arXiv:1606.04850v4 [math.NT] 12 Feb 2017 aoyams ainlzt eis oyam function. polygamma series, zeta rational gapolygammas, ue series: Euler 2010 where e od n phrases. and words Key .General 7. .General 6. n13,LoadElrpoe naaigrsl,nwkona the as known now result, amazing an proved Euler Leonard 1734, In References .General 4. .Rational 5. .Rational Paper the of 2. Organization 1.1. Introduction 1. .General 3. EEAIE AINLZT EISFOR SERIES ZETA RATIONAL GENERALIZED ahmtc ujc Classification Subject Mathematics Abstract. ζ ...Lm.Ltr euetesm nlssbtfrtedgmafunc digamma the for but analysis same the conjectu use a ze we prove rational Later, we 3.1, generalized Lima. Theorem of from F.M.S. results family our fu second of Clausen case a generalized special discover the to using results series those zeta rational generalized of eeaie ainlzt eiswith series zeta rational generalized n negapolygammas and (2 ζ k ( s 1 and +1) steReanzt ucin endas defined function, zeta Riemann the is ) ζ ζ ζ ζ ζ ζ (2 (2 (2 (2 (2 (2 nti ae,w n ainlzt eiswith series zeta rational find we paper, this In n n n n β n n ζ eisuigcot( using series ) eisuigCl using series ) (2 )sre using series 1) + )sre using series 1) + eiswt cot( with series ) 2 = (2) )sre using series 1) + k ,teDrcltbt ucin ete eeo eti family certain a develop then We function. beta Dirichlet the ), imn eafnto,Drcltbt ucin lue nerl ne integral, Clausen function, beta Dirichlet function, zeta Riemann ψ X n ( ∞ =1 − ζ m ( ) n 1 s ( 2 x 1. = ) .Wt hs,w xrc h aetofmle of families two same the extract we these, With ). + 1 = Introduction EE ORR DEREK m Contents X rmr 01,1M9 eodr 41A58. Secondary 11M99. 40C10, Primary . n ζ ∞ ( ψ ψ x x =1 ζ ψ x (2 (2 ) ) ( ( ) − ( x n n n 4 1 x 1 m ) 1 s 1 ntenmrtrrte than rather numerator the on +1) ) 1) + ) + , ( x ℜ 1 9 18 ) ( + s ) 16 1 > + 1 . · · · = π egvni 02by 2012 in given re ζ 6 (2 2 , n cinaduse and nction asre.A a As series. ta ntrsof terms in ) ζ (2 tion n ) ζ (2 ψ AND celebrated ( n x ). ) 16 26 22 12 8 5 1 5 - 2 DEREK ORR

Later, Euler gave the formula

∞ 1 (−1)k+1B (2π)2k ζ(2k)= = 2k , k ∈ N , n2k 2(2k)! 0 n=1 X

where Bn are the Bernoulli numbers, defined by

z ∞ B = n zn, |z| < 2π. ez − 1 n! n=0 X These Bernoulli numbers also arise in certain power series, namely of the cotangent function

∞ (−1)n22nB ∞ ζ(2n) (1) cot(x)= 2n x2n−1 = −2 x2n−1, |x| < π. (2n)! π2n n=0 n=0 X X The odd arguments of ζ(s) are the interesting as they do not have a closed form, though many mathematicians have studied them in detail. In 1979, Roger Apery [3] proved that ζ(3) is irrational using the fast converging series

5 ∞ (−1)n−1 ζ(3) = . 2 3 2n n=1 n n X  It is still unknown whether ζ(5) is irrational however, it is known that at least one of ζ(5), ζ(7), ζ(9), and ζ(11) is irrational (see [18]). The rational zeta series in this paper will involve odd arguments of ζ(s) among other things. Another main function needed is the Clausen function (or Clausen’s integral),

∞ sin(kθ) θ φ (2) Cl2(θ) := 2 = − log 2 sin dφ. k 0 2 Xk=1 Z    The Clausen function also has a power series representation which will be used later in the paper. It is given as

∞ Cl (θ) ζ(2n) θ 2n (3) 2 =1 − log |θ| + , |θ| < 2π. θ n(2n + 1) 2π n=1 X   There are also higher order Clausen-type function defined as

∞ sin(kθ) ∞ cos(kθ) (4) Cl (θ) := , Cl (θ) := . 2m k2m 2m+1 k2m+1 Xk=1 Xk=1 GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 3

The Clausen function is widely studied and has many applications in mathematics and mathematical physics ([5], [6], [9], [12], [14], [15], [17]). We will also discuss the Dirichlet beta function

∞ (−1)n β(s)= , ℜ(s) > 0. (2n + 1)s n=0 X When s = 2,

∞ (−1)n β(2) = G = (2n + 1)2 n=0 X is known as Catalan’s constant. Using this and the , we find

(4m − 1)ζ(2m + 1) (5) Cl (π)=0, Cl (π)= − , 2m 2m+1 4m

and

(4m − 1)ζ(2m + 1) (6) Cl (π/2) = β(2m), Cl (π/2) = − . 2m 2m+1 24m+1

Also, from (4) we can see

d d (7) Cl (θ) = Cl (θ), Cl (θ)= − Cl (θ), dθ 2m 2m−1 dθ 2m+1 2m

θ θ (8) Cl2m(x) dx = ζ(2m + 1) − Cl2m+1(θ), Cl2m−1(x) dx = Cl2m(θ). Z0 Z0 Using (4) and (7), we find

θ (9) Cl (θ)= − log 2 sin , |θ| < 2π. 1 2    Writing others out,

z Cl3(z)= ζ(3) − Cl2(t) dt, Z0 z z x z Cl4(z)= Cl3(x) dx = zζ(3) − Cl2(t) dt dx = zζ(3) − (z − t) Cl2(t) dt, Z0 Z0 Z0 Z0 4 DEREK ORR z 1 1 z Cl (z) = ζ(5) − Cl (x) dx = ζ(5) − z2ζ(3) + (z − t)2 Cl (t) dt, 5 4 2 2 2 Z0 Z0 and by induction, for m ≥ 3,

− ⌊ m 1 ⌋ 2 k m−2k−1 m−1 (−1) z (10) Cl (z)=(−1)⌊ 2 ⌋ ζ(2k + 1) m (m − 2k − 1)! k=1 X − m 1 z (−1)⌊ 2 ⌋ + (z − t)m−3 Cl (t) dt. (m − 3)! 2 Z0 In the latter sections of this paper, we will focus on the . Its definition is given by

dn+1 ψ(n)(z) := log Γ(z), n ∈ N . dzn+1 0

This paper will discuss when n = 0. For n = 0, ψ(0)(z) = ψ(z) is called the . It has been shown (see [2]) that there is a closed form of z xnψ(x) dx in terms of sums involving Harmonic numbers, Bernoulli numbers 0 Zand Bernoulli polynomials. There are also definitions for negative order polygamma functions, called negapolygammas, given by

ψ(−1)(z) = log Γ(z),

z ψ(−2)(z)= log Γ(x) dx, Z0 z x z z z ψ(−3)(z)= log Γ(t) dtdx = log Γ(t) dxdt = (z − t) log Γ(t) dt, Z0 Z0 Z0 Zt Z0 and by induction, for n ≥ 2,

1 z (11) ψ(−n)(z)= (z − t)n−2 log Γ(t) dt. (n − 2)! Z0 Note the for log Γ(z) is

∞ (−1)kζ(k) (12) log Γ(z)= − log z − γz + zk, |z| < 1, k Xk=2 where γ is the Euler-Mascheroni constant. The last function to introduce is the Hurwitz zeta function, defined by GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 5

∞ 1 ζ(s, a)= , a ∈ R\ − N, ℜ(s) > 1. (k + a)s Xk=0 The negapolygammas are related to the derivative of the Hurwitz zeta function with respect to the first variable (see [2]).

πz p 1.1. Organization of the Paper. We begin by investigating 0 x cot(x) dx for |z| < 1, which is studied in [15]. We then compute this same integral using the power series for the cotangent and obtain a rational zeta series rRepresentation with ζ(2n) on the numerator for z = 1/2 and z = 1/4. Afterwords, we work on a generalized rational zeta series with ζ(2n) on the numerator and an arbitrary number of monomials on the denominator using the generalized Clausen function Clm(z). As a special case, we immediately prove a conjecture given in 2012 by F.M.S. Lima. After doing this, we go back to the cotangent function and discover a separate class of generalized ζ(2n) series. Lastly, we perform the same analysis but for the digamma function ψ(x) instead of cot(x) and instead of Clm(x), we use the negapolygammas ψ(−m)(x). Using the ζ(2n) sums from earlier, we extract the same rational zeta series representations with ζ(2n + 1) on the numerator for z =1/2 and z =1/4.

Acknowledgements. I would like to thank Cezar Lupu, Tom Hales, and George Sparling for their interest in my paper as well as their advice which led to some improvements of the paper.

2. Rational ζ(2n) series with cot(x)

Theorem 2.1. For p ∈ N and |z| < 1,

(13) p k+3 p πz ⌊ 2 ⌋ 2 p p p!(−1) p!(−1) x cot(x) dx =(πz) Cl (2πz)+δ p p ζ(p+1), k k+1 ⌊ 2 ⌋, 2 p 0 (p − k)!(2πz) 2 Z Xk=0

where δj,k is the Kronecker delta function.

Proof. Let f(z) be the left hand side of the equation and let g(z) be the right hand side. Note that f ′(z)= πp+1zp cot(πz). Using (7) and (9),

p k+3 1 p!(−1)⌊ 2 ⌋(p − k)(2π)p−kzp−k−1 (πz)p2π cos(πz) g′(z)= Cl (2πz)+ 2p (p − k)! k+1 2 sin(πz) k=0 X p k+3 1 p!(−1)⌊ 2 ⌋(2πz)p−k + (−1)k+12π Cl (2πz) 2p (p − k)! k Xk=1 n o 6 DEREK ORR

p p! Clk(2πz) k+2 k+3 = πp+1zp cot(πz)+(πz)p (−1)⌊ 2 ⌋ +(−1)⌊ 2 ⌋(−1)k . (p − k)!zk+1(2π)k−1 Xk=1   So indeed, g′(z)= πp+1zp cot(πz)= f ′(z). Clearly, f(0) = 0. For g(z), note that all terms in the sum are zero except when k = p. So we have

p 2 1 ⌊ p+3 ⌋ p!(−1) g(0) = p!(−1) 2 Clp+1(0) + δ p p ζ(p + 1). 2p ⌊ 2 ⌋, 2 2p

From (4), Cl (0) = δ p p ζ(p + 1). So we see g(0) = 0. Since f(0) = g(0) and p+1 ⌊ 2 ⌋, 2 f ′(z)= g′(z), f(z)= g(z). 

Using (5), (6), and (9), setting z =1/2 and z =1/4, we find

(14) p ⌊ 2 ⌋ p π/2 p k k 2 p π p!(−1) (4 − 1) p!(−1) ζ(p + 1) x cot(x) dx = log 2+ ζ(2k+1) +δ p p , 2k ⌊ 2 ⌋, 2 p 0 2 (p − 2k)!(2π) 2 Z    Xk=1  and

⌊ p ⌋ π/4 p 2 k k p 1 π p!(−1) (4 − 1) (15) x cot(x) dx = log 2 + 2k ζ(2k + 1) 0 2 4 (p − 2k)!(2π) Z    k=1 p+1 X ⌊ 2 ⌋ p p!(−4)kβ(2k) p!(−1) 2 − + δ p p ζ(p + 1). (p +1 − 2k)!π2k−1 ⌊ 2 ⌋, 2 2p Xk=1 

We can also integrate xp cot(x) using (1) and Fubini’s theorem. Doing so, we obtain

πz πz ∞ ζ(2n) ∞ ζ(2n)z2n xp cot(x) dx = −2 x2n−1+p dx = −2(πz)p , π2n 2n + p 0 0 n=0 n=0 Z Z X X and using (13),

∞ p k+3 p ζ(2n)z2n p!(−1)⌊ 2 ⌋ p!(−1) 2 (16) − 2 = Clk+1(2πz)+ δ p p ζ(p + 1). 2n + p (p − k)!(2πz)k ⌊ 2 ⌋, 2 (2πz)p n=0 X Xk=0

So for z =1/2 and z =1/4, we have GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 7

(17) p ∞ ⌊ 2 ⌋ p ζ(2n) p!(−1)k(4k − 1)ζ(2k + 1) p!(−1) 2 ζ(p + 1) − 2 = log 2 + + δ p p , (2n + p)4n (p − 2k)!(2π)2k ⌊ 2 ⌋, 2 πp n=0 X Xk=1 and

⌊ p ⌋ ∞ ζ(2n) 1 1 2 p!(−1)k(4k − 1)ζ(2k + 1) (18) − 2 = log 2 + (2n + p)16n 2 2 (p − 2k)!(2π)2k n=0 k=1 X p+1 X ⌊ 2 ⌋ p π p!(−4)kβ(2k) p!(−1) 2 2pζ(p + 1) − + δ p p . 2 (p +1 − 2k)!π2k ⌊ 2 ⌋, 2 πp Xk=1 Plugging in p = 1 into both of the equations yields two nice series representations for log 2,

∞ ζ(2n) (19) − 2 = log 2, (2n + 1)4n n=0 X and

4G ∞ ζ(2n) (20) − − 4 = log 2. π (2n + 1)16n n=0 X Other series from (17) and (18) are

∞ ζ(2n) 7ζ(3) = − log 2 + , (n + 1)4n 2π2 n=0 X ∞ ζ(2n) 1 9ζ(3) = − log 2 + , (2n + 3)4n 2 4π2 n=0 X ∞ ζ(2n) 9ζ(3) 93ζ(5) = − log 2 + − , (n + 2)4n π2 2π4 n=0 X ∞ ζ(2n) 1 35ζ(3) 4G = − log 2 + − , (n + 1)16n 2 4π2 π n=0 X and

∞ ζ(2n) 1 9ζ(3) 3G 24β(4) = − log 2 + − + . (2n + 3)16n 4 8π2 π π3 n=0 X 8 DEREK ORR

3. General ζ(2n) series using Clm(x)

Theorem 3.1. For p ∈ N0, m ∈ N and |z| < 1,

m+p+1 m k 2πz p+m+1−k ⌊ 2 ⌋ ⌊ 2 ⌋ p (2πz) p!(−1) (−1) (21) x Clm(x) dx = − Clk(2πz) 0 (p + m +1 − k)! Z k=Xm+1 ⌊ m ⌋ p+m + δ p+m p+m (−1) 2 p!(−1) 2 ζ(p + m + 1). ⌊ 2 ⌋, 2

Proof. Similar to the proof of (13), we will call the left hand side f(z) and the ′ p+1 p right hand side g(z). Note f(0) = g(0) and f (z)=(2π) z Clm(2πz). Using (7),

m+p m k p!(2π)p+m+1−kzp+m−k(−1)⌊ 2 ⌋+⌊ 2 ⌋ g′(z)= − Cl (2πz) (p + m − k)! k k=Xm+1 m+p+1 m k p!(2πz)p+m+1−k(−1)⌊ 2 ⌋+⌊ 2 ⌋ − (−1)k2π Cl (2πz) (p + m +1 − k)! k−1 k=Xm+1 n o

m+p p+m−k ⌊ m ⌋ m m+1 p!(2πz) (−1) 2 = −(2π)p+1zp(−1)⌊ 2 ⌋+⌊ 2 ⌋(−1)m+1 Cl (2πz) − 2π ∗ m (p + m − k)! k=Xm+1 ⌊ k+1 ⌋ k+1 ⌊ k ⌋ p+1 p Clk(2πz) (−1) 2 (−1) +(−1) 2 = (2π) z Clm(2πz). n o So indeed f ′(z)= g′(z) and f(0) = g(0), which implies f(z)= g(z). 

We can see if p = 0, we recover (8). Now letting z =1/2 and z =1/4, we find

⌊ p+m ⌋ π 2 k k m (−1) (4 − 1)ζ(2k + 1) p ⌊ 2 ⌋ p+m (22) x Clm(x) dx =(−1) p!π 2k 0 m+1 (p + m − 2k)!(2π) Z k=X⌊ 2 ⌋ ⌊ m ⌋ p+m + δ p+m p+m (−1) 2 p!(−1) 2 ζ(p + m + 1), ⌊ 2 ⌋, 2

and

⌊ p+m ⌋ π/2 2 k k m π p+m 1 (−1) (4 − 1)ζ(2k + 1) p ⌊ 2 ⌋ (23) x Clm(x) dx =(−1) p! 2k 0 2 2 (p + m − 2k)!(2π)  k=⌊ m+1 ⌋ Z   X2 ⌊ p+m+1 ⌋ 2 k k π (−1) 4 β(2k) ⌊ m ⌋ p+m − + δ p+m p+m (−1) 2 p!(−1) 2 ζ(p + m + 1). 2 (p + m +1 − 2k)!π2k ⌊ 2 ⌋, 2 k=⌊ m+2 ⌋  X2 GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 9

Now, we will integrate the left hand side of (21) using (3) and (10), giving us

m−1 2πz 2πz ⌊ 2 ⌋ m−1 (−1)⌊ 2 ⌋+kxm−2k−1 xp Cl (x) dx = xp ζ(2k + 1) m (m − 2k − 1)! Z0 Z0  k=1 X − ⌊ m 1 ⌋ x (−1) 2 + (x − t)m−3 Cl (t) dt dx (m − 3)! 2 Z0 

m−1 ⌊ 2 ⌋ m−1 m−1 ⌊ 2 ⌋+k m+p−2k ⌊ 2 ⌋ 2πz x (−1) (2πz) (−1) p m−3 = ζ(2k+1)+ x (x−t) Cl2(t) dtdx (m − 1 − 2k)!(m + p − 2k) (m − 3)! 0 0 Xk=1 Z Z

m−1 ⌊ 2 ⌋ m−1 m−1 (−1)⌊ 2 ⌋+k(2πz)m+p−2k (−1)⌊ 2 ⌋ = ζ(2k +1)+ ∗ (m − 1 − 2k)!(m + p − 2k) (m − 3)! Xk=1 2πz x ∞ ζ(2n)t2n+1 xp(x − t)m−3 t − t log t + dtdx n(2n + 1)(2π)2n 0 0 n=1 Z Z  X 

m−1 ⌊ 2 ⌋ m−1 m−1 2πz (−1)⌊ 2 ⌋+k(2πz)m+p−2k (−1)⌊ 2 ⌋ xm−1(H − log x) = ζ(2k+1)+ xp m−1 (m − 1 − 2k)!(m + p − 2k) (m − 3)! 0 (m − 1)(m − 2) Xk=1 Z  ∞ 2ζ(2n)Γ(m − 2)xm+2n−1 + dx, 2n(2n + 1)(2n + 2) ... (2n + m − 1)(2π)2n n=1 X 

where Hk is the k-th harmonic number and H0 := 0. Integrating again and simplifying, we arrive at

m−1 2πz p+m ⌊ 2 ⌋ p (2πz) (−1) Hm−1 − log(2πz) 1 (24) x Clm(x) dx = + 2 0 (m − 1)! (p + m) (p + m) − Z  ⌊ m 1 ⌋ 2 (m − 1)!(−1)kζ(2k + 1) ∞ (m − 1)!ζ(2n)z2n + + . (m − 1 − 2k)!(p + m − 2k)(2πz)2k n(2n + 1) ... (2n + m − 1)(2n + p + m) n=1 Xk=1 X 

Using (21), we can rearrange this and find 10 DEREK ORR

∞ ζ(2n)z2n log(2πz) − H (25) = m−1 n(2n + 1) ... (2n + m − 1)(2n + m + p) (m − 1)!(p + m) n=1 m+pX k+1 p+m (−1)mp!(−1)⌊ 2 ⌋ (−1)m+1p!(−1) 2 + Clk+1(2πz)+ δ p+m p+m ζ(p + m + 1) (p + m − k)!(2πz)k ⌊ 2 ⌋, 2 (2πz)p+m k=m X − ⌊ m 1 ⌋ 1 2 (−1)kζ(2k + 1) − − . (m − 1)!(p + m)2 (m − 1 − 2k)!(m + p − 2k)(2πz)2k Xk=1

Note when p = 0, we have the very special formula

∞ m+1 ζ(2n)z2n (−1)m(−1)⌊ 2 ⌋ (26) = Cl (2πz) n(2n + 1) ... (2n + m) (2πz)m m+1 n=1 X − ⌊ m 1 ⌋ 3m 2 k (−1) 2 (−1) ζ(2k + 1) log(2πz) − Hm − δ m m ζ(m + 1) − + . ⌊ 2 ⌋, 2 (2πz)m (m − 2k)!(2πz)2k m! Xk=1

Letting z =1/2 and z =1/4, we see that

∞ 3m+2 ζ(2n) (−1) 2 (2m+1 − 1)ζ(m + 1) (27) = δ m m n(2n + 1) ... (2n + m)4n ⌊ 2 ⌋, 2 (2π)m n=1 X − ⌊ m 1 ⌋ 2 (−1)kζ(2k + 1) log π − H − + m , (m − 2k)!π2k m! Xk=1

and

∞ 3m+1 ζ(2n) (−1) 2 2mβ(m + 1) (28) = δ m+1 m+1 n(2n + 1) ... (2n + m)16n ⌊ 2 ⌋, 2 πm n=1 X − ⌊ m 1 ⌋ 3m 2m+1 m 2 k 1 (−1) 2 (2 +2 − 1)ζ(m + 1) (−4) ζ(2k + 1) log(π/2) − Hm − δ m m − + , 2 ⌊ 2 ⌋, 2 (2π)m (m − 2k)!π2k m! Xk=1

both of which were conjectured in 2012 and only for m odd (see [13]). For general p, we have GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 11

∞ ζ(2n) log π − H (29) = m−1 n(2n + 1) ... (2n + m − 1)(2n + m + p)4n (m − 1)!(p + m) n=1 X p+m p+m ⌊ 2 ⌋ 2 k k m+1 (−1) (−1) (4 − 1)ζ(2k + 1) +(−1) p! δ p+m p+m ζ(p + m +1)+ ⌊ 2 ⌋, 2 πp+m (p + m − 2k)!(2π)2k  k=⌊ m+1 ⌋  X2 − ⌊ m 1 ⌋ 2 (−1)kζ(2k + 1) 1 − − , (m − 1 − 2k)!(p + m − 2k)π2k (m − 1)!(p + m)2 Xk=1 and

∞ ζ(2n) log(π/2) − H π (30) = m−1 + ∗ n(2n + 1) ... (2n + m − 1)(2n + m + p)16n (m − 1)!(p + m) 2 n=1 p+m+1X ⌊ 2 ⌋ p+m p!(−1)m+k4kβ(2k) (−1)m+1p!(−1) 2 2p+m p!(−1)m +δ p+m p+m ζ(p+m+1)− ∗ 2k ⌊ 2 ⌋, 2 p+m m+2 (p + m +1 − 2k)!π π 2 k=X⌊ 2 ⌋ − ⌊ p+m ⌋ ⌊ m 1 ⌋ 2 (−1)k(4k − 1)ζ(2k + 1) 2 (−1)k4kζ(2k + 1) 1 − − . (p + m − 2k)!(2π)2k (m − 1 − 2k)!(p + m − 2k)π2k (m − 1)!(p + m)2 m+1 k=1 k=X⌊ 2 ⌋ X

Remark. When m = 1 and p = 0, one has

∞ ζ(2n) = log π − 1, n(2n + 1)4n n=1 X and

∞ ζ(2n) 2G π = − 1 + log , n(2n + 1)16n π 2 n=1 X   the first of which is a famous series (see [16]) and both are immediate from (3) with θ = π and θ = π/2, respectively. Below we compute other sums for certain m and p.

∞ ζ(2n) 3ζ(3) 1 1 = − + log π − n(2n + 3)4n 2π2 3 9 n=1 X ∞ ζ(2n) 7ζ(3) 3 = − log π − n(2n + 1)(n + 1)4n 2π2 2 n=1 X 12 DEREK ORR

∞ ζ(2n) 2ζ(3) 1 11 = + log π − n(2n + 1)(n + 1)(2n + 3)4n π2 3 18 n=1 X ∞ ζ(2n) 2ζ(3) 31ζ(5) 1 7 = + + log π − n(2n + 1)(n + 1)(n + 2)4n π2 4π4 2 8 n=1 X ∞ ζ(2n) ζ(3) ζ(5) 1 137 = − + log π − n(2n + 1) ... (2n + 5)4n 6π2 π4 120 7200 n=1 X ∞ ζ(2n) 35ζ(3) 4G π 1 = − + + log − n(n + 1)16n 4π2 π 2 2 n=1 X   ∞ ζ(2n) 35ζ(3) π 3 = + log − n(2n + 1)(n + 1)16n 4π2 2 2 n=1 X   ∞ ζ(2n) 3ζ(3) 8β(4) 1 π 4 = + + log − n(2n + 1)(2n + 3)16n 8π2 π3 3 2 9 n=1 X   ∞ ζ(2n) 2ζ(3) 527ζ(5) 1 π 25 = − + log − n(2n + 1) ... (2n + 4)16n π2 32π4 24 2 288 n=1 X   Now, we will revisit the cotangent function and investigate a general zeta series using its power series.

4. General ζ(2n) series using cot(x)

Similar to above, we will investigate the double integral

πz x xp(x − t)mt cot(t) dt dx. Z0 Z0 Using the binomial theorem, (13), and a change of variables among other things,

πz x m m πz x xp(x − t)mt cot(t) dt dx = (−1)j xp+m−j tj+1 cot(t) dt dx j 0 0 j=0 0 0 Z Z X   Z Z

m j+1 k+3 πz m (−1)j(j + 1)!(−1)⌊ 2 ⌋ = xp+m+1−k Cl (2x) dx j (j +1 − k)!2k k+1 j=0 0 X Xk=0   Z m j+1 j 2 πz (−1) (j + 1)!(−1) m p+m−j + δ j+1 j+1 ζ(j + 2) x dx ⌊ 2 ⌋, 2 2j+1 j j=0 0 X   Z GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 13

m 2πz m m k m (−1)j+1 m (−1)j(j + 1)!(−1)⌊ 2 ⌋ = up+m+1 Cl (u) du + ∗ j 2m+p+2 1 j (j − k)!2p+m+2 j=0 0 X   Z Xk=0 Xj=k   ⌊ m+1 ⌋ 2πz 2 k p+m+2−2k p+m−k (2k)(−1) m!(πz) u Clk+2(u) du − 2k ζ(2k + 1) 0 2 (m +1 − 2k)!(p + m +2 − 2k) Z Xk=1

m 2πz ⌊ 2 ⌋ 2πz δm,0 p+1 (−1) m! p+1 = − p+2 u Cl1(u) du − (1 − δm,0) p+m+2 u Clm+1(u) du 2 0 2 0 Z m+1 Z m+1 ⌊ 2 ⌋ ⌊ 2 ⌋ 2πz k+1 p+m+2−2k (m + 1)!(−1) p (2k)(−1) m!(πz) ζ(2k + 1) + p+m+2 u Clm+2(u) du+ 2k . 2 0 2 (m +1 − 2k)!(p + m +2 − 2k) Z Xk=1

where we’ve evaluated the sum on j and k. The terms with δm,0 cancel each other. We can use (21) to evaluate the other integrals. Rearranging and simplifying, we will arrive at

πz x (31) xp(x − t)mt cot(t) dt dx =(p + m + 2) 2(−1)m(πz)m+p+3p!m!∗ Z0 Z0  p+m+3 ⌊ k ⌋ p+m m (−1) 2 Clk(2πz) p!(−1) 2 (−1) m!ζ(p + m + 3) + δ p+m p+m (p + m +3 − k)!(2πz)k ⌊ 2 ⌋, 2 2m+p+2 k=m+3  X m+1 m+1 ⌊ 2 ⌋ (−1)⌊ 2 ⌋m!(πz)p+1 Cl (2πz) (2k)(−1)k+1m!(πz)p+m+2−2kζ(2k + 1) − m+2 + . 2m+1 22k(m +1 − 2k)!(p + m +2 − 2k) Xk=1

Another way to evaluate this double integral is to use (1) and Fubini’s theorem, similar to the first section. Doing so, we see

πz x πz ∞ ζ(2n) x xp(x − t)mt cot(t) dt dx = −2 xp (x − t)mt2n dt dx π2n 0 0 0 n=0 0 Z Z Z X Z ∞ ζ(2n)m!Γ(2n + 1) πz = −2 x2n+m+p+1 dx π2nΓ(m +2n + 2) n=0 0 X Z ∞ ζ(2n)m!(πz)m+p+2z2n = −2 . (2n + 1) ... (2n + m + 1)(2n + m + p + 2) n=0 X

Putting this and (31) together, we find 14 DEREK ORR

∞ ζ(2n)z2n (32) =(p + m + 2) (−1)m+1p!∗ (2n + 1) ... (2n + m + 1)(2n + m + p + 2) n=0 X  p+m+3 ⌊ k ⌋ p+m m πz(−1) 2 Clk(2πz) p!(−1) 2 (−1) ζ(p + m + 3) − δ p+m p+m (p + m +3 − k)!(2πz)k ⌊ 2 ⌋, 2 2(2πz)m+p+2 k=m+3  X m+1 m+1 ⌊ 2 ⌋ (−1)⌊ 2 ⌋ Cl (2πz) k(−1)kζ(2k + 1) + m+2 + . 2(2πz)m+1 (2πz)2k(m +1 − 2k)!(m + p +2 − 2k) Xk=1

When p = 0, this formula simplifies to

∞ m+1 ζ(2n)z2n (−1)⌊ 2 ⌋ Cl (2πz) (33) = m+2 (2n + 1) ... (2n + m + 2) 2(2πz)m+1 n=0 X m+1 m ⌊ 2 ⌋ ⌊ 2 ⌋ m m k (−1) Clm+3(2πz) − δ⌊ 2 ⌋, 2 ζ(m + 3) (m + 2) k(−1) ζ(2k + 1) + m+2 + 2k . 2(2πz)  (2πz) (m +2 − 2k)! Xk=1

Setting z =1/2 and z =1/4, we obtain

∞ m+1 ζ(2n) (−1) 2 (2m+1 − 1)ζ(m + 2) (34) = −δ m+1 m+1 (2n + 1) ... (2n + m + 2)4n ⌊ 2 ⌋, 2 2(2π)m+1 n=0 X m+1 m ⌊ 2 ⌋ (−1) 2 (2m+3 − 1)(m + 2)ζ(m + 3) k(−1)kζ(2k + 1) − δ m m + , ⌊ 2 ⌋, 2 2(2π)m+2 (2πz)2k(m +2 − 2k)! Xk=1 and

∞ ζ(2n) m (35) =(−1)⌊ 2 ⌋(m + 2)∗ (2n + 1) ... (2n + m + 2)16n n=0 X m+1 2m+5 m+2 2 β(m + 2) (2 +2 − 1)ζ(m + 3) ⌊ m+1 ⌋ δ m+1 m+1 − δ⌊ m ⌋, m +(−1) 2 ∗ ⌊ 2 ⌋, 2 πm+2 2 2 4(2π)m+2   ⌊ m+1 ⌋ 2mβ(m + 2) (2m+1 − 1)ζ(m + 2) 2 k(−4)kζ(2k + 1) δ⌊ m ⌋, m − δ m+1 m+1 + . 2 2 πm+1 ⌊ 2 ⌋, 2 4(2π)m+1 π2k(m +2 − 2k)!   Xk=1

For general p, GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 15

∞ ζ(2n) (−1)mp!(m + p + 2) (36) = ∗ (2n + 1) ... (2n + m + 1)(2n + m + p + 2)4n 2 n=0 Xp+m+2 ⌊ 2 ⌋ p+m (−1)k(4k − 1)ζ(2k + 1) (−1) 2 ζ(p + m + 3) − δ p+m p+m (p + m +2 − 2k)!(2π)2k ⌊ 2 ⌋, 2 πm+p+2 m+3 ! k=X⌊ 2 ⌋ m+1 m+1 ⌊ 2 ⌋ (−1) 2 (2m+1 − 1)ζ(m + 2) k(−1)kζ(2k + 1) −δ m+1 m+1 + , ⌊ 2 ⌋, 2 2(2π)m+1 π2k(m +1 − 2k)!(m + p +2 − 2k) Xk=1 and

∞ ζ(2n) (−1)mp!(m + p + 2) (37) = ∗ (2n + 1) ... (2n + m + 1)(2n + m + p + 2)16n 4 n=0 X ⌊ p+m+2 ⌋ ⌊ p+m+3 ⌋ 2 (−1)k(4k − 1)ζ(2k + 1) 2 (−1)kβ(2k)4k − (p + m +2 − 2k)!(2π)2k (p + m +3 − 2k)!π2k−1 m+3 m+4 k=X⌊ 2 ⌋ k=X⌊ 2 ⌋ p+m m+1 (−1) 2 ζ(p + m + 3)2p+m+3 (−1)⌊ 2 ⌋2mβ(m + 2) − δ p+m p+m + δ m m ⌊ ⌋, m+p+2 ⌊ 2 ⌋, 2 m+1 2 2 π ! π m+1 m+1 ⌊ 2 ⌋ (−1) 2 (2m+1 − 1)ζ(m + 2) k(−1)kζ(2k + 1)4k −δ m+1 m+1 + . ⌊ 2 ⌋, 2 4(2π)m+1 π2k(m +1 − 2k)!(m + p +2 − 2k) Xk=1 Remark. For m = 0 and p = 0, we have

∞ ζ(2n) 7ζ(3) = − , (2n + 1)(n + 1)4n 2π2 n=0 X and

∞ ζ(2n) 2G 35ζ(3) = − , (2n + 1)(n + 1)16n π 4π2 n=0 X the first of which was rediscovered by Ewell (see [11]). Below we compute other sums for certain m and p.

∞ ζ(2n) 9ζ(3) = − (2n + 1)(2n + 3)4n 8π2 n=0 X ∞ ζ(2n) 3ζ(3) 31ζ(5) = − + (2n + 1)(n + 2)4n π2 2π4 n=0 X 16 DEREK ORR

∞ ζ(2n) 5ζ(3) = − (2n + 1)(2n + 2)(2n + 3)4n 8π2 n=0 X ∞ ζ(2n) ζ(3) 31ζ(5) = − − (2n + 1)(n + 1)(n + 2)4n 2π2 2π4 n=0 X ∞ ζ(2n) ζ(3) 49ζ(5) = − + (2n + 1) ... (2n + 5)4n 6π2 32π4 n=0 X ∞ ζ(2n) 9ζ(3) G 12β(4) = − + − (2n + 1)(2n + 3)16n 16π2 π π3 n=0 X ∞ ζ(2n) 61ζ(3) 12β(4) = − + (2n + 1)(2n + 2)(2n + 3)16n 16π2 π3 n=0 X ∞ ζ(2n) 2ζ(3) 527ζ(5) 4β(4) = − + − (2n + 1) ... (2n + 4)16n π2 16π4 π3 n=0 X Now, we will use these results to establish the same families of general rational zeta series but for ζ(2n + 1).

5. Rational ζ(2n + 1) series using ψ(x)

Theorem 5.1. For p ∈ N and |z| < 1,

p z p!(−1)kψ(−k−1)(z) (38) xpψ(x) dx = zp−k. 0 (p − k)! Z Xk=0 Proof. Let f(z) be the left hand side and g(z) be the right hand side. It is clear that f(0) = g(0) = 0 and f ′(z)= zpψ(z). Taking the derivative of g(z), we find

p p−1 p!(−1)kψ(−k)(z) p!(−1)kψ(−k−1)(z) g′(z)= zp−k + zp−k−1 (p − k)! (p − k − 1)! Xk=0 Xk=0 p p−1 p!(−1)kψ(−k)(z) p!(−1)kψ(−k−1)(z) = zpψ(z)+ zp−k + zp−k−1. (p − k)! (p − k − 1)! Xk=1 Xk=0 Reindexing the first sum, one can see the two sums cancel each other out. So, g′(z)= f ′(z) for all z. Since they are equal at z = 0, then f(z)= g(z). 

We can also compute this integral using (12). So we will have

z z 1 ∞ xpψ(x) dx = xp − γ − + (−1)kζ(k)xk−1 dx 0 0 x Z Z  Xk=2  GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 17

γ zp ∞ (−1)kζ(k) = − zp+1 − + zk+p. p +1 p k + p Xk=2 Setting these two results equal to each other, one has

p ∞ (−1)kζ(k) 1 γz p!(−1)kψ(−k−1)(z) (39) zk = + + . k + p p p +1 (p − k)!zk Xk=2 Xk=0

Now we can split this up as follows:

∞ (−1)kζ(k)zk ∞ ζ(2n)z2n ∞ ζ(2n + 1)z2n+1 = − . k + p 2n + p 2n + p +1 n=1 n=1 Xk=2 X X Using (13) and rearranging, we see

∞ p k+1 ζ(2n + 1)z2n 1 γ p!(−1)⌊ 2 ⌋π (40) = − − + Cl (2πz) 2n + p +1 2zp p +1 (p − k)!(2πz)k+1 k+1 n=1 k=0 X Xp p p!(−1) 2 π p!(−1)kψ(−k−1)(z) − δ p p ζ(p + 1) − . ⌊ 2 ⌋, 2 (2πz)p+1 (p − k)!zk+1 Xk=0

For z =1/2 and z =1/4, we find

⌊ p ⌋ ∞ ζ(2n + 1) 1 γ 2 p!(−1)k(4k − 1)ζ(2k + 1) (41) = − − log 2 − − (2n + p + 1)4n p p +1 (p − 2k)!(2π)2k n=1 k=1 X p X p p!(−1) 2 ζ(p + 1) p!(−2)kψ(−k−1)(1/2) − δ p p − 2 , ⌊ 2 ⌋, 2 πp (p − k)! Xk=0 and

⌊ p ⌋ ∞ ζ(2n + 1) 2 γ 2 p!(−1)k(4k − 1)ζ(2k + 1) (42) = − − log 2 − − (2n + p + 1)16n p p +1 (p − 2k)!(2π)2k n=1 k=1 p+1X X ⌊ 2 ⌋ p p p!(−4)kβ(2k) p!(−1) 2 2p+1ζ(p + 1) p!(−4)kψ(−k−1)(1/4) +π −δ p p −4 . (p +1 − 2k)!π2k ⌊ 2 ⌋, 2 πp (p − k)! Xk=1 Xk=0

Below we compute a few examples for specific p. Note that A is the Glaisher- 1 ′ Kinkelin constant, defined by log A = 12 − ζ (−1). 18 DEREK ORR

∞ ζ(2n + 1) 1 = −2 − γ + 12 log A − log 2 (n + 1)4n 3 n=1 X ∞ ζ(2n + 1) 1 γ 1 = − − + 4 log A − log 2 (2n + 3)4n 2 3 3 n=1 X ∞ ζ(2n + 1) 199 γ 3 = − − + 8 log A − 56ζ′(−3) − log 2 (2n + 5)4n 180 5 5 n=1 X ∞ ζ(2n + 1) γ 1 = −2 − + 18 log A + log 2π2 − 4 log Γ (2n + 2)16n 2 4 n=1 X   ∞ ζ(2n + 1) 1 1 γ 3ζ(3) 1 = −64ζ′ − 2, + + 4 log A + log 2π2 − + − 4 log Γ (2n + 3)16n 4 2 3 2π2 4 n=1 X    

6. General ζ(2n + 1) series using ψ(−m)(x)

Theorem 6.1. For p ∈ N0, m ∈ N and |z| < 1,

p z p!(−1)kψ(−k−m−1)(z) (43) xpψ(−m)(x) dx = zp−k. 0 (p − k)! Z Xk=0 Proof. The proof is exactly the same as the proof of (38) as there was no depen- dence on ψ(x)= ψ(0)(x). 

Now, let us compute this integral using (11) and (12). Doing so, we see

z z xp x ∞ (−1)kζ(k) xpψ(−m)(x) dx = (x−t)m−2 −γt−log t+ tk dt dx 0 0 (m − 2)! 0 k Z Z Z  Xk=2  z −xp γxm xm−1(log x − H ) ∞ (−1)kζ(k)Γ(m − 1)xm+k−1 = + m−1 − dx 0 (m − 2)! m(m − 1) m − 1 k(k + 1) ... (k + m − 1) Z  Xk=2  γzm+p+1 zm+p(H − log z) zm+p = − + m−1 + m!(m + p + 1) (m − 1)!(m + p) (m − 1)!(m + p)2 ∞ (−1)kζ(k)zm+p+k + . k(k + 1) ... (k + m − 1)(k + m + p) Xk=2

Setting this result equal to (43) and simplifying, one has the nice result GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 19

∞ (−1)kζ(k)zk γz (44) = k(k + 1) ... (k + m − 1)(k + m + p) m!(m + p + 1) k=2 X p log z − H 1 p!(−1)kψ(−k−m−1)(z) + m−1 − + . (m − 1)!(m + p) (m − 1)!(m + p)2 (p − k)!zm+k Xk=0 In the special case of p = 0, we have

∞ (−1)kζ(k)zk γz log z − H ψ(−m−1)(z) (45) = + m + . k(k + 1) ... (k + m) (m + 1)! m! zm Xk=2 Again, we can split (44) into

∞ (−1)kζ(k)zk ∞ ζ(2n)z2n = k(k + 1) ... (k + m − 1)(k + m + p) 2n(2n + 1) ... (2n + m − 1)(2n + m + p) n=1 Xk=2 X ∞ ζ(2n + 1)z2n+1 − , (2n + 1) ... (2n + m)(2n +1+ m + p) n=1 X and the first sum has been computed earlier. Using (25), we find

p ∞ ζ(2n + 1)z2n p!(−1)kψ(−k−m−1)(z) (46) = − (2n + 1) ... (2n + m)(2n + m +1+ p) (p − k)!zm+k+1 n=1 X Xk=0 m+p k+1 p+m (−1)mp! (−1)⌊ 2 ⌋ (−1) 2 ζ(p + m + 1) + Clk+1(2πz)−δ p+m p+m 2z (p + m − k)!(2πz)k ⌊ 2 ⌋, 2 (2πz)p+m  k=m  X− ⌊ m 1 ⌋ 1 2 (−1)kζ(2k + 1) log(2π/z)+ H − + m−1 2z (m − 1 − 2k)!(m + p − 2k)(2πz)2k 2z(m − 1)!(p + m) Xk=1 1 γ + − . 2z(m − 1)!(p + m)2 m!(p + m + 1)

If p = 0, we have the nice representation

− ⌊ m 1 ⌋ ∞ ζ(2n + 1)z2n ψ(−m−1)(z) 1 2 (−1)kζ(2k + 1) (47) = − − (2n + 1) ... (2n + m + 1) zm+1 2z (m − 2k)!(2πz)2k n=1 k=1 X ⌊ m ⌋ X (−1) 2 (Clm+1(2πz) − δ⌊ m ⌋, m ζ(m + 1)) log(2π/z)+ H γ + 2 2 + m − . 2z(2πz)m 2zm! (m + 1)! 20 DEREK ORR

and for z =1/2 and z =1/4, we have

∞ ζ(2n + 1) log 4π + H γ (48) = m − (2n + 1) ... (2n + m + 1)4n m! (m + 1)! n=1 X m−1 m ⌊ 2 ⌋ 2 m+1 k (−1) (2 − 1)ζ(m + 1) (−1) ζ(2k + 1) m+1 (−m−1) − δ m m − − 2 ψ (1/2), ⌊ 2 ⌋, 2 (2π)m (m − 2k)!π2k Xk=1

and

∞ ζ(2n + 1) 2 log 8π +2H γ (49) = m − (2n + 1) ... (2n + m + 1)16n m! (m + 1)! n=1 X m+1 m (−1) 2 2m+1β(m + 1) (−1) 2 (22m+1 +2m − 1)ζ(m + 1) − δ m+1 m+1 − δ⌊ m ⌋, m ⌊ 2 ⌋, 2 πm 2 2 (2π)m − ⌊ m 1 ⌋ 2 2(−4)kζ(2k + 1) − − 4m+1ψ(−m−1)(1/4). (m − 2k)!π2k Xk=1

For general p,

∞ ζ(2n + 1) log 4π + H (50) = m−1 (2n + 1) ... (2n + m)(2n +1+ m + p)4n (m − 1)!(m + p) n=1 X ⌊ p+m ⌋ 2 k k 1 γ m (−1) (4 − 1)ζ(2k + 1) + 2 − − (−1) p! 2k (m − 1)!(m + p) m!(m + p + 1) m+1 (p + m − 2k)!(2π) k=X⌊ 2 ⌋ p+m p m+1 2 k (−k−m−1) (−1) p!(−1) m+1 p!(−2) ψ (1/2) + δ⌊ p+m ⌋, p+m ζ(p + m + 1) − 2 2 2 πp+m (p − k)! k=0 − X ⌊ m 1 ⌋ 2 (−1)kζ(2k + 1) − , (m − 1 − 2k)!(m + p − 2k)π2k Xk=1

and GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 21

∞ ζ(2n + 1) 2 log 8π + H (51) = m−1 (2n + 1) ... (2n + m)(2n +1+ m + p)16n (m − 1)! (m + p) n=1 X  ⌊ p+m+1 ⌋ ⌊ p+m ⌋ 1 2 p!(−1)m+k4kβ(2k) 2 p!(−1)k+m(4k − 1)ζ(2k + 1) + + − (m + p)2 (p + m +1 − 2k)!π2k−1 (p + m − 2k)!(2π)2k  k=⌊ m+2 ⌋ k=⌊ m+1 ⌋ X2 X2 p+m p!(−1)m(−1) 2 2p+m+1ζ(p + m + 1) γ − δ p+m p+m − ⌊ 2 ⌋, 2 πp+m m!(m + p + 1) m−1 ⌊ ⌋ p 2 2(−4)kζ(2k + 1) p!(−4)kψ(−k−m−1)(1/4) − − 4m+1 . (m − 1 − 2k)!(m + p − 2k)π2k (p − k)! Xk=1 Xk=0 Below we compute some sums for certain m and p.

∞ ζ(2n + 1) 7 = −12 log A +2 − γ + log 2 (2n + 1)(n + 1)4n 3 n=1 X ∞ ζ(2n + 1) 1 γ 2 = −2 log A + − + log 2 (2n + 1)(2n + 3)4n 4 3 3 n=1 X ∞ ζ(2n + 1) 19 γ 89 = −4 log A + 20ζ′(−3) + − − log 2 (2n + 1)(n + 2)4n 36 2 90 n=1 X ∞ ζ(2n + 1) 3 γ = −8 log A + − + log 2 (2n + 1)(n + 1)(2n + 3)4n 2 3 n=1 X ∞ ζ(2n + 1) 53 γ 121 = −8 log A − 20ζ′(−3) + − + log 2 (2n + 1)(n + 1)(n + 2)4n 36 2 90 n=1 X ∞ ζ(2n + 1) 2 8 551 γ 1 = − log A + ζ′(−3) + − + log 2 (2n + 1) ... (2n + 5)4n 3 3 4320 120 24 n=1 X ∞ ζ(2n + 1) = −36 log A +4 − γ + 8 log 2 (2n + 1)(n + 1)16n n=1 X ∞ ζ(2n + 1) 1 3 1 γ = 32ζ′ − 2, − 2 log A − ζ(3) − − + 2 log 2 (2n + 1)(2n + 3)16n 4 4π2 4 3 n=1 X   ∞ ζ(2n + 1) 187 γ 41 = −8 log A + 45ζ′(−3) + − + log 2 (2n + 1) ... (2n + 4)16n 144 24 60 n=1 X To conclude, we will revisit the digamma function and find another general ζ(2n+ 1) series. 22 DEREK ORR

7. General ζ(2n + 1) series using ψ(x)

Similar to section 4, we will investigate the double integral

z x xp(x − t)mtψ(t) dt dx. Z0 Z0 Using the binomial theorem and (38) among other things, we find

z x m m z x xp(x − t)mtψ(t) dt dx = (−1)j xp+m−j tj+1ψ(t) dt dx j 0 0 j=0 0 0 Z Z X   Z Z

j+1 m m (−1)j(j + 1)!(−1)k z = xp+m+1−kψ(−k−1)(x) dx j (j +1 − k)! j=0 0 X Xk=0   Z

m m z = (−1)j xp+m+1ψ(−1)(x) dx j j=0 0 X   Z m m m (−1)j(j + 1)!(−1)k+1 z + xp+m−kψ(−k−2)(x) dx j (j − k)! 0 Xk=0 Xj=k   Z

z z z p+1 (−1) p+1 (−m−1) p (−m−2) = δm,0 x ψ (x) dx+(1−δm,0)m! x ψ (x) dx−(m+1)! x ψ (x) dx Z0 Z0 Z0

Simplifying and using (43), we find

(52) z x p k (−k−m−3) p m p (−m−2) p!(−1) ψ (z) x (x−t) tψ(t) dt dx = m!z zψ (z)−(m+p+2) k . 0 0 (p − k)!z Z Z  Xk=0 

Now we will evaluate the same integral using the power series for ψ(x) and Fubini’s theorem once again. Doing so, we see

z x z x ∞ xp(x−t)mtψ(t) dt dx = − xp (x−t)m tγ +1− (−1)kζ(k)tk dt dx 0 0 0 0 Z Z Z Z  Xk=2  z xm+2γ xm+1 ∞ (−1)kζ(k)m!xk+m+1 = − xp + − dx 0 (m + 1)(m + 2) m +1 (k + 1) ... (k + m + 1)! Z Xk=2 GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 23

−zp+m+3γ −zp+m+2 = + (m + 1)(m + 2)(m + p + 3) (m + 1)(m + p + 2) ∞ (−1)kζ(k)m!zp+m+2+k + (k + 1) ... (k + m + 1)(k + m + p + 2) Xk=2 Using this result and (52), we arrive at

∞ (−1)kζ(k)zk γz (53) = (k + 1) ... (k + m + 1)(k + m + p + 2) (m + 2)!(p + m + 3) k=2 X p 1 ψ(−m−2)(z) p!(−1)kψ(−k−m−3)(z) + + − (m + p + 2) . (m + 1)!(p + m + 2) zm+1 (p − k)!zk+m+2 Xk=0 Note when p = 0,

∞ (−1)kζ(k)zk γz + m +3 ψ(−m−2)(z) (m + 2)ψ(−m−3)(z) (54) = + − . (k + 1) ... (k + m + 2) (m + 3)! zm+1 zm+2 Xk=2 As before, we will split the sum in (53) as

∞ (−1)kζ(k)zk ∞ ζ(2n)z2n = (k + 1) ... (k + m + 1)(k + m + p + 2) (2n + 1) ... (2n + m + 1)(2n + m + p + 2) n=1 Xk=2 X ∞ ζ(2n + 1)z2n+1 − (2n + 2) ... (2n + m + 2)(2n + m + p + 3) n=1 X and using (32), we have

∞ ζ(2n + 1)z2n (55) =(p + m + 2) (−1)m+1p!∗ (2n + 2) ... (2n + m + 2)(2n + m + p + 3) n=1 X  p+m+3 ⌊ k ⌋ p+m m π(−1) 2 Clk(2πz) p!(−1) 2 (−1) ζ(p + m + 3) − δ p+m p+m (p + m +3 − k)!(2πz)k ⌊ 2 ⌋, 2 2z(2πz)m+p+2 k=m+3 pX p!(−1)kψ(−k−m−3)(z) γ 1 + − − (p − k)!zk+m+3 (m + 2)!(p + m + 3) 2z(m + 1)!(p + m + 2) k=0  X m+1 m+1 ⌊ 2 ⌋ (−1)⌊ 2 ⌋ Cl (2πz) ψ(−m−2)(z) k(−1)kζ(2k + 1) + m+2 − + . 2z(2πz)m+1 zm+2 z(2πz)2k(m +1 − 2k)!(m + p +2 − 2k) Xk=1 If p = 0, this simplifies to 24 DEREK ORR

∞ m+1 ζ(2n + 1)z2n (−1)⌊ 2 ⌋ Cl (2πz) (56) = m+2 (2n + 2) ... (2n + m + 3) 2z(2πz)m+1 n=1 X m+1 m ⌊ ⌋ ⌊ ⌋ 2 k (−1) 2 Clm+3(2πz) − δ⌊ m ⌋, m ζ(m + 3) (m + 2) k(−1) ζ(2k + 1) + 2 2 + 2z(2πz)m+2 z(2πz)2k(m +2 − 2k)!  k=1 X (2γz + m + 3) zψ(−m−2)(z) − (m + 2)ψ(−m−3)(z) − − . 2z(m + 3)! zm+3

For z =1/2 and z =1/4, we see

∞ m+1 ζ(2n + 1) (−1) 2 (2m+1 − 1)ζ(m + 2) (57) = −δ m+1 m+1 (2n + 2) ... (2n + m + 3)4n ⌊ 2 ⌋, 2 (2π)m+1 n=1 X m+1 m ⌊ 2 ⌋ (−1) 2 (2m+3 − 1)(m + 2)ζ(m + 3) 2k(−1)kζ(2k + 1) − δ m m + ⌊ 2 ⌋, 2 (2π)m+2 π2k(m +2 − 2k)! Xk=1 γ 1 − 2m+2ψ(−m−2)(1/2)+(m + 2)2m+3ψ(−m−3)(1/2) − − , (m + 3)! (m + 2)!

and

∞ ζ(2n + 1) m (58) =(m + 2) 4m+3ψ(−m−3)(1/4)+(−1)⌊ 2 ⌋∗ (2n + 2) ... (2n + m + 3)16n n=1  X m+3 2m+5 m+2 2 β(m + 3) (2 +2 − 1)ζ(m + 3) ⌊ m+1 ⌋ δ m+1 m+1 − δ⌊ m ⌋, m +(−1) 2 ∗ ⌊ 2 ⌋, 2 πm+2 2 2 (2π)m+2   m+2 m+1 2 β(m + 2) (2 − 1)ζ(m + 2) m+2 (−m−2) δ⌊ m ⌋, m − δ m+1 m+1 − 4 ψ (1/4) 2 2 πm+1 ⌊ 2 ⌋, 2 (2π)m+1   ⌊ m+1 ⌋ 2 k(−4)kζ(2k + 1) γ 2 +4 − − . π2k(m +2 − 2k)! (m + 3)! (m + 2)! Xk=1

For general p, GENERALIZED RATIONAL ZETA SERIES FOR ζ(2n)AND ζ(2n + 1) 25

∞ ζ(2n + 1) (59) =(−1)mp!(m + p + 2)∗ (2n + 2) ... (2n + m + 2)(2n + m + p + 3)4n n=1 p+Xm+2 ⌊ 2 ⌋ p+m k k 2 (−1) (4 − 1)ζ(2k + 1) (−1) ζ(p + m + 3) m − δ p+m p+m + 8(−2) ∗ (p + m +2 − 2k)!(2π)2k ⌊ 2 ⌋, 2 πm+p+2 m+3 k=X⌊ 2 ⌋ p m+1 k (−k−m−3) 2 m+1 (−2) ψ (1/2) (−1) (2 − 1)ζ(m + 2) m+2 (−m−2) m+1 m+1 −δ⌊ ⌋, m+1 −2 ψ (1/2) (p − k)! ! 2 2 (2π) Xk=0 ⌊ m+1 ⌋ 2 2k(−1)kζ(2k + 1) γ 1 + − − , π2k(m +1 − 2k)!(m + p +2 − 2k) (m + 2)!(p + m + 3) (m + 1)!(p + m + 2) Xk=1

and

∞ ζ(2n + 1) (60) =(−1)mp!(m + p + 2)∗ (2n + 2) ... (2n + m + 2)(2n + m + p + 3)16n n=1 X ⌊ p+m+2 ⌋ ⌊ p+m+3 ⌋ 2 (−1)k(4k − 1)ζ(2k + 1) 2 (−1)kβ(2k)4k − + 64(−4)m∗ (p + m +2 − 2k)!(2π)2k (p + m +3 − 2k)!π2k−1 m+3 m+4 k=X⌊ 2 ⌋ k=X⌊ 2 ⌋ p p+m k (−k−m−3) 2 p+m+3 (−4) ψ (1/4) (−1) ζ(p + m + 3)2 m+2 (−m−2) −δ p+m p+m −4 ψ (1/4) (p − k)! ⌊ 2 ⌋, 2 πm+p+2 k=0 ! X m+1 (−1)⌊ 2 ⌋2m+2β(m + 2) γ 2 + δ m m − − ⌊ 2 ⌋, 2 πm+1 (m + 2)!(p + m + 3) (m + 1)!(p + m + 2) m+1 m+1 ⌊ 2 ⌋ (−1) 2 (2m+1 − 1)ζ(m + 2) k(−1)kζ(2k + 1)4k+1 −δ m+1 m+1 + . ⌊ 2 ⌋, 2 (2π)m+1 π2k(m +1 − 2k)!(m + p +2 − 2k) Xk=1

Below we compute some sums for certain m and p.

∞ ζ(2n + 1) γ 1 = 4 log A − 1 − + log 2 (n + 1)(2n + 3)4n 3 3 n=1 X ∞ ζ(2n + 1) 5 γ 19 = 60ζ′(−3) − − + log 2 (n + 1)(n + 2)4n 12 2 30 n=1 X ∞ ζ(2n + 1) 4 112ζ′(−3) 19 γ 13 = − log A + + − + log 2 (n + 1)(2n + 5)4n 3 3 270 5 45 n=1 X 26 DEREK ORR

∞ ζ(2n + 1) 19 γ 1 = 8 log A − 60ζ′(−3) − − + log 2 (n + 1)(2n + 3)(n + 2)4n 12 6 30 n=1 X ∞ ζ(2n + 1) 4 28ζ′(−3) 289 γ 1 = log A − − − + log 2 (2n + 2)(2n + 3)(2n + 5)4n 3 3 1080 30 90 n=1 X ∞ ζ(2n + 1) 2 17ζ′(−3) 277 γ 1 = log A − − − − log 2 (2n + 2) ... (2n + 5)4n 3 3 2160 120 360 n=1 X ∞ ζ(2n + 1) 1 3ζ(3) γ = 128ζ′ − 2, + 28 log A − − 5 − (n + 1)(2n + 3)16n 4 π2 3 n=1 X   ∞ ζ(2n + 1) 1 9ζ(3) 41 γ 1 = 384ζ′ −2, +24 log A+540ζ′(−3)− − − + log 2 (n + 1)(n + 2)16n 4 π2 12 2 5 n=1 X   ∞ ζ(2n + 1) 1 3ζ(3) 79 γ 1 = −32ζ′ −2, +8 log A−135ζ′(−3)+ − − − log 2 (2n + 2) ... (2n + 4)16n 4 4π2 48 24 20 n=1 X  

References [1] M. Abramowitz, I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, New York, NY:Dover, 1972. [2] V. S. Adamchik, Polygamma functions of negative order, J. Comp. Appl. Math. 100 (1998) 191–199. [3] R. Ap´ery, Irrationalit´ede ζ(2) et ζ(3), Ast´erisque, 61 (1979), 11–13. [4] T. M. Apostol, Another elementary proof of Euler’s formula for ζ(2n), Amer. Math. Monthly, 80 (1973), 425–431. [5] J. Choi, Some integral representations of the Clausen function Cl2(x) and the Catalan con- stant, East Asian Math. J. 32 (2016), 43–46. [6] J. Choi, H. M. Srivastava, The Clausen function Cl2(x) and its related integrals, Thai J. Math. 12 (2014), 251–264. [7] D. Cvijovic, Closed-form evaluation of some families of cotangent and cosecant integrals, Integral Transf. Spec. Func. 19 (2008), 147–155. [8] D. Cvijovic, J. Klinowski, New rapidly convergent series representations for ζ(2n + 1), Proc. Amer. Math. Soc. 125 (1997), 1263–1271. [9] P. J. de Doeder, On the Clausen integral Cl2(θ) and a related integral, J. Comp. Appl. Math. 11 (1984), 325–330. [10] O. Espinosa, V. H. Moll, A generalized polygamma function, Integral Transf. Spec. Funct. 15 (2004), 101–115. [11] J. A. Ewell, A new series representation for ζ(3), Amer. Math. Monthly 97 (1990), 219–220. [12] C. C. Grosjean, Formulae concerning the computation of the Clausen integral Cl2(θ), J. Comp. Appl. Math. 11 (1984), 331–342. [13] F.M.S. Lima, An Euler-type formula for β(2n) and closed-form expressions for a class of zeta series, Integral Transf. Spec. Funct. (2012), DOI:10.1080/10652469.2011.622274 [14] C. Lupu, D. Orr, Approximations for Apery’s constant ζ(3) and rational series representa- tions involving ζ(2n), (2016) preprint at http://arxiv.org/abs/1605.09541. Bibliography 27

[15] H. M. Srivastava, M. L. Glasser, V. S. Adamchik, Some definite integrals associated with the Riemann zeta function, Z. Anal. Anwendungen 19 (2000), 831–846. [16] D. Tyler, P. R. Chernoff, An old sum reappears-Elementary problem 3103, Amer. Math. Monthly 92 (1985), 507. [17] J. Wu, X. Zhang, D. Liu, An efficient calculation of the Clausen functions, BIT Numer. Math. 50 (2010), 193–206. [18] W. V. Zudilin, One of the numbers ζ(5), ζ(7), ζ(9), ζ(11), is irrational, Uspekhi Mat. Nauk 56 (2001), 149–150.

University of Pittsburgh, Department of Mathematics, 301 Thackeray Hall, Pittsburgh, PA 15260, USA E–mail address: [email protected]