Glucosepane: a Poorly Understood Advanced Glycation End Product of Growing Importance for Diabetes and Its Complications

Total Page:16

File Type:pdf, Size:1020Kb

Glucosepane: a Poorly Understood Advanced Glycation End Product of Growing Importance for Diabetes and Its Complications DOI 10.1515/cclm-2013-0174 Clin Chem Lab Med 2014; 52(1): 21–32 Review Vincent M. Monnier*, Wanjie Sun, David R. Sell, Xingjun Fan, Ina Nemet and Saul Genuth Glucosepane: a poorly understood advanced glycation end product of growing importance for diabetes and its complications Abstract: Advanced glycation end products (AGEs) repre- David R. Sell, Xingjun Fan and Ina Nemet: Department of Pathology, sent a family of protein, peptide, amino acid, nucleic acid Case Western Reserve University School of Medicine, Cleveland, OH, USA and lipid adducts formed by the reaction of carbonyl com- Saul Genuth: Department of Medicine, Case Western Reserve pounds derived directly or indirectly from glucose, ascor- University School of Medicine, Cleveland, OH, USA bic acid and other metabolites such as methylglyoxal. AGE formation in diabetes is of growing importance for their role as markers and potential culprits of diabetic com- plications, in particular retinopathy, nephropathy and neuropathy. Development of sensitive and specific assays Introduction utilizing liquid chromatography mass spectrometry with More than 35 years have elapsed since the landmark dis- isotope dilution method has made it possible to detect and covery of the clinical significance of hemoglobin A [1], quantitate non-UV active AGEs such as carboxymethyl- 1c a discovery that has unequivocally helped establish the lysine and glucosepane, the most prevalent AGE and pro- causal relationship between hyperglycemia, the patho- tein crosslink of the extracellular matrix. Below we review genesis of microvascular disease and the accelerated studies on AGE formation in two skin biopsies obtained progression of selected cardiovascular disease endpoints near the closeout of the Diabetes Control and Complica- in both type 1 and type 2 diabetes [2–6]. Concomitant tions Trial (DCCT), one of which was processed in 2011 for research during these years has successfully implicated assay of novel AGEs. The results of these analyses show glucose as a pathogenetic factor for diabetic retinopathy, that while several AGEs are associated and predict com- nephropathy, neuropathy and a co-factor in cardiovas- plication progression, the glucose/fructose-lysine/glu- cular disease in various animal models. In a nutshell, it is cosepane AGE axis is one of the most robust markers for widely accepted that diabetic complications are the result microvascular disease, especially retinopathy, in spite of of an intricate combination of oxidative and carbonyl adjustment for past or future average glycemia. Yet over- stresses and inflammatory signals that can be pharmaco- all little biological and clinical information is available on logically efficiently prevented in the experimental animal glucosepane, making this review a call for data in a field [7]. Paradoxically however, except for sustained lower- of growing importance for diabetes and chronic metabolic ing of glycemia over many years (DCCT, UKPDS), few to diseases of aging. none of the prevailing pharmacological anti-complica- tion paradigms [aldose reductase activation, oxidative Keywords: carbonyl stress; glycemia; HbA ; nephropathy; 1c stress, advanced glycation end products (AGE) formation, neuropathy; retinopathy; methyglyoxal. protein kinase C (PKC) activation, inflammation] have so far convincingly succeeded delaying complications in the *Corresponding author: Vincent M. Monnier, Department of human [7]. Pathology, Case Western Reserve University, Cleveland, OH 44106, Multiple reasons can be invoked as a reason why a USA, Phone: +1 216 3686613, Fax: +1 216 3681357, given drug was found unable to normalize the oxidant E-mail: [email protected] and carbonyl stress or their biological consequences in Vincent M. Monnier: Department of Biochemistry, Case Western diabetic humans. These may include poor bioavailability, Reserve University School of Medicine, Cleveland, OH, USA Wanjie Sun: Biostatistics Center, George Washington University, poor therapeutic window and thus inability to achieve Rockville, MD, USA; and Case Western Reserve University School of the necessary therapeutic dose, insufficient complica- Medicine, Cleveland, OH, USA tion event rate linked to overall improved management 22 Monnier et al.: Advanced glycation end product of growing importance for diabetes and its complications of diabetes, yet unrecognized pathogenetic mechanisms Glucosepane: chemistry and and genetic factors, or simply the inability to carry out the drug trial long enough until efficacy is demonstra- mechanism of formation ble. The latter proposition is supported by observations Glucosepane was discovered and so named by Lederer and which show that euglycemia for 5 years was insufficient colleagues, who isolated it from a model reaction of N-α- for improvement of morphological lesions of diabetic t-boc-L-lysine and N-α-t-boc-L-arginine and D-glucose at nephropathy and, instead, 10 years of euglycemia were 37°C [9]. The compound has a molecular weight of 647 Da needed [8]. and constitutes a mixture of four diastereoisomers with a Below, we develop arguments in support of the hypothesis that glycation damage to the extracellular 7-membered ring made of glucose that crosslinks the two matrix by glucose itself, and in particular glucosepane amino acid side chains of lysine and arginine (Figure 1). crosslinks, are among the factors that may explain the Glucosepane is labile to conventional acid hydrolysis and progression and slow reversibility of diabetic complica- therefore can only be quantitated in glucose exposed pro- tions in the human. The latter emphasis is based on the teins upon exhaustive mild enzymatic digestion at 37°C belief that diabetic rodents, while adequate models of to release the free molecule. The fact that glucosepane λ = hyperglycemic cellular stress are not adequate for probing absorbs UV light only at short wavelengths ( max 251 and the intrinsic role of the glucose-damaged extracellular 253 nm) makes it inconvenient for assay by HPLC using matrix (ECM) in diabetic complications, because of the absorption spectroscopy, and therefore the method of duration of the glycemic stress is too short for quasi irrep- choice is liquid chromatography mass spectrometry with arable damage to occur. isotope dilution technique (LC/MS) [9]. The first part of this review explores the molecular At first, the mechanism of glucosepane formation properties of glucosepane, its in vitro and in vivo mech- appears to be rather straight forward, proceeding via the anism of formation and inhibition, its distribution in key intermediate, N6-(2,3-dihydroxy-5,6-dioxohexyl)-L- animal and human tissue and how diabetes affects its lysinate (Lederer’s glucosone [10]) that can be trapped with levels. The second focuses on the recently uncovered clin- ortho-phenylenediamine (OPD) [11]. We recently proposed ical relationship between glucosepane, other skin AGEs that this intermediate is common to both glucose-derived and the presence of diabetic complications, the results of crosslinks, i.e., crossline and glucosepane (Figure 1). which lead us to propose a key role for glucosepane in the Crosslines are isomeric lysine-lysine crosslinks that have pathogenesis of diabetic complications. been described several years ago and immunochemically HN H R H N R 1 H N N R R 2 N 2 1 H N N+ 2 N O HO HO Arginine HO HO HN R1 HN R1 Glucosepane H2O O OH HO HO OH OH OH OH OH Amadori O HO OH O O OH N+ HO OH not found Amadori compound N6-(2,3-dihydroxy-5,6-dioxohexyl)- compund OH in vivo! -L-lysinate (Lederer's glucosone) H R 1 + N+ R1 N R1 Crossline NH NH R = 1 (CH2)4 R2= (CH ) Peptide backbone C 2 3 C O O Figure 1 Mechanism of formation of glucosepane from N6-(2,3-dihydroxy-5,6-dioxohexyl)-L-lysinate precursor. During in vitro incubation with free fructosyl-lysine in phosphate buffer significant amount of crossline are formed that are not detected under physiological conditions with proteins. Monnier et al.: Advanced glycation end product of growing importance for diabetes and its complications 23 detected in glucose exposed proteins and in vivo [12, 13]. this question and the potential cross-reactivity of “non- However, our investigations using mass spectrometry CML” antibodies cross-reacted with native glucosepane failed to detect these in protein digest from biological will need to be clarified. tissue, making it highly unlikely that crosslines are physi- ological crosslinks [14]. Similarly to the recently described AGE glucold, crosslines represent a class of glucose- derived AGEs that can form only in vitro under very high Glucosepane in biological systems: glucose concentrations from free but not protein-bound amino acids. effects of diabetes on tissue levels One important point to emphasize about glucosepane and protein turnover rate is that it forms entirely non-oxidatively from glycated lysine residues (Amadori products) via a series of water Relatively little information is yet available on tissue elimination reactions. Thus, this form of carbonyl stress levels of glucosepane (Table 1) and sites of formation in would proceed anaerobically in diabetes and be insen- proteins. In the collagen-rich extracellular matrix, glu- sitive to antioxidants! Interestingly, Nasiri et al. found, cosepane increases with age [18]. In normal human skin based on theoretical considerations, that glucosepane levels increase curvilinearly to reach about 2000 pmol/mg might possibly originate from a combination of methylgly- collagen at 100 years. However, in purified glomerular oxal and glyceraldehyde [15].
Recommended publications
  • Glycation Marker Glucosepane Increases with the Progression Of
    Legrand et al. Arthritis Research & Therapy (2018) 20:131 https://doi.org/10.1186/s13075-018-1636-6 RESEARCHARTICLE Open Access Glycation marker glucosepane increases with the progression of osteoarthritis and correlates with morphological and functional changes of cartilage in vivo Catherine Legrand1†, Usman Ahmed2,3†, Attia Anwar2, Kashif Rajpoot4, Sabah Pasha2, Cécile Lambert1, Rose K. Davidson5, Ian M. Clark5, Paul J. Thornalley2,3, Yves Henrotin1,6 and Naila Rabbani2,3* Abstract Background: Changes of serum concentrations of glycated, oxidized, and nitrated amino acids and hydroxyproline and anticyclic citrullinated peptide antibody status combined by machine learning techniques in algorithms have recently been found to provide improved diagnosis and typing of early-stage arthritis of the knee, including osteoarthritis (OA), in patients. The association of glycated, oxidized, and nitrated amino acids released from the joint with development and progression of knee OA is unknown. We studied this in an OA animal model as well as interleukin-1β-activated human chondrocytes in vitro and translated key findings to patients with OA. Methods: Sixty male 3-week-old Dunkin-Hartley guinea pigs werestudied.Separategroupsof12animalswerekilledat age 4, 12, 20, 28 and 36 weeks, and histological severity of knee OA was evaluated, and cartilage rheological properties were assessed. Human chondrocytes cultured in multilayers were treated for 10 days with interleukin-1β. Human patients with early and advanced OA and healthy controls were recruited, blood samples were collected, and serum or plasma was prepared. Serum, plasma, and culture medium were analyzed for glycated, oxidized, and nitrated amino acids. Results: Severity of OA increased progressively in guinea pigs with age.
    [Show full text]
  • Protein Carbamylation Is a Hallmark of Aging SEE COMMENTARY
    Protein carbamylation is a hallmark of aging SEE COMMENTARY Laëtitia Gorissea,b, Christine Pietrementa,c, Vincent Vuibleta,d,e, Christian E. H. Schmelzerf, Martin Köhlerf, Laurent Ducaa, Laurent Debellea, Paul Fornèsg, Stéphane Jaissona,b,h, and Philippe Gillerya,b,h,1 aUniversity of Reims Champagne-Ardenne, Extracellular Matrix and Cell Dynamics Unit CNRS UMR 7369, Reims 51100, France; bFaculty of Medicine, Laboratory of Medical Biochemistry and Molecular Biology, Reims 51100, France; cDepartment of Pediatrics (Nephrology Unit), American Memorial Hospital, University Hospital, Reims 51100, France; dDepartment of Nephrology and Transplantation, University Hospital, Reims 51100, France; eLaboratory of Biopathology, University Hospital, Reims 51100, France; fInstitute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle 24819, Germany; gDepartment of Pathology (Forensic Institute), University Hospital, Reims 51100, France; and hLaboratory of Pediatric Biology and Research, Maison Blanche Hospital, University Hospital, Reims 51100, France Edited by Bruce S. McEwen, The Rockefeller University, New York, NY, and approved November 23, 2015 (received for review August 31, 2015) Aging is a progressive process determined by genetic and acquired cartilage, arterial wall, or brain, and shown to be correlated to the factors. Among the latter are the chemical reactions referred to as risk of adverse aging-related outcomes (5–10). Because AGE nonenzymatic posttranslational modifications (NEPTMs), such as formation
    [Show full text]
  • Alagebrium and Complications of Diabetes Mellitus
    Eurasian J Med 2019; 51(3): 285-92 Review Alagebrium and Complications of Diabetes Mellitus Cigdem Toprak , Semra Yigitaslan ABSTRACT Glycation is the process of linking a sugar and free amino groups of proteins. Cross-linking of glycation products to proteins results in the formation of cross-linked proteins that inhibit the normal functioning of the cell. Advanced glycation end products (AGEs) are risk molecules for the cell aging process. These ends products are increasingly synthesized in diabetes and are essentially responsible for diabetic complications. They accumulate in the extracellular matrix and bind to receptors (receptor of AGE [RAGE]) to generate oxidative stress and inflammation. particularly in the cardiovascular system. Treatment methods targeting the AGE system may be of clinical importance in reducing and preventing the complications induced by AGEs in diabetes and old age. The AGE cross-link breaker alagebrium (a thiazolium derivative) is the most studied anti-AGE compound in the clinical field. Phase III clinical studies with alagebrium have been successfully conducted, and this molecule has positive effects on cardiovascular hypertrophy, diabetes, hypertension, vas- cular sclerotic pathologies, and similar processes. However, the mechanism is still not fully understood. The primary mechanism is that alagebrium removes newly formed AGEs by chemically separating α-dicarbonyl carbon–carbon bonds formed in cross-linked structures. However, it is also reported that alagebrium is a methylglyoxal effective inhibitor. It is not yet clear whether alagebrium inhibits copper-catalyzed ascorbic acid oxidation through metal chelation or destruction of the AGEs. It is not known whether alagebrium has a direct association with RAGEs. The safety profile is favorably in humans, and studies have been terminated due to financial insufficiency and inability to license as a drug.
    [Show full text]
  • Advanced Glycation End Products
    ition & F tr oo u d N f S o c l i e a n n c r e u s o J Journal of Nutrition & Food Sciences Abate G, et al., J Nutr Food Sci 2015, 5:6 ISSN: 2155-9600 DOI: 10.4172/2155-9600.1000440 Review Artice Open Access Advanced Glycation End Products (AGEs) in Food: Focusing on Mediterranean Pasta Abate G1, Delbarba A2, Marziano M1, Memo M1 and Uberti D1,2* 1Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy. 2Diadem Ltd, Spin Off of Brescia University, Brescia, Italy. *Corresponding author: Uberti D, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy, Tel: +39-0303717509; E-mail: [email protected] Rec Date: Nov 16, 2015; Acc Date: Nov 26, 2015; Pub Date: Nov 30, 2015 Copyright: © 2015 Abate G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract Advanced glycation end products, also known as glycotoxins, are a diverse group of highly oxidant compounds with pathogenic significance in aged-chronic disease, including diabetes, cardiovascular disease and neurodegenerative disease. They are produced physiologically in the body when reducing sugar binds to a free amino acid group of macromolecules. Thus conditions such as hyperglycemia and/or oxidative stress can favor AGE product formation, contributing to ageing processes and the exacerbation of pathological states. Beside endogenous AGEs, dietary AGE intake contributes significantly to the body AGE pool.
    [Show full text]
  • Rui Li Phd Thesis for Hard Bound
    Glycation of Extracellular Matrix: A Solid-State NMR Study Rui Li Robinson College and Department of Chemistry University of Cambridge September 2019 This thesis is submitted for the degree of Doctor of Philosophy. Declaration This thesis is the result of my own work and includes nothing which is the outcome of work done in collaboration except as specified in the text. It is not substantially the same as any that I have submitted, or, is being concurrently submitted for a degree or diploma or other qualification at the University of Cambridge or any other University or similar institution. I further state that no substantial part of my dissertation has already been submitted, or, is being concurrently submitted for any such degree, diploma or other qualification at the University of Cambridge or any other University or similar institution. It does not exceed the prescribed word limit for the Degree Committee. Rui Li September 2019 Glycation of Extracellular Matrix: A Solid-State NMR Study Rui Li The main aim of this thesis is to investigate the glycation products, especially glycation intermediate products, generated in the glycation reaction model in vitro extracellular matrix (ECM) and ribose-5-phosphate using solid-state nuclear magnetic resonance (SSNMR) spectroscopy. The background and motivations of this project are outlined in chapter 1. Chapter 2 reviews the current understanding of the composition and organisation of the ECM, the structure of collagen and the critical roles collagen plays in the ECM. Chapter 3 introduces the glycation reaction and summarises the glycation products identified to date, with a discussion of the most widely-used characterisation techniques and in vitro model systems for studying the glycation reaction and glycation products.
    [Show full text]
  • Skin Advanced Glycation Endproducts (Ages) Glucosepane And
    Page 1 of 47 Diabetes Skin Advanced Glycation Endproducts (AGEs) Glucosepane and Methylglyoxal Hydroimidazolone are Independently Associated with Long- term Microvascular Complication Progression of Type I diabetes Saul Genuth1*, Wanjie Sun2, Patricia Cleary2, Xiaoyu Gao2, David R Sell3, John Lachin2, the DCCT/EDIC Research Group, Vincent M. Monnier3,4* Short Title: Collagen AGEs and Microvascular Complications Departments: From the 1Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, Ohio; the 2Biostatistics Center, George Washington University, Rockville, Maryland; the 3Departments of Pathology and 4Biochemistry, and Case Western Reserve University School of Medicine, Cleveland, Ohio. *Co-corresponding authors: Vincent Monnier MD, 216-368-6613 [phone]; 216-368-1357[fax], email: [email protected], and Saul Genuth MD, email: [email protected]; 216-368-5032[phone]; 216-844-8900[fax] 1 Diabetes Publish Ahead of Print, published online September 3, 2014 Diabetes Page 2 of 47 Abbreviations: AER, albumin excretion rate; AGE, advanced glycation end product; CML, Nε- (carboxymethyl)-lysine; DCCT, Diabetes Control and Complications Trial; EDIC, Epidemiology of Diabetes Interventions and Complications; GSPNE, glucosepane; CEL, carboxyethyl-lysine; G-H1, glyoxal hydroimidazolone; MG-H1, methylglyoxal hydroimidazolone. EDTRS, Early Treatment of Diabetic Retinopathy Scale; LRT, likelihood ratio test. 2 Page 3 of 47 Diabetes ABSTRACT Six skin collagen AGEs originally measured near Diabetes Control and Complications Trial (DCCT) closeout in 1993 may contribute to the “metabolic memory” phenomenon reported in the follow-up EDIC complications study. We now investigated whether addition of 4 originally unavailable AGEs, i.e. glucosepane (GSPNE), hydroimidazolones of methylglyoxal (MG-H1) and glyoxal (G-H1), and carboxyethyl-lysine (CEL), improves associations with incident retinopathy , nephropathy , and neuropathy events during 13-17 years post DCCT.
    [Show full text]
  • Advanced Glycation End-Products Can Activate Or Block Bitter Taste Receptors
    nutrients Article Advanced Glycation End-Products Can Activate or Block Bitter Taste Receptors Appalaraju Jaggupilli 1 , Ryan Howard 1, Rotimi E. Aluko 2 and Prashen Chelikani 1,* 1 Manitoba Chemosensory Biology Research Group, Department of Oral Biology, University of Manitoba, Children’s Hospital Research Institute of Manitoba (CHRIM), Winnipeg, MB R3E 0W4, Canada; [email protected] (A.J.); [email protected] (R.H.) 2 Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; [email protected] * Correspondence: [email protected]; Tel.: +204-789-3539; Fax: +204-789-3913 Received: 22 May 2019; Accepted: 10 June 2019; Published: 12 June 2019 Abstract: Bitter taste receptors (T2Rs) are expressed in several tissues of the body and are involved in a variety of roles apart from bitter taste perception. Advanced glycation end-products (AGEs) are produced by glycation of amino acids in proteins. There are varying sources of AGEs, including dietary food products, as well as endogenous reactions within our body. Whether these AGEs are T2R ligands remains to be characterized. In this study, we selected two AGEs, namely, glyoxal-derived lysine dimer (GOLD) and carboxymethyllysine (CML), based on their predicted interaction with the well-studied T2R4, and its physiochemical properties. Results showed predicted binding affinities (Kd) for GOLD and CML towards T2R4 in the nM and µM range, respectively. Calcium mobilization assays showed that GOLD inhibited quinine activation of T2R4 with IC 10.52 4.7 µM, whilst CML 50 ± was less effective with IC 32.62 9.5 µM. To characterize whether this antagonism was specific 50 ± to quinine activated T2R4 or applicable to other T2Rs, we selected T2R14 and T2R20, which are expressed at significant levels in different human tissues.
    [Show full text]
  • Attenuation of Glucose-Induced Myoglobin Glycation and the Formation of Advanced Glycation End Products (Ages) by (R)-Α-Lipoic Acid in Vitro
    biomolecules Article Attenuation of Glucose-Induced Myoglobin Glycation and the Formation of Advanced Glycation End Products (AGEs) by (R)-α-Lipoic Acid In Vitro Hardik Ghelani 1,2, Valentina Razmovski-Naumovski 1,2,3, Rajeswara Rao Pragada 4 and Srinivas Nammi 1,2,* ID 1 School of Science and Health, Western Sydney University, Sydney, NSW 2751, Australia; [email protected] (H.G.); [email protected] (V.R.-N.) 2 National Institute of Complementary Medicine (NICM), Western Sydney University, Sydney, NSW 2751, Australia 3 South Western Sydney Clinical School, School of Medicine, University of New South Wales, Sydney, NSW 2052, Australia 4 Department of Pharmacology, College of Pharmaceutical Sciences, Andhra University, Visakhapatnam 530003, Andhra Pradesh, India; [email protected] * Correspondence: [email protected]; Tel.: +61-2-4620-3038; Fax: +61-2-4620-3025 Received: 1 December 2017; Accepted: 1 February 2018; Published: 8 February 2018 Abstract: High-carbohydrate containing diets have become a precursor to glucose-mediated protein glycation which has been linked to an increase in diabetic and cardiovascular complications. The aim of the present study was to evaluate the protective effect of (R)-α-lipoic acid (ALA) against glucose-induced myoglobin glycation and the formation of advanced glycation end products (AGEs) in vitro. Methods: The effect of ALA on myoglobin glycation was determined via the formation of AGEs fluorescence intensity, iron released from the heme moiety of myoglobin and the level of fructosamine. The extent of glycation-induced myoglobin oxidation was measured via the levels of protein carbonyl and thiol. Results: The results showed that the co-incubation of ALA (1, 2 and 4 mM) with myoglobin (1 mg/mL) and glucose (1 M) significantly decreased the levels of fructosamine, which is directly associated with the decrease in the formation of AGEs.
    [Show full text]
  • Protein Glycation in Plants—An Under-Researched Field with Much Still to Discover
    International Journal of Molecular Sciences Review Protein Glycation in Plants—An Under-Researched Field with Much Still to Discover Naila Rabbani 1,*, Maryam Al-Motawa 2,3 and Paul J. Thornalley 2,3,* 1 Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar 2 Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; [email protected] 3 College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar * Correspondence: [email protected] (N.R.); [email protected] (P.J.T.); Tel.: +974-7479-5649 (N.R.); +974-7090-1635 (P.J.T.) Received: 9 April 2020; Accepted: 28 May 2020; Published: 30 May 2020 Abstract: Recent research has identified glycation as a non-enzymatic post-translational modification of proteins in plants with a potential contributory role to the functional impairment of the plant proteome. Reducing sugars with a free aldehyde or ketone group such as glucose, fructose and galactose react with the N-terminal and lysine side chain amino groups of proteins. A common early-stage glycation adduct formed from glucose is N"-fructosyl-lysine (FL). Saccharide-derived reactive dicarbonyls are arginine residue-directed glycating agents, forming advanced glycation endproducts (AGEs). A dominant dicarbonyl is methylglyoxal—formed mainly by the trace-level degradation of triosephosphates, including through the Calvin cycle of photosynthesis. Methylglyoxal forms the major quantitative AGE, hydroimidazolone MG-H1. Glucose and methylglyoxal concentrations in plants change with the developmental stage, senescence, light and dark cycles and also likely biotic and abiotic stresses.
    [Show full text]
  • Protection Against Glycation and Similar Post-Translational Modifications of Proteins ⁎ John J
    Biochimica et Biophysica Acta 1764 (2006) 1436–1446 www.elsevier.com/locate/bbapap Review Protection against glycation and similar post-translational modifications of proteins ⁎ John J. Harding , Elena Ganea 1 Nuffield Laboratory of Ophthalmology, University of Oxford, Walton Street, Oxford, OX2 6AW, Great Britain Received 23 April 2006; received in revised form 29 July 2006; accepted 2 August 2006 Available online 5 August 2006 Abstract Glycation and other non-enzymic post-translational modifications of proteins have been implicated in the complications of diabetes and other conditions. In recent years there has been extensive progress in the search for ways to prevent the modifications and prevent the consequences of the modifications. These areas are covered in this review together with newer ideas on possibilities of reversing the chemical modifications. © 2006 Elsevier B.V. All rights reserved. Keywords: AGE; Aminoguanidine; Aspirin; Conformation; Glycation; Post-translational modification 1. Introduction Glycation increases with age as do sugar concentrations, impairing protein function. In diabetes, sugar concentrations, the Proteins exist in an environment surrounded by reactive small extent of glycation and the degree of damage increase in parallel. molecules and it is inevitable that these molecules will react with Glycation may be the main cause of diabetic complications. the proteins even without the benefit of enzymic catalysis. The small molecules include metabolites, especially sugars; and 2.1. The glycation reactions xenobiotics,
    [Show full text]
  • Glycation of Lysozyme Wisam Talib Joudah [email protected]
    Marshall University Marshall Digital Scholar Theses, Dissertations and Capstones 2015 Glycation of Lysozyme Wisam Talib Joudah [email protected] Follow this and additional works at: http://mds.marshall.edu/etd Part of the Biochemistry Commons, and the Chemistry Commons Recommended Citation Joudah, Wisam Talib, "Glycation of Lysozyme" (2015). Theses, Dissertations and Capstones. Paper 950. This Thesis is brought to you for free and open access by Marshall Digital Scholar. It has been accepted for inclusion in Theses, Dissertations and Capstones by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected]. GLYCATION OF LYSOZYME A thesis submitted to the Graduate College of Marshall University In partial fulfillment of the requirements for the degree of Master of Science in Chemistry by Wisam Talib Joudah Approved by Dr. Leslie Frost, Committee Chairperson Dr. Derrick Kolling Dr. Bin Wang Marshall University August 2015 DEDICATION I dedicate my thesis work to my family and friends, especially to my beloved mother, who taught me that even the largest task can be accomplished if it is done one step at a time, whose prayers and words of encouragement got me to this point, and to my deceased father, Mr. Talib, who had dreamt to live to see this moment. Likewise, I want to dedicate this work and to my siblings who have been a constant encouragement and support throughout the duration of my study. This work is also dedicated to my brother, Marwan, for his moral support that helped me to overcome all the difficulties that I have encountered during my study.
    [Show full text]
  • Proteolysis of the Receptor for Advanced Glycation End Products by Matrix Metalloproteinases
    Proteolysis of the Receptor for Advanced Glycation End Products by Matrix Metalloproteinases Dissertation Zur Erlangung des Grades Doktor der Naturwissenschaften Am Fachbereich Biologie Der Johannes Gutenberg-Universität Mainz Ling Zhang geb. am 22-10-1972 in Wuhan, China Mainz 2006 i Table of Content Table of Contents Table of Contents ...................................................................................................................................ii 1. Introduction ....................................................................................................................................... 1 1.1 The A β peptide ................................................................................................................................. 1 1.1.1 A β peptide production and its pathologic role in Alzheimer’s disease (AD) ........................... 1 1.1.2 A β peptide clearance from the brain .......................................................................................... 2 1.2 RAGE (receptor for advanced glycation end products) .............................................................. 4 1.2.1 Structure ....................................................................................................................................... 4 1.2.2 Expression patterns ...................................................................................................................... 5 1.2.3 Extracellular ligands and their pathophysiolologic functions .................................................
    [Show full text]