EXAMININGTHEDISTRIBUTIONOF DICYMBE CORYMBOSA MONODOMINANTFORESTSINWESTERNGUYANA USINGSATELLITEIMAGERY

by RebeccaS.Degagne AThesis Presentedto TheFacultyofHumboldtStateUniversity InPartialFulfillment OftheRequirementsfortheDegree MasterofScience InNaturalResources: NaturalResourcesPlanningandInterpretation August,2007

EXAMININGTHEDISTRIBUTIONOF DICYMBE CORYMBOSA MONODOMINANTFORESTSINWESTERNGUYANA USINGSATELLITEIMAGERY by RebeccaS.Degagne ApprovedbytheMaster’sThesisCommittee: StevenSteinberg,MajorProfessor Date TerryW.Henkel,CommitteeMember Date LawrenceFoxIII,CommitteeMemberDate Coordinator,NaturalResourcesGraduateProgram Date 07PI63207/30 NaturalResourcesGraduateProgramNumber ChrisA.Hopper,InterimDeanforResearchandGraduateStudies Date

ii

ABSTRACT ExaminingTheDistributionOf Dicymbe corymbosa MonodominantForestsIn WesternGuyanaUsingSatelliteImagery RebeccaS.Degagne Theectomycorrhizalcanopytree Dicymbe corymbosa (Caesalpiniaceae)forms singledominated( i.e. monodominant)forestsinthecentralPakaraimaMountains ofwesternGuyana. Dicymbe corymbosa ,likeothertropicalmonodominantspecies,has importantlifehistorytraitsthatpromoteconspecificclumping,thestudyofwhichmay allowabetterunderstandingofthephenomenonofhightreespeciesdiversity characterizingmuchofthetropics,andhowitiscircumvented. Dicymbe corymbosa forests,occurringinGuyanaaspatcheswithinanonectomycorrhizal,mixedspecies forestmatrix,functionashabitatislandsforadiverseassemblageofputativelyendemic ectomycorrhizalfungi.Groundbasedstudieshavenotadequatelydeterminedthe regionalextentof D. corymbosa forests,noraretheypractical.Distributioninformation iscriticaltoallowbroadersamplingoftheseforestsandtheirectomycorrhizalfungal constituentsandultimatelytoinformconservationplansfortheseuniquehabitats.The rugged,remotenatureofthestudysiteandspatiallydiscreteoccurrenceof D. corymbosa standssuggestsatelliteimageanalysisasanidealtoolfordeterminingtheextentofthese relativelyunknowntropicalforests.WeassessedthesuitabilityofLandsatsatellitedata formappingregionaldistributionof D. corymbosa forestsinGuyana’sUpperPotaro

RiverBasin.Supervisedimageclassification(maximumlikelihoodalgorithm)was performedonimagesfrom9August1989(Landsat5TM)and16October1999

(Landsat7ETM+). In situ forestreferencedatawereusedtoquantitativelyaccess

iii accuracyofoutputclassificationmaps.SupervisedclassificationofLandsat5TMand

Landsat7ETM+imageryperformedwellindistinguishingforesttypesdominatedbya singlespeciesfrommixedspeciesforest.Forboththe1989and1999images, D. corymbosa forestclassaccuracyisacceptable(User’saccuracy=89.8%,Khat =0.74

(1989);User’saccuracy=80.7%,Khat =0.59(1999).Resultsindicatemyoutput classificationmapswillbeusefulindevelopingefficientsamplingschemesforfuture forestecologystudiesandfieldsurveysforectomycorrhizalfungi.Supervised classificationofLandsatdatamayalsobeeffectiveforidentifyingmonodominantforests inotherremoteregionsofthetropics.

iv

ACKNOWLEDGEMENTS

FinancialsupportwasprovidedbyHumboldtStateUniversityFoundation’s

Research,Scholarship,andCreativeActivitiesprogram,andtheFederalWorkStudy graduateresearchprogram.ResearchpermitsweregrantedbytheGuyana

EnvironmentalProtectionAgency. FieldassistancewasprovidedbyValentinoJoseph,

PeterJoseph,ChrisAndrew,LucianoEdmond,LanceWoolley,andLukeHenault.

LandsatimagesweremadeavailablebyTheGlobalLandCoverFacility(Universityof

Maryland,www.landcover.org).MyadvisorsandotherfacultyatHumboldtState

Universityprovidedinvaluablesupportandguidance,asdidmyfriendsandfamily.

v

TABLEOFCONTENTS

Page

ABSTRACT………………………………………..…………………………………...iii

ACKNOWLEDGEMENTS………………………………………………………...……v

LISTOFTABLES……………………………………………………………...……....vii

LISTOFFIGURES………………………………………………………………...….viii

INTRODUCTION………………………………………………………………….……9

STUDYSITE……………………………………………………………...……………14

MATERIALSANDMETHODS…………………………………………………….…16

SatelliteData………………………………………………………………...….16

PreliminaryDataProcessing………………………………………………...….16

ClassificationProcedure…………………………………………………...... …20

ThematicAccuracyAssessment……………………………………………..…21

RESULTS………………………………………………………………………..……..22

DISCUSSION……………………………………………………………………..……26

ClassificationofForestTypes………………………………………………….26

RegionalDistribution………………………………………………………...…28

FutureApplications………………………………………………………..……30

LITERATURECITED………………………………………………………………....32

vi

LISTOFTABLES

Table Page

1 Characteristicsofvegetationclassesandsubclassesusedinforesttype classificationintheUpperPotaroRiverBasin,Guyana.Parentclassesare shown onleft.....………………………………………………………………...19 2 ErrormatrixformaximumlikelihoodsupervisedclassificationofLandsat5 TMscene(path232,row056,WRS2)acquiredon9August1989.Land coverclassesfortheUpperPotaroRiverBasin(Guyana)studysiteinclude: (1)Dicymbe corymbosa dominantandmonodominantforest;(2) dominantforest;and(3)mixedspeciesforestlacking D. corymbosa ………...... 23 3 ErrormatrixformaximumlikelihoodsupervisedclassificationofLandsat7 ETM+scene(path232,row056,WRS2)acquiredon16October1999. LandcoverclassesfortheUpperPotaroRiverBasin(Guyana)studysite include:(1)Dicymbe corymbosa dominantandmonodominantforest;(2) Micrandra dominantforest;and(3)mixedspeciesforestlacking D. corymbosa ……………………………………………………………..……..24

vii

LISTOFFIGURES

Figure Page 1 StudyareashowingpositionofGuyanainSouthAmericaandthePakaraima Montaneregion……………………………………………………………...…..15 2 ThematicmapshowingpredictedforestdistributionfortheUpperPotaro RiverBasinstudysiteinwesternGuyana.Supervisedclassificationoutput for16October1999Landsat7ETM+sceneisshown.Cloudcoveredareas werefilledwithclassificationoutputfromtheLandsat5TMimageacquired on9August. Greenareasrepresent Dicymbe corymbosa dominantand monodominantforest,bluedepicts Micrandra dominantforest,andorange indicatesmixedspeciesforestlacking D. corymbosa .……………………...…..25

viii

INTRODUCTION

Dominanceoftropicalrainforestsbyasinglespeciesofcanopytree( i.e. monodominance)isaphenomenonofinteresttotropicalecologists(Henkel2003,Torti et al .2001).Singlespeciesdominancemayresultfromlifehistorytraitsofthedominant treespeciesthataltertheunderstoryenvironment,promoteselfpersistenceand recruitment,andleadtoclumpeddistributions( e.g .,ectomycorrhizalhabit,mastfruiting, limiteddispersal,shadetolerance,reiteration;Connell&Lowman1989,Hart et al. 1989,

Torti et al .2001,Henkel et al. 2005a,Woolley et al. 2007).Monodominantforestsallow researcherstostudyecologicalprocesseswhichcircumventthetypicallyhightreespecies diversityintropicalrainforests(ConnellandLowman,1989,Hart1990,Torti et al. 2001,

Leigh et al. 2004).

MonodominancehasbeendocumentedinboththeNewandOldWorldtropics, butthephenomenonisnotuniformlydistributedacrosstheseregions.Forest monodominancebycaesalpinioidlegumes( e.g. Gilbertiodendron dewevrei )isextensive acrossportionsoftheCongoBasin(Torti et al. 2001).InlowlandtropicalAsiacertain dipterocarps( e.g . Drybalanops aromatica )achievemonodominance (Whitmore1984,

Richards1996).MonodominanceislesswellknownintheNeotropics,wheretheonly documentedexamplesofpersistentdominance(ampleregenerationofthedominant species,unrelatedtoedaphicinfluence,floodingorsuccession)involvethecaesalpinioids

Peltogyne gracilipes innorthernBrazil(Nascimento et al. 1997)and Dicymbe spp. in

Guyana(Zagt1997,Henkel et al. 2002,Henkel2003).

Theectomycorrhizalcanopytree Dicymbe corymbosa SpruceexBenth.achieves dominancelevelsamongthehighestrecordedforuplandmonodominantspeciesinthe

9 10

Neotropics.InthePakaraimaMountainsofwesternGuyana, D. corymbosa comprises63 to95percentofthetotalbasalareainstandsrangingfromonetoseveralhectares

(Henkel2003).Inthesestands,thespeciesdominatesalllevelsofforeststratadueto reiterationandpersistenceofmatureindividualsaswellashighrecruitmentofshade tolerantseedlingsandsaplings(Henkel2003,Henkel et al. 2005a,Woolley et al. 2007).

Additionally,largeamountsoforganicmatterthataccumulateonthecomplexreiterated trunksandrootmoundsof D. corymbosa andtheirpermeationbyectomycorrhizal rootletsmayconstituteamineralnutrientrecyclingsystemthathelpspreclude establishmentofnonectomycorrhizaltreespecies(Mayor&Henkel2006,Woolley et al. 2007).

Whilediversityin D. corymbosa forestsisgreatlyreducedfromthatof surroundingmixedspeciesforests,fungaldiversitymaybepositivelyaffected.Inlocal areasoftheUpperIrengandUpperPotaroRiverBasinsunderstudy,obligately ectomycorrhizalfungilargelyappeartobespatiallyrestrictedto Dicymbe standsand absentfromthemixedforestmatrix(Henkel et al. 2002,2006).Theectomycorrhizal fungalguildassociatedwith Dicymbe atthesesitescurrentlynumbersabout150species, mostofwhicharenewtoscience( e.g. Henkel1999,2001,Miller et al. 2002,Matheny et al. 2003,Henkel et al. 2005b,Fulgenzi et al. 2007 ).Thediscoveryofthe Dicymbe associatedectomycorrhizalfungalguildinGuyanaeffectivelydoubledthenumberof knownNeotropicalspeciesofectomycorrhizalfungi.Thespatiallylimited,sitespecific distributionofectomycorrhizalfungiinanotherwisenonectomycorrhizalforestmatrix suggests Dicymbe forests mayfunctionastheprimary,ifnotexclusive,habitatsforthese obligatelysymbioticfungiinGuyana(Henkel et al. 2002).

11

Groundbasedobservationsof D. corymbosa thusfarhavebeenlimitedtoalocal scale;however,thereisaneedforwiderdistributioninformation(Fanshawe1952,

Richards1996,Henkel2003). Thisknowledgewouldallowbroadersamplingof D. corymbosa stands,providingfurtherinsightintothephenomenonofpersistenttropical monodominance.Distributioninformationwouldprovideessentialguidanceon appropriatefutureconservationactionforhabitatactingasamajorreservoirof

Neotropicalectomycorrhizalfungaldiversity.Severalfactorssuggestsatelliteremote sensingasanappropriatetooltoexaminethisrelativelyunknowntropicalforestsystem.

Remotesensingcanbeacosteffectivesolutiontostudyinglandcoverintropical regionswheregroundbaseddataaredifficulttoobtainduetoinaccessibilityorhigh acquisitioncosts(Clark et al. 2005).Spectralreflectancedatafromremoteoptical sensorscanbeusedtoextractdifferenttypesofinformationfromtargetvegetation

(Cohen&Goward2004 , Boyd&Danson,2005).Thistechnologyhasbeenappliedto tropicalforeststodocumentanthropogenicandnaturaldisturbance(Skole&Tucker

1993,Read et al .2003,Souza et al .2005),detectchangesinphenology,typeandextent ofvegetation(Green et al. 1994, Bohlman et al .1998, Carreiras et al .2006),investigate succession,communitycomposition,andspeciesdiversity(Vieira et al. 2003,Gillespie et al. 2004,Salovaaraa et al. 2005),andcreatelandcovermaps(Mayaux et al .1998,Eva et al. 2004).Remotesensingtechniquescanbeapowerfultooltogeneralizefromplot scale,sitespecificstudiestypicaloftropicalfieldstudiesuptolandscape,regionaland globalscales(Foody et al .2003,Clark et al .2005).

RemotelysenseddatafromLandsatsatelliteshavebeenusedtomapforestsin tropicalregions,althoughdifficultiesindiscriminatingdistinctforesttypespersist(Foody

12 et al. 2003,Cohen&Goward,2004,Powell et al. 2004,Thenkabail et al .2004,

Salovaaraa et al. 2005,Carreiras et al .2006,Fuller2006).Inadditiontoitsrelatively lowcost,Landsatimageryhasagloballycomprehensivedataacquisitionpolicy, centralizedonlinesearchabledatabases,and30meterspatialresolutionacrosssixoptical bands(Fuller2006).Landsat'sspectralresolutioniswellsuitedforvegetation classificationsinceitincludesthenearinfrared(NIR)andshortwaveinfrared(SWIR) portionsoftheelectromagneticspectrum(NASA2003).Thesebandsaremosteffective inseparatingthespectraoftropicalcanopytreespecies(Cochrane2000,Clark et al.

2005).Inordertoidentifyaspecifictypeofplantcommunityinsatelliteimagery,the targetvegetationmusthaveauniquespectralsignaturewithinthecontextofits surroundings(Lillesand&Kiefer2004;Clark et al. 2005,Zhang et al. 2006).This spectralsignatureisdependentonthepropertiesofplanttissues,thephysiognomic structureofthevegetation,andnumerousothercontributingfactors(Lillesand&Kiefer

2004).Differentiationofvegetationtypeclassesisgenerallycontrolledbyspectral variationwithinclasses(intraclass)andspectralvariationbetweenclasses(interclass)

(Clark et al. 2005,Zhang et al .2006).

Detailedvegetationclassificationpresentschallengesinthetropics,wherehigh speciesdiversity,structuralcomplexity,andcloudcoverintroducecomplexityinto radiancesignals(Asner2001,Zhang et al. 2006).However,structurallyuniformand contiguousstandsoftropicalmonodominantforestmaybedetectablewithLandsat imagery. Dicymbe corymbosa standsinwesternGuyanahaveahighprobabilityof classificationsuccessgiventheiruniformityofcrownstructure,leafcomposition,and

13 verticalstratification,incontrasttothesurrounding,structurallycomplexandspecies diverseforestmatrix(Henkel2003,Woolley et al. 2007).

Inthisstudy,IexaminethesuitabilityofLandsatsatelliteimageryformapping distributionof D. corymbosa monodominantforestsinGuyana’sUpperPotaroRiver

Basin.Specifically,Iasked:CansupervisedimageclassificationofLandsat5TMand

Landsat7ETM+dataallowmetodistinguishmonodominant Dicymbe standsfrom mixedforestsandotherforesttypesinthePakaraimaMountainregion?Ifsuccessful, thisapproachcouldpotentiallybeusedtodevelopdistributionestimatesofecologically importantmonodominantforestsinotherremotetropicalregions.

STUDYSITE

ResearchwasconductedinthecentralPakaraimaMountainsofwesternGuyana, anareahypothesizedtobethegeographicaldistributioncenterof D. corymbosa

(Fanshawe1952,Henkel2003,Figure1).ThecentralPakaraimasregionisblanketed withdenseprimaryforest,predominantlyoftheseasonalevergreen Eschweilera –

Licania associationwithelevationsrangingfrom7002200meters(Fanshawe1952).

Limitedsmall–scaleminingandslashandburnagriculturehastakenplaceintheregion; however,theseactivitieshavenotcausedvisiblechangesinforeststructure.Primary standsdominatedby D. corymbosa arefoundwithinhilly,intermountainvalleysofthe adjacentUpperPotaro,Mazaruni,andIrengRiverBasins(Myers1936,Fanshawe1952,

Henkel2003,unpubl.data).Thesestandsappeartovaryinsizefromroughlyoneto severalhectares,andhavewelldefinedboundarieswiththesurrounding,diverse,mixed– speciesforestmatrixwhichlacks D. corymbosa (Fanshawe1952,Henkel2003,Henkel et al. 2005).Standsdominatedby Micrandra glabra Schultes()and

Micrandra spruceana Schultesoccurinextensivecontiguouspatches–onlowlying, poorlydrainedsandysoilsovertoppinghardpanorsheetrock(Fanshawe1952).Further detailsoftheclimate,geology,andsoilsoftheregioncanbefoundinHenkel(2003),

Henkel et al .(2005)andMayor&Henkel(2006).

14 15

Figure1.StudyareashowingpositionofGuyanainSouthAmericaandthePakaraima Montaneregion.

MATERIALSANDMETHODS

SatelliteData

TwoLandsatsatelliteimages(170x183km)encompassingthestudyareawere obtainedfromtheGlobalLandCoverFacilityoftheUniversityofMaryland

(http://glcf.umiacs.umd.edu/).SatellitedataconsistedofoneLandsat7ETM+scene

(path232,row056,WRS2)acquiredon16October1999,andoneLandsat5TMscene

(path232,row056,WRS2)acquiredon9August1989.Bothimageswereusedinthe forestclassificationprocess,andselectedforlow(<10percent)cloudcoveroverthe studyareawiththeassumptionthattreespeciesdistributionhadnotchangedsignificantly intheintervaltothepresent.Spectralresolutionoftheimageryis0.45to2.35mwith sevenbandsspanningthebluetomidinfraredportionoftheelectromagneticspectrum

(NASA2003).Bands1–5and7wereincludedintheanalysis.Spatialresolution(pixel size)oftheimageryis28.5meters(NASA2003).Imageswereorthorectifiedandco registeredbyEarthSat(GlobalLandCoverFacility2007). Bothsceneswereprojectedin theUniversalTransverseMercatorProjection,zone20N,usingtheWGS1984datum.

ERDASImagineSoftwareversion9.1wasusedforanalysisofsatelliteimagerydata

(LeicaGeosystems2006).

PreliminaryDataProcessing

PreliminarysupervisedclassificationoftheLandsatimageswasusedtodevelop aneffectivestratifiedsamplingregimeforwiderscalefielddatacollectionandaccuracy assessment.Supervisedclassificationincorporates a priori knowledgefromfield samplingintotheclassificationprocess(throughthedefinitionoftrainingareas)and relatesmeasuredspectralreflectancepropertiesdirectlytoknownvegetationcover

16 17 properties.Foreachpredeterminedcategory,trainingareasareidentifiedontheimage anddelineatedsotheirspectralpropertiescanbeexamined.Classificationofthe remainderoftheimageisbasedonvaluesdefinedviathesetrainingsets(Lillesandand

Kiefer,2004).Preliminarysupervisedclassificationwascarriedoutusingdatasets compiledfromeightonehectareforestinventoryplotsofknownstructureandtree speciescomposition(Henkel2003,Henkel et al. 2005,Woolley et al. 2007)and65 additionaltransectpointsurveys.ThisworkwasconductedbyDr.TerryHenkel

(DepartmentofBiologicalScience,HumboldtStateUniversity)inJuneAugust2006 withinafivekilometerradiusofapermanentbasecamplocatedalongtheUpperPotaro

Riverat5°18'04.8"N;59°54'40.4"W,at710750meterselevation.Forestdatawere simplifiedforclassification,andfieldsiteswereassignedtooneofthreeclasses:(1) D. corymbosa dominant(>60percentofstems≥10cmdbhand/orstandbasalarea)to monodominant(>80percentofstems≥10cmdbhand/orstandbasalarea);(2)

Micrandra dominant(>60percentstems≥10cmdbhand/orstandbasalarea);or(3) mixedspeciesforestlacking D. corymbosa and Micrandra spp.Transitionzones betweenforesttypeswereexcludedfromtheanalysis.Iutilizedforestcomposition grounddata,GlobalPositioningSystem(GPS)data,andtopographicmapstodigitize polygonsaroundareasofknownforesttypesinaGeographicInformationSystem

(EnvironmentalSystemsResearchInstitute2006).

Thesepolygonsweresubsequentlyusedastrainingareasforpreliminary supervisedclassificationofLandsatimages.Iusedtheoutputclassificationmapto identifycontiguousforestpatcheslargerthanfivehectaresoverabroaderareaofthe

UpperPotaroBasinassuitablesamplingtargetsfromwhichtocollectrepresentativefield

18 dataforsubsequentanalyses.Thelatitudeandlongitudeofweightedinternalcentroidsof selectedtargetpatcheswerecalculatedandthenuploadedtoahandheldGPS(Garmin

GPSMap76).

Fieldworkforthesecondaryphaseof D. corymbosa classificationandaccuracy assessmentwasconductedinGuyanaduringJanuary2007,withinatwelvekilometer radiusofacamplocatedapproximatelythreekilometerssouthoftheUpperPotaroRiver at5°17'22.6"N;59°52'23.9"W.Thiscampwasapproximatelyeightkilometerseast ofthebasecampdescribedabove.MyfieldteamandInavigatedviacompassandGPS topatchesofpredictedtargetvegetationwhereinIrandomlychoseaminimumofthree locationsatwhichtoassessforestcomposition.Intotal,coordinatesof182GPSsurvey pointswererecorded.Eachpointwaslocatedatleast60metersintoacontiguousforest typeand180metersfromothersurveypoints.Speciescompositionandrelative abundanceofcanopytrees(~≥30cmdbh)withina30meterquadratwereestimatedand recordedbyfourtreespotters.VegetationdataforeachlocationwasinputintoaGIS databaseand,forclassificationpurposes,assignedtooneofeightpredefinedsubtype

classesasdefinedinTable1.

19

Table1.Characteristicsofvegetationclassesandsubclassesusedinforesttype classificationintheUpperPotaroRiverBasin,Guyana.Parentclassesareshown onleft. Class Description Subclass Description

DCD D. corymbosa dominant

DCM D. corymbosa monodominant

a Dicymbe corymbosa dominant D. corymbosa dominant, tomonodominant b, Dicymbe DCF DCDADC Dicymbe altsonii presentto altsonii absent,present,or codominant codominant D. corymbosa dominantto monodominant,D. altsonii DCDACM presenttocontributingto monodominance

MGD Micrandra glabra dominant MF Micrandra sp. Dominated a Micrandra spruceana SWD dominant Mixedspeciesriverine, MXR NonDicymbe corymbosa lowlandassociation MX containingmixedspeciesforest MX Mixedspeciesuplandforest a ≥60percentstemsand/orbasalarea; b ≥80percentstemsand/orbasalarea

20

ClassificationProcedure

Toimprovevegetationclassification,imageryareasunsuitablefortarget vegetation(nonforestsavanna,scrublandandwater),cloudsandshadowswereexcluded fromconsiderationusingpreliminaryunsupervisedclassification(30classes)ofeach image(Tottrup2004,ERDASIMAGINE2005).Unsupervisedclassificationisapurely statisticalmethodandincorporatesno a priori knowledgeoftargetcharacteristicsintothe classificationprocess.Digitalvaluesfromcombinationsofspectralbandsareusedto identifyinherentgroupingsinthedata(Lillesand&Kiefer2004).Classesrepresenting theaforementionedunsuitablecategorieswereidentifiedviavisualinterpretation,and thesepixelsweremaskedfromsubsequentclassificationprocedures(ERDASIMAGINE

2005).

Inkeepingwithmyobjectives,Ichoseafinalclassificationschemeidentifying:

(1) D. corymbosa dominantandmonodominantforest;(2) Micrandra dominantforest; and(3)mixedspeciesforestlacking D. corymbosa .Severalsubclassesexistedwithin eachparentclassandwereretainedinordertoachievemaximumspectralseparability betweenclasses(Lillesand&Kiefer2004).Subclasseswerepooledpostclassification.

Fortypercentofforestsurveypointsfromeachsubclasswererandomlyselectedtotrain thesupervisedclassificationprocess;theremainingsixtypercentweresetasidefor accuracyassessment.ToaccommodatesurveyquadratsizeandGPSerror,training pointswerebufferedby30metersintheGISandpixelswithinthisbufferboundarywere extractedtogenerateclassspecificspectralsignatures(ERDASIMAGINE2005).A transformeddivergencecalculationwasusedtodeterminespectralseparabilitybetween forestcoverclassesandasaguidetoeitheraggregateordiscardclasses(Cayuela et al .

21

2006).Amaximumlikelihoodsupervisedclassificationwassubsequentlyperformedon bothLandsatimagesusingspectralsignaturesoftheretainedclasses.Outputwas thresholdedatα=0.05toexcludepixelswhichdidnotfitgivenclasseswell(ERDAS

IMAGINE2005).

ThematicAccuracyAssessment

Theoutputclassificationmapwascomparedwithgroundreferencedatatoassess theaccuracyofmyremotesensingderivedproduct(Foody2002,Powell et al. 2004).

Sixtypercentofthefieldsurveypointsineachclasswereexcludedfromsupervised classificationtrainingandsetasideforthispurpose.Forbothimagessurveypoints occurringwithinmaskedareasforagivendatewerenotused.Classificationaccuracy wasultimatelyassessedusing134independentreferencepoints.Toexamine relationshipsbetweenclassificationandreferencedata,Igeneratederrormatrixesfor eachclassificationmapandcalculatedthefollowingstatistics:(1)errorsofomission,(2) errorsofcommission,and(3)Khat ,anestimateoftheconditionalKappacoefficient expressingtheproportionalreductioninaccuracy,whenrandomchanceagreementis removed(Congalton&Green1999).“User’saccuracy”,theprobabilitythatapixel classifiedontheimageactuallyisthatlandcovertypeontheground,wasselectedasthe accuracyassessmentparametermostappropriatetofutureuseofthisapproachforfield surveydesign(Congalton&Green1999).Alsoinkeepingwiththepurposeofthestudy, accuracyassessmentfocusedonsuccessfulclassificationofsinglespeciesdominant forestclasses(Foody2002).

22

RESULTS

Forboththe1989and1999imagesclassificationerrormatrixesshowgood agreementbetweentheclassifiedmapandreferencedataforthe D. corymbosa and

Micrandra forestclasses(Tables2and3).Forthe1989and1999images,theconditional

Kappastatisticvaluesforuser’saccuracyfortheD. corymbosa classwere0.735and

0.587respectively,indicatingtheclassificationswere73.5and58.7percentcorrect accountingforchanceagreement.The Micrandra forestclasshadthehighestclass accuracy,withconditionalKappastatisticvaluesforuser’saccuracyof0.841(for1989) and0.948(for1999).Forbothdates,the D. corymbosa classhadlowererrorsof commission(10.2percentfor1989;19.3percentfor1999)thanerrorsofomission(41.3 percentfor1989;23.6percentfor1999).Forthe1989image,myclassificationcorrectly identified58.7percentofthe D. corymbosa forestpresent,“producer’saccuracy”.The probabilityofapixellabeledas D. corymbosa ontheclassifiedimageactuallybeing D. corymbosa in situ is89.8percent,-“user’saccuracy”(Congalton&Green1999).For the1999imageproducer’saccuracywas71.4percent,anduser’saccuracy80.7percent.

LowconditionalKappastatisticvaluesforthemixedspeciesforestclass(0.221for1989;

0.347for1999)reflecthighomissionandcommissionerrorsforthisclass.Themost commonmisclassificationwas D. corymbosa forestbeingmisclassifiedasmixedspecies forest.

Myclassificationoutputmapsindicate D. corymbosa islocallyprevalentacross thestudyarea;itsstandsareinterspersedwithpatchesofmixedspeciesforest.

Micrandra dominatedforestispresentinmoreinternallyhomogeneousswathsnorthof thePotaroRiver(Figure2).

23

Table2.ErrormatrixformaximumlikelihoodsupervisedclassificationofLandsat5 TMscene(path232,row056,WRS2)acquiredon9August1989.Landcover classesfortheUpperPotaroRiverBasin(Guyana)studysiteinclude:(1) Dicymbe corymbosa dominantandmonodominantforest;(2) Micrandra dominantforest;and(3)mixedspeciesforestlacking D. corymbosa.

Referencedata User’s Errorof Classificationdata DCF MF MX Total accuracy commission Khat (%) (%) Dicymbe corymbosa 44 0 5 49 89.8 10.2 0.735 forest(DCF) Micrandra forest(MF) 2 20 1 23 87.0 13.0 0.841 NonDCF,mixedspecies 29 2 19 50 38.0 62.0 0.221 forest(MX) Total 75 22 25122

Producer’saccuracy(%) 58.7 90.9 76.0

Errorofomission(%) 41.3 9.1 24.0

24

Table3.ErrormatrixformaximumlikelihoodsupervisedclassificationofLandsat7 ETM+scene(path232,row056,WRS2)acquiredon16October1999.Land coverclassesfortheUpperPotaroRiverBasin(Guyana)studysiteinclude:(1) Dicymbe corymbosa dominantandmonodominantforest;(2) Micrandra dominantforest;and(3)mixedspeciesforestlacking D. corymbosa. Referencedata User’s Errorof Classificationdata DCF MF MX Total accuracy commission Khat (%) (%) Dicymbe corymbosa 42 1 9 52 80.7 19.3 0.587 forest(DCF) Micrandra forest(MF) 1 25 0 26 96.2 3.8 0.948 NonDCF,mixedspecies 12 1 12 25 48.0 52.0 0.347 forest(MX) Total 55 27 21103

Producer’saccuracy(%) 71.4 92.6 57.1

Errorofomission(%) 23.6 7.4 42.9

25

Figure2.ThematicmapshowingpredictedforestdistributionfortheUpperPotaroRiver BasinstudysiteinwesternGuyana.Supervisedclassificationoutputfor16 October1999Landsat7ETM+sceneisshown.Cloudcoveredareaswerefilled withclassificationoutputfromtheLandsat5TMimageacquiredon9August. Greenareasrepresent Dicymbe corymbosa dominantandmonodominantforest, bluedepicts Micrandra dominantforest,andorangeindicatesmixedspecies forestlacking D. corymbosa .

DISCUSSION

ClassificationofForestTypes

SupervisedclassificationofLandsatimageryperformedwellindistinguishing foresttypesdominatedbyasingletreespeciesfrommixedspeciesforest.Iachievedan accuracyof>80percentuser’saccuracyfor D. corymbosa (80.7,89.9percent) and

Micrandra (87.0,96.2percent) dominatedstands.Thisaccuracylevelcanbeconsidered acceptable,since>85percentaccuracyisoftensetasanuppertargetforlesscomplex landcoverclasses(Foody2002).Themostcommonmisclassificationwas D. corymbosa forestbeingincorrectlylabeledasmixedspeciesforest(Table2,3).This misclassificationmayarisefrom:1)combiningmultipletypesofnonD. corymbosa, mixedspeciesforestintotwogeneralcategories(Table1),creatinghighspectral variationwithintheclass,and2)relativelylowspectralseparabilityobservedbetween D. corymbosa andmixedspeciesforestclasses.Spectralreflectanceofmonodominant forestsislikelyinfluencedbywithinstanduniformityofcrownstructure,leaf composition,andverticalstratification,allowingdiscriminationfromstructurally complex,speciesdiverseforests(Henkel2003).Inaddition, D. corymbosa ’sreiterative coppicingmayplayanimportantroleinreducingcanopylianaload,thusreducing spectralvariationofwithinstandcanopyreflectanceincontrasttomixedspecies,liana richforest (Richards1996,Henkel2003,Clarket al. 2005,Woolley et al. 2007).

Spectralseparationbetweenthe Micrandra forestclassandthe D. corymbosa andmixed speciesforestclassesmaybeaccentuatedbyahighvegetationmoisturecontentof

Micrandra ’scanopyandthepresenceofwaterbeneaththeforest (Mayaux et al. 2000).

Bothoftheseconditionscanstronglyinfluencereflectanceinshortwaveinfrared

26 27

(SWIR)portionoftheelectromagneticspectrum(Mayaux et al .2000,Lillesand&Kiefer

2004).

Directcomparisonsbetweenmyresultsandotherpublishedresearchis challengingbecausepreviousremotesensingstudiesinthetropicsfocusedonmapping broad,generalprimaryandsecondaryforestcovercategories,withlittlefinescaleforest typedifferentiation(Hansen et al .2000,Mayaux et al. 2000,Vieiraetal2003,Eva et al .

2004,Stibig et al .2004,Thenkabail et al .2004,Joshi et al .2006).Furthercomplications arisewhenstudiesdonotincludedetailedinformationonvegetationclassdefinitions, samplingdesign,andindividualclassaccuracyassessment(Foody2002,Powell et al.

2004,Salovaara et al .2005).

Insomecases,IfoundthatmyDicymbe and Micrandra forestclassaccuracies werecomparabletothoseobtainedforevergreenbroadleaftropicalforestsinSouth

AmericaandIndia(Hansen2000,Joshi et al. 2006).Incaseswheredetailedforestcover discriminationwasproblematic,mymonodominantforestclassaccuraciesexceeded thoseofpriorstudies.Thesestudiesfoundvariousprimarytropicalcanopyforestclasses couldnotbeseparatedfromothercoverclasses,suchasmixeddeciduous,floodplain, semievergreen,degradedprimary,andlatesecondarysuccessionalforest,withmulti spectralsensordata(Foody&Hill1996,Mayaux2000,Stibig et al .2004,Thenkabail et al .2004,Carreiras et al. 2006).However,inthePeruvianAmazon,Salovaara et al. 2005 usedLandsatETM+andelevationdatatodifferentiateamongthreefloristicallydefined typesofprimarylowlandtropicalforest,withclassaccuraciesrangingfrom48.0to94.6 percentuser’saccuracy.MystudyandthatofSalovaara et al .(2005)bothfocusedon classifyingrelativelystructurallyhomogeneous,closedcanopyprimarytropicalforest.

28

Theirworkdiffersfrommineinthattheirforestclassesarestillsomewhatbroaderand likelyofhighertreespeciesdiversityandinternalheterogeneitythanmymonodominant forestclasses(Salovaara et al. 2005).BothHill(1999)andMayaux et al .(2000)found lowdiversity,closedcanopyswampforestcouldbeseparatedfromotherforestclasses byspectralreflectance.

RegionalDistribution

Dicymbe corymbosa forestappearsparticularlywidespreadovera40kmstretch southoftheUpperPotaroRivertotheUpperIrengRiverBasin(Fanshawe1952,

Richards1996,Henkel et al. 2005).Myclassificationmapindicates D. corymbosa monodominantforestoccursonlowlandwhitesanddrainages,aswellasonironstone hillswithwhichitisoftenassociated(Fanshawe1952,Henkel2003).Interestingly,for the D. corymbosa class,bothofmyclassifications(1989&1999)hadlowererrorsof commission(producer’saccuracy)thanofomission(user’saccuracy).Myclassification identifiedonly58.7(1989)to71.3(1999)percentoftotal D. corymbosa present; however,theareaitclassifiedas D. corymbosa hasan89.8(1989)to80.7(1999)percent chanceofactuallybeing D. corymbosa in situ .Thismakesmyclassified D. corymbosa mapandthusmyestimateofthespecies’distributionquiteconservativeinthatwhen D. corymbosa wasmapped,thereisahighprobabilityitisactuallythere.However,thereis alsoagoodchance(41.3percent,1989image;23.6percent,1999image)somestandsof

D. corymbosa weremissed.

MyD. corymbosa classificationlikelydefinesthecoreareasofectomycorrhizal fungalhabitatinthestudyarea;however,ectomycorrhizalfungimaynotnecessarilybe restrictedtothisdistribution.Inparticular,ectomycorrhizalfungimayoccurinspecific

29 localeswithinthemixedforestmatrixinassociationwiththeectomycorrhizaltree

Dicymbe altsonii (Henkel et al. 2002).Inmyfieldsurveys, D. altsonii wasfoundto occurpatchilywithindiversemixedspeciesforestandinsomecasesasacodominantin

D. corymbosa stands.Icouldnotseparate D. altsonii from D. corymbosa ormixed speciesforestbyspectralreflectance.Thismaybearesultof:1)mysmall D.altsonii containingforestsamplesize,2)thecomplexityofandvariabilityamong D. altsonii foresttypes,or3)thephysiognomyandstructuralcharacteristicsof D.altsonii ,which doesnotdominatetheforest’sverticalstratatothesamedegreeasD. corymbosa (Zagt

1997,Henkel et al. 2002). Dicymbe altsonii mayactaslowdensitysourcesof ectomycorrhizalwithinanectotrophicmixedspeciesforestandprovideimportant ectomycorrhizalcommunityconnectivitybetween D. corymbosa stands(Henkel et al .

2002).

Myclassificationmapalsoshowslargeswathsof Micrandra dominatedforest extendingnorthfromtheUpperPotaroRiverthroughblackwaterdrainagesystems.

Therehasbeenlittleworkconductedontheseforests,whichmaybedominatedbyeither

M. glabra or M. spruceana occurringonshallowsandysoils(Fanshawe1952).As examplesoftropical“heath”forestsandtheirattendantblackwaterdrainagesystems theseforestscouldserveasstudysystemsforregionalinvestigationsoftheseecologically uniquecommunities(Janzen1974).

MyuseofsupervisedclassificationofLandsatimagerytomapthedistributionof

D. corymbosa and Micrandra dominatedstandsisparticularlypromisinggivenprevious studies’difficultiesindifferentiatingamongprimarytropicalforestsubtypes(Foody&

Hill1996,Mayaux2000,Thenkabail et al. 2004).However,otherstudiessuggestfurther

30 stepsthatcouldbetakentorefinemyclassification.Inparticular,imagesegmentation, multidateanalysis,andpreclassificationimagesmoothinghavebeenshowntoincrease

Landsatclassificationaccuraciesfortropicalforestclasses(Hill1999,Tottrup2003).

Hyperspectralsensors,whichgivedetailedreflectanceinformationforover50narrow spectralbands(spanningthevisible,nearinfrared,andshortwaveinfraredregionsofthe electromagneticspectrum),showgreatpromisefordetailedmappingoftropicalforest classes(Cochrane2000;Thenkabail et al .2004;Clark et al .2005;Zhang et al .2006).

WhencomparedtoLandsatETM+imagery,hyperspectraldataanalysisallowed separationofcomplextropicalmoistforestclasseswithmuchhigheraccuracy:96 percentvs.42percent(Thenkabail et al .2004).However,thehighexpenseofacquiring hyperspectraldata,thelackofcurrentlyoperatingplatforms,andtheadvanceddata storageandprocessingcapacitynecessaryforanalysisindicatethattheuseof hyperspectraldataisnotaviablesolutionformoststudies(Fuller2006,Zhang et al .

2006).Inparticular,itslimitedgeographicandtemporalcoverageisproblematicto researchersworkinginremotetropicalregionswithabundantcloudcover(Fuller2006).

Landsatdata’saffordability,widespreadavailability,globallycomprehensiveacquisition policy,andhistorictimeseriesmakeittheattractivechoiceformosttropicalstudies

(Cohen&Goward2004,Fuller2006).

FutureApplications

Mystudyisthefirsttofocusonidentifyingspeciesspecifictropical monodominantforestusingremotelysenseddata.IfoundLandsatimagerysuitablefor mappingthedistributionof D. corymbosa monodominantforestsintheUpperPotaro

RiverBasin.Thisapproachshouldbeusefulinidentifyingsitesforforestecological

31 studiesandectomycorrhizalfungalsurveys.Additionally,withproperpreprocessingof

Landsatimagery(Bruce&Hilbert2004)thistechniqueshowspotentialtoestimatethe regionaldistributionsofDicymbe corymbosa forests,andhelpguidestudiesinvolving regionalscaleprocessescontributingtomonodominance,suchasmastfruiting(e.g.

Henkel et al. 2005).Highclassificationaccuracyfor Micrandra dominatedforest indicatesthatmyapproachoffersarelativelystraightforward,inexpensivemeansof gainingabetterunderstandingofthisunderstudiedforestassociation. Isuggest supervisedclassificationofLandsatimagery(employingdetailedtrainingdata)maybe applicabletomappingothertropicalmonodominantspecies( e.g. Gilbertiodendron dewevrei and Drybalanops aromatica )inremoteregions,suchasAfrica’sCongoBasin andlowlandtropicalAsia.

LITERATURECITED

Asner,G.P.2001.CloudcoverinLandsatobservationsoftheBrazilianAmazon. InternationalJournalofRemoteSensing22:3855–3862. Bohlman,S.,J.B.Adams,M.O.Smith,andD.L.Peterson.1998.Seasonalfoliage changesintheEasternAmazonBasindetectedfromLandsatThematicMapper satelliteimages.Biotropica30:376–391.

Boyd,D.S.andF.M.Danson.2005.Satelliteremotesensingofforestresources:three decadesofresearchdevelopment.ProgressinPhysicalGeography29:1–26. Bruce,C.M.andD.W.Hilbert.2004.PreprocessingMethodologyforApplicationto LandsatTM/ETM+ImageryoftheWetTropics.CooperativeResearchCentrefor TropicalRainforestEcologyandManagement.RainforestCRC,Cairns,Australia. Carreiras,J.B.,Pereira,J.,Campagnolo,M.L,andY.E.Shimabukuro.2006.Assessing theextentofagriculture/pastureandsecondarysuccessionforestintheBrazilian LegalAmazonusingSPOTVEGETATIONdata.RemoteSensingof Environment101:283298. Cayuela,L.,D.J.Golicher,andJ.M.ReyBenayas.2006.TheExtent,Distribution,and FragmentationofVanishingMontaneCloudForestintheHighlandsofChiapas, Mexico.Biotropica38:544–554. Clark,M.L.,Roberts,D.A.,andD.BClark.2005.Hyperspectraldiscriminationof tropicalrainforesttreespeciesatleaftocrownscales.RemoteSensingof Environment96:375398. Cochrane,M.A.2000.Usingvegetationreflectancevariabilityforspecieslevel classificationofhyperspectraldata.InternationalJournalofRemoteSensing21: 2075−2087. Cohen,W.andS.N.Goward.2004.Landsat’sroleinecologicalapplicationsofremote sensing.Bioscience54:535545. Congalton,R.,andK.Green.1999.AssessingtheAccuracyofRemotelySensedData: PrinciplesandPractices.CRC/LewisPress,BocaRaton,Florida. Connell,J.H.,andM.D.Lowman.1989.Lowdiversitytropicalrainforests:some possiblemechanismsfortheirexistence.AmericanNaturalist134:88119. EnvironmentalSystemsResearchInstitute.2006.ArcGIS9:UsingArcGISDesktop. ESRIPress,Redlands,California.

32 33

ERDASIMAGINE.2005.ErdasImagineFieldGuide.ERDASInc.,Atlanta,Georgia. Eva,H.D.,A.S.Belward,E.E.DeMiranda,C.M.DiBella,V.Gond,O.Huber,S.Jones, M.Sgrenzaroli,andS.Fritz.2004.AlandcovermapofSouthAmerica.Global ChangeBiology10:731–744. Fanshawe,D.B.1952.ThevegetationofBritishGuiana:apreliminaryreview.Institute paperNo.39,ImperialForestryInstitute,Oxford,UK. Foody,G.M.2002.Statusoflandcoverclassificationaccuracyassessment.Remote SensingofEnvironment80:185201. Foody,G.M.,Boyd,D.S.,andM.E.Cutler.2003.Predictiverelationsoftropicalforest biomassfromLandsatTMdataandtheirtransferabilitybetweenregions.Remote SensingofEnvironment85:463−474. Foody,G.M.andR.A.Hill.1996.ClassificationoftropicalforestclassesfromLandsat TMdata.InternationalJournalofRemoteSensing17:23532367. Fulgenzi,T.D.,Henkel,T.W.,andR.Halling.2007. Tylopilus orsonianus sp.nov.and Tylopilus eximius fromGuyana.Mycologia(inpress). Fuller,D.O.2006.Tropicalforestmonitoringandremotesensing:Aneweraof transparencyinforestgovernance?SingaporeJournalofTropicalGeography27: 15–29. Gillespie,T.W.,Brock,J.,andC.W.Wright.2004.Prospectsforquantifyingstructure, floristiccompositionandspeciesrichnessoftropicalforests.InternationalJournal ofRemoteSensing25:707–715. GlobalLandCoverFacility.2007.GLCFLandsatTechnicalGuide: http://glcf.umiacs.umd.edu/data/guide/technical/landsat.shtml. Green,K.,D.Kempka,andL.Lackey.1994.Usingremotesensingtodetectandmonitor landcoverandlandusechange.PhotogrammetricEngineeringandRemote Sensing60:331337. Hansen,M.C.,R.S.DeFries,andJ.G.Townshend.2000.Globallandclassificationat1 kmspatialresolutionusingaclassificationtreeapproach.InternationalJournalof RemoteSensing21 : 1331–64. Hart,T.B.1990.Monospecificdominanceintropicalrainforests.TrendsinEcologyand Evolution5:611.

34

Hart,T.B.,J.A.Hart,andP.G.Murphy.1989. Monodominantandspeciesrichforests ofthehumidtropics:causesfortheiroccurrence.AmericanNaturalist 133:613 633. Henkel,T.W.1999.Newtaxaanddistributionrecordsfor Tylopilus from Dicymbe forestsofGuyana.Mycologia91:655665. Henkel,T.W.2001. Tylopilus pakaraimensis sp.nov.,anewboletein Tylopilus section Potamogetones fromGuyana. Mycotaxon 78:105114. Henkel,T.W.2003.Monodominanceintheectomycorrhizal Dicymbe corymbosa (Caesalpiniaceae)fromGuyana.JournalofTropicalEcology 19:417437.

Henkel,T.W.,J.R.Mayor,andL.P.Woolley.2005a.Mastfruitingandseedlingsurvival oftheectomycorrhizal,monodominant Dicymbe corymbosa (Caesalpiniaceae)in Guyana.NewPhytologist167:543556. Henkel,T.W.,R.Meszaros,M.C.Aime,andA.Kennedy.2005b.Newspeciesof Clavulina fromthePakaraimaMountainsofGuyana.MycologicalProgress4: 342350. Henkel,T.W.,T.Y.James,S.L.Miller,M.C.Aime,andO.K.Miller,Jr.2006.The mycorrhizalstatusof Pseudotulostoma volvata (Elaphomycetaceae,Eurotiales, Ascomycota).Mycorrhiza 16:241244. Henkel,T.W.,J.Terborgh,andR.Vilgalys.2002.Ectomycorrhizalfungiandtheir leguminoushostsinthePakaraimaMountainsofGuyana.MycologicalResearch 106:515531. Hill,R.A.1999.ImagesegmentationforhumidtropicalforestclassificationinLandsat TMdata.InternationalJournalofRemoteSensing20:1039–1044. Janzen,D.1974. Tropicalblackwaterrivers,animals,andmastfruiting.Biotropica6: 69103. Joshi,P.K.,P.S.Roy,S.Singh,S.Agrawal,andD.Yadav.2006.Vegetationcover mappinginIndiausingmultitemporalIRSWideFieldSensor(WiFS)data. RemoteSensingofEnvironment103:190202. Leigh,E.G,P.Davidar,C.W.Dick,J.P.Puyravaud,J.Terborgh,H.terSteege,andS.J. Wright.2004.Whydosometropicalforestshavesomanyspeciesoftrees? Biotropica36:447473. Lillesand,T.M.,andR.W.Kiefer.2004.Remotesensingandimageinterpretation,4th edition.JohnWiley,NewYork,NewYork.

35

Matheny,P.B.,M.C.Aime,M.C.,andT.W.Henkel.2003.Newspeciesof Inocybe fromDicymbe forestsofGuyana.MycologicalResearch107:495505. Mayaux,P.,F.Achard,andJ.P.Malingreau.1998.Globaltropicalforestmeasurements derivedfromcourseresolutionsatelliteimagery:acomparisonwithother approaches.EnvironmentalConservation 25:3752. Mayaux,P.,G.DeGrandi,andJ.P.Malingreau.2000.CentralAfricanforestcover revisited:amultisatelliteanalysis.RemoteSensingoftheEnvironment71:183 196. MillerS.L.,M.C.Aime,andT.W.Henkel.2002.TheRussulaceaeofthePakaraima MountainsofGuyana.Newspeciesofpleurotoid Lactarius .Mycologia94: 545553. Mayor,J.R.,andT.W.Henkel.2006.Doectomycorrhizasalterleaflitterdecomposition inmonodominanttropicalforestsofGuyana?NewPhytologist169:579588. Myers,J.,G.1936.SavannaandforestvegetationoftheInteriorGuianaPlateau.Journal ofEcology24:162184. Nascimento,M.T.andD.M.Villela.1997.Theforeststructure,floristiccomposition andsoilsofanAmazonianmonodominantforest.EdinburghJournalofBotany 54:138. NationalAeronauticsandSpaceAdministration.2003.Landsat7ScienceDataUsers Handbook.Website: http://ltpwww.gsfc.nasa.gov/IAS/handbook/handbook_toc.html. Powell,R.L.,Matzke,N.,deSouzaJr.,C.,Clark,M.,Numata,I.,Hess,L.L.,andD.A. Roberts.2004.Sourcesoferrorinaccuracyassessmentofthematiclandcover mapsintheBrazilianAmazon.RemoteSensingofEnvironment90:221–234. Read,J.M,Clark,D.B.Venticinque,E.MAndM.P.Moreira.2003.Applicationof merged1mand4mresolutionsatellitedatatoresearchandmanagementin tropicalforests.JournalofAppliedEcology40:592–600. Richards,P.W.,1996.TheTropicalRainforest.Anecologicalstudy.2ndedn. CambridgeUniversityPress,Cambridge. Salovaaraa,J.K.,Thesslerb,S.,Malikc,R.N.,andH.Tuomisto.2005.Classificationof AmazonianprimaryrainforestvegetationusingLandsatETM+satelliteimagery RemoteSensingofEnvironment97:3951. Skole,D.andC.Tucker.1993.Tropicaldeforestationandhabitatfragmentationinthe Amazon:Satellitedatafrom1978to1998.Science260:1905–1910.

36

Souza,C.M.,Roberts,D.A.,andM.A.Cochrane.2005.Combiningspectralandspatial informationtomapcanopydamagefromselectiveloggingandforestfires. SensingofEnvironment98:329343. Stibig,H.J.,F.Achard,andS.Fritz.2004.Anewforestcovermapofcontinental southeastasiaderivedfromSPOTVEGETATIONsatelliteimagery.Applied VegetationScience7:153162. Thenkabail,P.S.,Enclona,E.A.,andM.S.Ashton.2004.Hyperion,IKONOS,ALI,and ETM+sensorsinthestudyofAfricanrainforests.RemoteSensingof Environment90:2343. Torti,S.D.,P.D.Coley,andT.A.Kursar.2001.Causesandconsequencesof monodominanceintropicallowlandforests.AmericanNaturalist 157:141153. Tottrup,C.2004.ImprovingtropicalforestmappingusingmultidateLandsatTMdata andpreclassificationimagesmoothing.InternationalJournalofRemoteSensing 25:717730. Vieira,I.C.G.,deAlmeida,A.S.,Davidson,E.A.,Stone,T.A.,deCarvalho,C.R.,and J.B.Guerrero.2003.ClassifyingsuccessionalforestsusingLandsatspectral propertiesandecologicalcharacteristicsinEasternAmazonia.RemoteSensingof Environment87:470481. Whitmore,T.C.1984.TropicalRainforestsoftheFarEast.2ndedn.ClarendonPress, Oxford. Woolley,L.P.,T.W.Henkel,andS.C.Sillett.2007.Reiterationinthemonodominant tropicaltree Dicymbe corymbosa (Caesalpiniaceae)anditspotentialadaptive significance.Biotropica(inpress). Zagt,R.J.1997 . Stemsproutingof Dicymbe altsonii inthetropicalrainforestofGuyana: impactofsoiltypeandpotentialforregeneration.Pages5572in R.J.Zagt, editor.TreedemographyinthetropicalrainforestofGuyana. TropenbosGuyana Programme,Georgetown,Guyana. Zhang,J.,B.Rivard,A.SánchezAzofeifa,andK.CastroEsau.2006.Intraandinter classspectralvariabilityoftropicaltreespeciesatLaSelva,CostaRica: ImplicationsforspeciesidentificationusingHYDICEimagery.RemoteSensing ofEnvironment105:129–141.