marques de Valdecilla, Santander, Spain and 2Department of Hematopathology, MD Anderson Cancer Center, Houston, TX, USA Genomic profiling studies have provided new insights into the pathogenesis of mature B-cell neoplasms and have identified markers with prognostic impact. Recurrent mutations in tumor-suppressor genes (TP53, BIRC3, ATM), and common signaling pathways, such as the B-cell receptor (CD79A, CD79B, CARD11, TCF3, ID3), Toll- like receptor (MYD88), NOTCH (NOTCH1/2), nuclear factor-κB, and mitogen activated kinase signaling, have been identified in B-cell neoplasms. Chronic lymphocytic leukemia/small lymphocytic lymphoma, diffuse large B-cell lymphoma, follicular lymphoma, mantle cell lymphoma, Burkitt lymphoma, Waldenström macroglobulinemia, hairy cell leukemia, and marginal zone lymphomas of splenic, nodal, and extranodal types represent examples of B-cell neoplasms in which novel molecular biomarkers have been discovered in recent years. In addition, ongoing retrospective correlative and prospective outcome studies have resulted in an enhanced understanding of the clinical utility of novel biomarkers. This progress is reflected in the 2016 update of the World Health Organization classification of lymphoid neoplasms, which lists as many as 41 mature B-cell neoplasms (including provisional categories). Consequently, molecular genetic studies are increasingly being applied for the clinical workup of many of these neoplasms. In this review, we focus on the diagnostic, prognostic, and/or therapeutic utility of molecular biomarkers in mature B-cell neoplasms.
    [Show full text]
  • UNIVERSITY of CALIFORNIA, IRVINE Combinatorial Regulation By
    UNIVERSITY OF CALIFORNIA, IRVINE Combinatorial regulation by maternal transcription factors during activation of the endoderm gene regulatory network DISSERTATION submitted in partial satisfaction of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biological Sciences by Kitt D. Paraiso Dissertation Committee: Professor Ken W.Y. Cho, Chair Associate Professor Olivier Cinquin Professor Thomas Schilling 2018 Chapter 4 © 2017 Elsevier Ltd. © 2018 Kitt D. Paraiso DEDICATION To the incredibly intelligent and talented people, who in one way or another, helped complete this thesis. ii TABLE OF CONTENTS Page LIST OF FIGURES vii LIST OF TABLES ix LIST OF ABBREVIATIONS X ACKNOWLEDGEMENTS xi CURRICULUM VITAE xii ABSTRACT OF THE DISSERTATION xiv CHAPTER 1: Maternal transcription factors during early endoderm formation in 1 Xenopus Transcription factors co-regulate in a cell type-specific manner 2 Otx1 is expressed in a variety of cell lineages 4 Maternal otx1 in the endodermal conteXt 5 Establishment of enhancers by maternal transcription factors 9 Uncovering the endodermal gene regulatory network 12 Zygotic genome activation and temporal control of gene eXpression 14 The role of maternal transcription factors in early development 18 References 19 CHAPTER 2: Assembly of maternal transcription factors initiates the emergence 26 of tissue-specific zygotic cis-regulatory regions Introduction 28 Identification of maternal vegetally-localized transcription factors 31 Vegt and OtX1 combinatorially regulate the endodermal 33 transcriptome iii
    [Show full text]
  • Histone H3 Lysine K4 Methylation and Its Role in Learning and Memory Bridget E
    Collins et al. Epigenetics & Chromatin (2019) 12:7 https://doi.org/10.1186/s13072-018-0251-8 Epigenetics & Chromatin REVIEW Open Access Histone H3 lysine K4 methylation and its role in learning and memory Bridget E. Collins, Celeste B. Greer, Benjamin C. Coleman and J. David Sweatt* Abstract Epigenetic modifcations such as histone methylation permit change in chromatin structure without accompanying change in the underlying genomic sequence. A number of studies in animal models have shown that dysregulation of various components of the epigenetic machinery causes cognitive defcits at the behavioral level, suggesting that proper epigenetic control is necessary for the fundamental processes of learning and memory. Histone H3 lysine K4 (H3K4) methylation comprises one component of such epigenetic control, and global levels of this mark are increased in the hippocampus during memory formation. Modifers of H3K4 methylation are needed for memory formation, shown through animal studies, and many of the same modifers are mutated in human cognitive diseases. Indeed, all of the known H3K4 methyltransferases and four of the known six H3K4 demethylases have been associated with impaired cognition in a neurologic or psychiatric disorder. Cognitive impairment in such patients often manifests as intellectual disability, consistent with a role for H3K4 methylation in learning and memory. As a modifcation quin- tessentially, but not exclusively, associated with transcriptional activity, H3K4 methylation provides unique insights into the regulatory complexity of writing, reading, and erasing chromatin marks within an activated neuron. The following review will discuss H3K4 methylation and connect it to transcriptional events required for learning and memory within the developed nervous system.
    [Show full text]
  • Early Regionalization of the Otic Placode and Its Regulation by the Notch Signaling Pathway
    Mechanisms of Development 124 (2007) 631–645 www.elsevier.com/locate/modo Early regionalization of the otic placode and its regulation by the Notch signaling pathway Gina Abello´, Safia Khatri, Fernando Gira´ldez, Berta Alsina * DCEXS-Universitat Pompeu Fabra, C/Dr. Aiguader 88, 08003 Barcelona, Spain Received 18 December 2006; received in revised form 11 April 2007; accepted 13 April 2007 Available online 20 April 2007 Abstract Otic neuronal precursors are the first cells to be specified and do so in the anterior domain of the otic placode, the proneural domain. In the present study, we have explored the early events of otic proneural regionalization in relation to the activity of the Notch signaling pathway. The proneural domain was characterized by the expression of Sox3, Fgf10 and members of the Notch pathway such as Delta1, Hes5 and Lunatic Fringe. The complementary non-neural domain expressed two patterning genes, Lmx1b and Iroquois1, and the mem- bers of the Notch pathway, Serrate1 and Hairy1. Fate map studies and double injections with DiI/DiO showed that labeled cells remained confined to anterior or posterior territories with limited cell intermingling. To explore whether Notch signaling pathway plays a role in the initial regionalization of the otic placode, Notch activity was blocked by a c-secretase inhibitor (DAPT). Notch blockade induced the expansion of non-neural genes, Lmx1 and Iroquois1, into the proneural domain. Combined gene expression and DiI exper- iments showed that these effects were not due to migration of non-neural cells into the proneural domain, suggesting that Notch activity regulates the expression of non-neural genes.
    [Show full text]
  • Implications for 22Q11 Deletion Syndrome
    Tbx1 haploinsufficiency is linked to behavioral disorders in mice and humans: Implications for 22q11 deletion syndrome Richard Paylora,b, Beate Glaserc,d, Annalisa Mupod,e,f,g, Paris Ataliotisd,h, Corinne Spencera,b, Angela Sobotkae, Chelsey Sparkse, Chul-Hee Choii, John Oghalaii, Sarah Curranj, Kieran C. Murphyk, Stephen Monksk, Nigel Williamsc, Michael C. O’Donovanc, Michael J. Owenc,l, Peter J. Scamblerh, and Elizabeth Lindsaye,f,m Departments of aMolecular and Human Genetics, bNeuroscience, ePediatrics (Cardiology), and iOtolaryngology, Baylor College of Medicine, Houston, TX 77030; cDepartment of Psychological Medicine, Cardiff University, Cardiff CF14 4XN, United Kingdom; fCEINGE Biotecnologie Avanzate and gEuropean School of Molecular Medicine (SEMM), 80145 Naples, Italy; hMolecular Medicine Unit, Institute of Child Health, 30 Guilford Street, London WC1N 1EH, United Kingdom; kDepartment of Psychiatry, Royal College of Surgeons in Ireland, Dublin 9, Ireland; and jDepartment of Psychological Medicine, Institute of Psychiatry, London SE4 8AF, United Kingdom Edited by Edward M. Scolnick, The Broad Institute, Cambridge, MA, and approved March 10, 2006 (received for review January 9, 2006) About 35% of patients with 22q11 deletion syndrome (22q11DS), which includes DiGeorge and velocardiofacial syndromes, devel- ops psychiatric disorders, mainly schizophrenia and bipolar disor- der. We previously reported that mice carrying a multigene dele- tion (Df1) that models 22q11DS have reduced prepulse inhibition (PPI), a behavioral abnormality and schizophrenia endophenotype. Impaired PPI is associated with several psychiatric disorders, in- cluding those that occur in 22q11DS, and recently, reduced PPI was reported in children with 22q11DS. Here, we have mapped PPI deficits in a panel of mouse mutants that carry deletions that partially overlap with Df1 and have defined a PPI critical region encompassing four genes.
    [Show full text]
  • NICU Gene List Generator.Xlsx
    Neonatal Crisis Sequencing Panel Gene List Genes: A2ML1 - B3GLCT A2ML1 ADAMTS9 ALG1 ARHGEF15 AAAS ADAMTSL2 ALG11 ARHGEF9 AARS1 ADAR ALG12 ARID1A AARS2 ADARB1 ALG13 ARID1B ABAT ADCY6 ALG14 ARID2 ABCA12 ADD3 ALG2 ARL13B ABCA3 ADGRG1 ALG3 ARL6 ABCA4 ADGRV1 ALG6 ARMC9 ABCB11 ADK ALG8 ARPC1B ABCB4 ADNP ALG9 ARSA ABCC6 ADPRS ALK ARSL ABCC8 ADSL ALMS1 ARX ABCC9 AEBP1 ALOX12B ASAH1 ABCD1 AFF3 ALOXE3 ASCC1 ABCD3 AFF4 ALPK3 ASH1L ABCD4 AFG3L2 ALPL ASL ABHD5 AGA ALS2 ASNS ACAD8 AGK ALX3 ASPA ACAD9 AGL ALX4 ASPM ACADM AGPS AMELX ASS1 ACADS AGRN AMER1 ASXL1 ACADSB AGT AMH ASXL3 ACADVL AGTPBP1 AMHR2 ATAD1 ACAN AGTR1 AMN ATL1 ACAT1 AGXT AMPD2 ATM ACE AHCY AMT ATP1A1 ACO2 AHDC1 ANK1 ATP1A2 ACOX1 AHI1 ANK2 ATP1A3 ACP5 AIFM1 ANKH ATP2A1 ACSF3 AIMP1 ANKLE2 ATP5F1A ACTA1 AIMP2 ANKRD11 ATP5F1D ACTA2 AIRE ANKRD26 ATP5F1E ACTB AKAP9 ANTXR2 ATP6V0A2 ACTC1 AKR1D1 AP1S2 ATP6V1B1 ACTG1 AKT2 AP2S1 ATP7A ACTG2 AKT3 AP3B1 ATP8A2 ACTL6B ALAS2 AP3B2 ATP8B1 ACTN1 ALB AP4B1 ATPAF2 ACTN2 ALDH18A1 AP4M1 ATR ACTN4 ALDH1A3 AP4S1 ATRX ACVR1 ALDH3A2 APC AUH ACVRL1 ALDH4A1 APTX AVPR2 ACY1 ALDH5A1 AR B3GALNT2 ADA ALDH6A1 ARFGEF2 B3GALT6 ADAMTS13 ALDH7A1 ARG1 B3GAT3 ADAMTS2 ALDOB ARHGAP31 B3GLCT Updated: 03/15/2021; v.3.6 1 Neonatal Crisis Sequencing Panel Gene List Genes: B4GALT1 - COL11A2 B4GALT1 C1QBP CD3G CHKB B4GALT7 C3 CD40LG CHMP1A B4GAT1 CA2 CD59 CHRNA1 B9D1 CA5A CD70 CHRNB1 B9D2 CACNA1A CD96 CHRND BAAT CACNA1C CDAN1 CHRNE BBIP1 CACNA1D CDC42 CHRNG BBS1 CACNA1E CDH1 CHST14 BBS10 CACNA1F CDH2 CHST3 BBS12 CACNA1G CDK10 CHUK BBS2 CACNA2D2 CDK13 CILK1 BBS4 CACNB2 CDK5RAP2
    [Show full text]
  • The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells S
    Supplemental material to this article can be found at: http://molpharm.aspetjournals.org/content/suppl/2020/05/03/mol.120.119776.DC1 1521-0111/98/1/24–37$35.00 https://doi.org/10.1124/mol.120.119776 MOLECULAR PHARMACOLOGY Mol Pharmacol 98:24–37, July 2020 Copyright ª 2020 The Author(s) This is an open access article distributed under the CC BY Attribution 4.0 International license. The Structure-Function Relationship of Angular Estrogens and Estrogen Receptor Alpha to Initiate Estrogen-Induced Apoptosis in Breast Cancer Cells s Philipp Y. Maximov, Balkees Abderrahman, Yousef M. Hawsawi, Yue Chen, Charles E. Foulds, Antrix Jain, Anna Malovannaya, Ping Fan, Ramona F. Curpan, Ross Han, Sean W. Fanning, Bradley M. Broom, Daniela M. Quintana Rincon, Jeffery A. Greenland, Geoffrey L. Greene, and V. Craig Jordan Downloaded from Departments of Breast Medical Oncology (P.Y.M., B.A., P.F., D.M.Q.R., J.A.G., V.C.J.) and Computational Biology and Bioinformatics (B.M.B.), University of Texas, MD Anderson Cancer Center, Houston, Texas; King Faisal Specialist Hospital and Research (Gen.Org.), Research Center, Jeddah, Kingdom of Saudi Arabia (Y.M.H.); The Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois (R.H., S.W.F., G.L.G.); Center for Precision Environmental Health and Department of Molecular and Cellular Biology (C.E.F.), Mass Spectrometry Proteomics Core (A.J., A.M.), Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Mass Spectrometry Proteomics Core (A.M.), and Dan L. Duncan molpharm.aspetjournals.org
    [Show full text]
  • Whole Embryo Culture, Transcriptomics and RNA Interference Identify
    Whole embryo culture, transcriptomics and RNA interference identify TBX1 and FGF11 as novel regulators of limb development in the mouse Gautier Tejedor, Béryl Laplace-Builhé, Patricia Luz-Crawford, Said Assou, Audrey Barthelaix, Marc Mathieu, Karima Kissa, Christian Jorgensen, Jérôme Collignon, Paul Chuchana, et al. To cite this version: Gautier Tejedor, Béryl Laplace-Builhé, Patricia Luz-Crawford, Said Assou, Audrey Barthelaix, et al.. Whole embryo culture, transcriptomics and RNA interference identify TBX1 and FGF11 as novel regulators of limb development in the mouse. Scientific Reports, Nature Publishing Group, 2020, 10 (1), pp.3597. 10.1038/s41598-020-60217-w. inserm-02498306 HAL Id: inserm-02498306 https://www.hal.inserm.fr/inserm-02498306 Submitted on 4 Mar 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Whole embryo culture, transcriptomics and RNA interference identify TBX1 and FGF11 as novel regulators of limb development in the mouse Gautier Tejedor1,6, Béryl Laplace-Builhé1,6, Patricia Luz-Crawford3, Said Assou 1, Audrey Barthelaix1, Marc Mathieu1, Karima Kissa 4, Christian Jorgensen1,2, Jérôme Collignon 5,7, Paul Chuchana1,7 & Farida Djouad1,7* Identifying genes involved in vertebrate developmental processes and characterizing this involvement are daunting tasks, especially in the mouse where viviparity complicates investigations.
    [Show full text]
  • Molecular Markers and Potential Therapeutic Targets in Non-WNT/Non
    Menyhárt et al. Journal of Hematology & Oncology (2019) 12:29 https://doi.org/10.1186/s13045-019-0712-y REVIEW Open Access Molecular markers and potential therapeutic targets in non-WNT/non-SHH (group 3 and group 4) medulloblastomas Otília Menyhárt1,2, Felice Giangaspero3,4 and Balázs Győrffy1,2* Abstract Childhood medulloblastomas (MB) are heterogeneous and are divided into four molecular subgroups. The provisional non-wingless-activated (WNT)/non-sonic hedgehog-activated (SHH) category combining group 3 and group 4 represents over two thirds of all MBs, coupled with the highest rates of metastases and least understood pathology. The molecular era expanded our knowledge about molecular aberrations involved in MB tumorigenesis, and here, we review processes leading to non-WNT/non-SHH MB formations. The heterogeneous group 3 and group 4 MBs frequently harbor rare individual genetic alterations, yet the emerging profiles suggest that infrequent events converge on common, potentially targetable signaling pathways. A mutual theme is the altered epigenetic regulation, and in vitro approaches targeting epigenetic machinery are promising. Growing evidence indicates the presence of an intermediate, mixed signature group along group 3 and group 4, and future clarifications are imperative for concordant classification, as misidentifying patient samples has serious implications for therapy and clinical trials. To subdue the high MB mortality, we need to discern mechanisms of disease spread and recurrence. Current preclinical models do not represent the full scale of group 3 and group 4 heterogeneity: all of existing group 3 cell lines are MYC-amplified and most mouse models resemble MYC-activated MBs. Clinical samples provide a wealth of information about the genetic divergence between primary tumors and metastatic clones, but recurrent MBs are rarely resected.
    [Show full text]