AI-Driven Multiscale Simulations Illuminate Mechanisms of SARS-Cov-2 Spike Dynamics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Massive Simulation Shows HIV Capsid Interacting with Its Environment 19 July 2017
Massive simulation shows HIV capsid interacting with its environment 19 July 2017 scientist Juan R. Perilla, who led the study with U. of I. physics professor Klaus Schulten. Such details could help scientists find new ways to defeat the virus, Perilla said. Schulten, who died in October 2016, pioneered the application of molecular dynamics simulations to study large biological systems. He called the method "computational microscopy." The capsid simulation was performed on the Department of Energy's Titan supercomputer. Analyzing the data required a second supercomputer, Blue Waters, at the National Center for Supercomputing Applications at the U. of I. The HIV capsid is made up of hundreds of identical proteins arrayed in a network of six-sided and five- sided structures, each with a tiny pore at its center. The capsid contains the virus's genetic material, The genetic material of the HIV virus is encased in hiding it from host cell defenses. It also transports multiple structures that hide it from the host immune the virus to the cell nucleus, which it must infiltrate system. The capsid, in blue, protects the virus after it to complete infection. enters a cell and shuttles it to the nucleus, where it completes the process of infection. Credit: Juan Perilla It took two years on a supercomputer to simulate 1.2 microseconds in the life of the HIV capsid, a protein cage that shuttles the HIV virus to the nucleus of a human cell. The 64-million-atom simulation offers new insights into how the virus senses its environment and completes its infective cycle. -
Real-Time Pymol Visualization for Rosetta and Pyrosetta
Real-Time PyMOL Visualization for Rosetta and PyRosetta Evan H. Baugh1, Sergey Lyskov1, Brian D. Weitzner1, Jeffrey J. Gray1,2* 1 Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland, United States of America, 2 Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, Maryland, United States of America Abstract Computational structure prediction and design of proteins and protein-protein complexes have long been inaccessible to those not directly involved in the field. A key missing component has been the ability to visualize the progress of calculations to better understand them. Rosetta is one simulation suite that would benefit from a robust real-time visualization solution. Several tools exist for the sole purpose of visualizing biomolecules; one of the most popular tools, PyMOL (Schro¨dinger), is a powerful, highly extensible, user friendly, and attractive package. Integrating Rosetta and PyMOL directly has many technical and logistical obstacles inhibiting usage. To circumvent these issues, we developed a novel solution based on transmitting biomolecular structure and energy information via UDP sockets. Rosetta and PyMOL run as separate processes, thereby avoiding many technical obstacles while visualizing information on-demand in real-time. When Rosetta detects changes in the structure of a protein, new coordinates are sent over a UDP network socket to a PyMOL instance running a UDP socket listener. PyMOL then interprets and displays the molecule. This implementation also allows remote execution of Rosetta. When combined with PyRosetta, this visualization solution provides an interactive environment for protein structure prediction and design. Citation: Baugh EH, Lyskov S, Weitzner BD, Gray JJ (2011) Real-Time PyMOL Visualization for Rosetta and PyRosetta. -
HIV Structure by A&U
aumag.org http://aumag.org/wordpress/2013/07/29/hiv-structure/ HIV Structure by A&U Small Protein, Big Picture HIV capsid structure. Image by Klaus Schulten In order for HIV to replicate, the virus needs to carry its genetic material into new cells and then, once inside, to release it. This process is made possible in part by a protein shell: the HIV capsid, which functions to both protect the genetic material and then, at the right time, make it accessible. This makes the capsid an ideal antiviral target. One of the keys of disrupting this function is knowing the precise chemical structure of the HIV-1 capsid, and researchers, as reported in the journal Nature, have done just that. Up till now, scientists have been able to glimpse individual parts of the capsid but never a detailed molecular map of its whole, whose cone-shaped structure is formed by a polymorphic assemblage of more than 1,300 identical proteins. A dynamic view of the entire structure in atomic-level detail—namely, the interactions of 64 million atoms— was made possible with the use of the supercomputer Blue Waters at the National Center for Supercomputing Applications at the University of Illinois. Thanks to the largest computer simulation ever run, the digital model was created by researchers Klaus Schulten and Juan Perilla at the University of Illinois, who built on previous research and their own simulations of how the building blocks of the proteins—hexagons and pentagons, arranged in ever-changing patterns—interacted and fit together, and in what numbers. -
An Explicit-Solvent Conformation Search Method Using Open Software
An explicit-solvent conformation search method using open software Kari Gaalswyk and Christopher N. Rowley Department of Chemistry, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador, Canada ABSTRACT Computer modeling is a popular tool to identify the most-probable conformers of a molecule. Although the solvent can have a large effect on the stability of a conformation, many popular conformational search methods are only capable of describing molecules in the gas phase or with an implicit solvent model. We have developed a work-flow for performing a conformation search on explicitly-solvated molecules using open source software. This method uses replica exchange molecular dynamics (REMD) to sample the conformational states of the molecule efficiently. Cluster analysis is used to identify the most probable conformations from the simulated trajectory. This work-flow was tested on drug molecules a-amanitin and cabergoline to illustrate its capabilities and effectiveness. The preferred conformations of these molecules in gas phase, implicit solvent, and explicit solvent are significantly different. Subjects Biophysics, Pharmacology, Computational Science Keywords Conformation search, Explicit solvent, Cluster analysis, Replica exchange molecular dynamics INTRODUCTION Many molecules can exist in multiple conformational isomers. Conformational isomers have the same chemical bonds, but differ in their 3D geometry because they hold different torsional angles (Crippen & Havel, 1988). The conformation of a molecule can affect Submitted 5 April 2016 chemical reactivity, molecular binding, and biological activity (Struthers, Rivier & Accepted 6May2016 Published 31 May 2016 Hagler, 1985; Copeland, 2011). Conformations differ in stability because they experience different steric, electrostatic, and solute-solvent interactions. The probability, p,ofa Corresponding author Christopher N. -
Python Tools in Computational Chemistry (And Biology)
Python Tools in Computational Chemistry (and Biology) Andrew Dalke Dalke Scientific, AB Göteborg, Sweden EuroSciPy, 26-27 July, 2008 “Why does ‘import numpy’ take 0.4 seconds? Does it need to import 228 libraries?” - My first Numpy-discussion post (paraphrased) Your use case isn't so typical and so suffers on the import time end of the balance. - Response from Robert Kern (Others did complain. Import time down to 0.28s.) 52,000 structures PDB doubles every 2½ years HEADER PHOTORECEPTOR 23-MAY-90 1BRD 1BRD 2 COMPND BACTERIORHODOPSIN 1BRD 3 SOURCE (HALOBACTERIUM $HALOBIUM) 1BRD 4 EXPDTA ELECTRON DIFFRACTION 1BRD 5 AUTHOR R.HENDERSON,J.M.BALDWIN,T.A.CESKA,F.ZEMLIN,E.BECKMANN, 1BRD 6 AUTHOR 2 K.H.DOWNING 1BRD 7 REVDAT 3 15-JAN-93 1BRDB 1 SEQRES 1BRDB 1 REVDAT 2 15-JUL-91 1BRDA 1 REMARK 1BRDA 1 .. ATOM 54 N PRO 8 20.397 -15.569 -13.739 1.00 20.00 1BRD 136 ATOM 55 CA PRO 8 21.592 -15.444 -12.900 1.00 20.00 1BRD 137 ATOM 56 C PRO 8 21.359 -15.206 -11.424 1.00 20.00 1BRD 138 ATOM 57 O PRO 8 21.904 -15.930 -10.563 1.00 20.00 1BRD 139 ATOM 58 CB PRO 8 22.367 -14.319 -13.591 1.00 20.00 1BRD 140 ATOM 59 CG PRO 8 22.089 -14.564 -15.053 1.00 20.00 1BRD 141 ATOM 60 CD PRO 8 20.647 -15.054 -15.103 1.00 20.00 1BRD 142 ATOM 61 N GLU 9 20.562 -14.211 -11.095 1.00 20.00 1BRD 143 ATOM 62 CA GLU 9 20.192 -13.808 -9.737 1.00 20.00 1BRD 144 ATOM 63 C GLU 9 19.567 -14.935 -8.932 1.00 20.00 1BRD 145 ATOM 64 O GLU 9 19.815 -15.104 -7.724 1.00 20.00 1BRD 146 ATOM 65 CB GLU 9 19.248 -12.591 -9.820 1.00 99.00 1 1BRD 147 ATOM 66 CG GLU 9 19.902 -11.351 -10.387 1.00 99.00 1 1BRD 148 ATOM 67 CD GLU 9 19.243 -10.169 -10.980 1.00 99.00 1 1BRD 149 ATOM 68 OE1 GLU 9 18.323 -10.191 -11.782 1.00 99.00 1 1BRD 150 ATOM 69 OE2 GLU 9 19.760 -9.089 -10.597 1.00 99.00 1 1BRD 151 ATOM 70 N TRP 10 18.764 -15.737 -9.597 1.00 20.00 1BRD 152 ATOM 71 CA TRP 10 18.034 -16.884 -9.090 1.00 20.00 1BRD 153 ATOM 72 C TRP 10 18.843 -17.908 -8.318 1.00 20.00 1BRD 154 ATOM 73 O TRP 10 18.376 -18.310 -7.230 1.00 20.00 1BRD 155 . -
Computational Chemistry for Chemistry Educators Shawn C
Volume 1, Issue 1 Journal Of Computational Science Education Computational Chemistry for Chemistry Educators Shawn C. Sendlinger Clyde R. Metz North Carolina Central University College of Charleston Department of Chemistry Department of Chemistry and Biochemistry 1801 Fayetteville Street, 66 George Street, Durham, NC 27707 Charleston, SC 29424 919-530-6297 843-953-8097 [email protected] [email protected] ABSTRACT 1. INTRODUCTION In this paper we describe an ongoing project where the goal is to The majority of today’s students are technologically savvy and are develop competence and confidence among chemistry faculty so often more comfortable using computers than the faculty who they are able to utilize computational chemistry as an effective teach them. In order to harness the student’s interest in teaching tool. Advances in hardware and software have made technology and begin to use it as an educational tool, most faculty research-grade tools readily available to the academic community. members require some level of instruction and training. Because Training is required so that faculty can take full advantage of this chemistry research increasingly utilizes computation as an technology, begin to transform the educational landscape, and important tool, our approach to chemistry education should reflect attract more students to the study of science. this. The ability of computer technology to visualize and manipulate objects on an atomic scale can be a powerful tool to increase both student interest in chemistry as well as their level of Categories and Subject Descriptors understanding. Computational Chemistry for Chemistry Educators (CCCE) is a project that seeks to provide faculty the J.2 [Physical Sciences and Engineering]: Chemistry necessary knowledge, experience, and technology access so that they can begin to design and incorporate computational approaches in the courses they teach. -
Blue Waters Computing System
GPU Clusters for HPC Bill Kramer Director of Blue Waters National Center for Supercomputing Applications University of Illinois at Urbana- Champaign National Center for Supercomputing Applications University of Illinois at Urbana-Champaign National Center for Supercomputing Applications: 30 years of leadership • NCSA • R&D unit of the University of Illinois at Urbana-Champaign • One of original five NSF-funded supercomputing centers • Mission: Provide state-of-the-art computing capabilities (hardware, software, hpc expertise) to nation’s scientists and engineers • The Numbers • Approximately 200 staff (160+ technical/professional staff) • Approximately 15 graduate students (+ new SPIN program), 15 undergrad students • Two major facilities (NCSA Building, NPCF) • Operating NSF’s most powerful computing system: Blue Waters • Managing NSF’s national cyberinfrastructure: XSEDE Source: Thom Dunning Petascale Computing Facility: Home to Blue Waters • Blue Waters • 13PF, 1500TB, 300PB • >1PF On real apps • NAMD, MILC, WRF, PPM, NWChem, etc • Modern Data Center • Energy Efficiency • 90,000+ ft2 total • LEED certified Gold • 30,000 ft2 raised floor • Power Utilization Efficiency 2 = 1.1–1.2 20,000 ft machine room gallery Source: Thom Dunning Data Intensive Computing Personalized Medicine w/ Mayo LSST, DES Source: Thom Dunning NCSA’s Industrial Partners Source: Thom Dunning NCSA, NVIDIA and GPUs • NCSA and NVIDIA have been partners for over a decade, building the expertise, experience and technology. • The efforts were at first exploratory and small -
List of Publications Professor Klaus Schulten Departments of Physics, Chemistry, and Biophysics University of Illinois at Urbana-Champaign Printed November 1, 2002
List of Publications Professor Klaus Schulten Departments of Physics, Chemistry, and Biophysics University of Illinois at Urbana-Champaign Printed November 1, 2002 [1] Klaus Schulten and Martin Karplus. On the origin of a low-lying forbidden transition in polyenes and related molecules. Chem. Phys. Lett., 14:305–309, 1972. [2] Robert R. Birge, Klaus Schulten, and Martin Karplus. Possible influence of a low-lying “covalent” excited state on the absorption spectrum and photoisomerization of 11-cis retinal. Chem. Phys. Lett., 31:451–454, 1975. [3] Klaus Schulten and Roy G. Gordon. Exact recursive evaluation of 3j- and 6j-coefficients for quantum- mechanical coupling of angular momenta. J. Math. Phys., 16:1961–1970, 1975. [4] Klaus Schulten and Roy G. Gordon. Semiclassical approximation to 3j- and 6j-coefficients for quantum- mechanical coupling of angular momenta. J. Math. Phys., 16:1971–1988, 1975. [5] Klaus Schulten, I. Ohmine, and Martin Karplus. Correlation effects in the spectra of polyenes. J. Chem. Phys., 64:4422–4441, 1976. [6] Klaus Schulten and Roy G. Gordon. Quantum theory of angular momentum coupling in reactive collisions. J. Chem. Phys., 64:2918–2938, 1976. [7] Klaus Schulten and Roy G. Gordon. Recursive evaluation of 3j- and 6j-coefficients. Comput. Phys. Commun., 11:269–278, 1976. [8] Klaus Schulten, H. Staerk, Albert Weller, Hans-Joachim Werner, and B. Nickel. Magnetic field depen- dence of the geminate recombination of radical ion pairs in polar solvents. Z. Phys. Chem., NF101:371– 390, 1976. [9] Klaus Schulten. Quantum mechanical propensity rules for the transfer of angular momentum in three- atom reactions. Ber. -
Preparing and Analyzing Large Molecular Simulations With
Preparing and Analyzing Large Molecular Simulations with VMD John Stone, Senior Research Programmer NIH Center for Macromolecular Modeling and Bioinformatics, University of Illinois at Urbana-Champaign VMD Tutorials Home Page • http://www.ks.uiuc.edu/Training/Tutorials/ – Main VMD tutorial – VMD images and movies tutorial – QwikMD simulation preparation and analysis plugin – Structure check – VMD quantum chemistry visualization tutorial – Visualization and analysis of CPMD data with VMD – Parameterizing small molecules using ffTK Overview • Introduction • Data model • Visualization • Scripting and analytical features • Trajectory analysis and visualization • High fidelity ray tracing • Plugins and user-extensibility • Large system analysis and visualization VMD – “Visual Molecular Dynamics” • 100,000 active users worldwide • Visualization and analysis of: – Molecular dynamics simulations – Lattice cell simulations – Quantum chemistry calculations – Cryo-EM densities, volumetric data • User extensible scripting and plugins • http://www.ks.uiuc.edu/Research/vmd/ Cell-Scale Modeling MD Simulation VMD – “Visual Molecular Dynamics” • Unique capabilities: • Visualization and analysis of: – Trajectories are fundamental to VMD – Molecular dynamics simulations – Support for very large systems, – “Particle” systems and whole cells now reaching billions of particles – Cryo-EM densities, volumetric data – Extensive GPU acceleration – Quantum chemistry calculations – Parallel analysis/visualization with MPI – Sequence information MD Simulations Cell-Scale -
Kepler Gpus and NVIDIA's Life and Material Science
LIFE AND MATERIAL SCIENCES Mark Berger; [email protected] Founded 1993 Invented GPU 1999 – Computer Graphics Visual Computing, Supercomputing, Cloud & Mobile Computing NVIDIA - Core Technologies and Brands GPU Mobile Cloud ® ® GeForce Tegra GRID Quadro® , Tesla® Accelerated Computing Multi-core plus Many-cores GPU Accelerator CPU Optimized for Many Optimized for Parallel Tasks Serial Tasks 3-10X+ Comp Thruput 7X Memory Bandwidth 5x Energy Efficiency How GPU Acceleration Works Application Code Compute-Intensive Functions Rest of Sequential 5% of Code CPU Code GPU CPU + GPUs : Two Year Heart Beat 32 Volta Stacked DRAM 16 Maxwell Unified Virtual Memory 8 Kepler Dynamic Parallelism 4 Fermi 2 FP64 DP GFLOPS GFLOPS per DP Watt 1 Tesla 0.5 CUDA 2008 2010 2012 2014 Kepler Features Make GPU Coding Easier Hyper-Q Dynamic Parallelism Speedup Legacy MPI Apps Less Back-Forth, Simpler Code FERMI 1 Work Queue CPU Fermi GPU CPU Kepler GPU KEPLER 32 Concurrent Work Queues Developer Momentum Continues to Grow 100M 430M CUDA –Capable GPUs CUDA-Capable GPUs 150K 1.6M CUDA Downloads CUDA Downloads 1 50 Supercomputer Supercomputers 60 640 University Courses University Courses 4,000 37,000 Academic Papers Academic Papers 2008 2013 Explosive Growth of GPU Accelerated Apps # of Apps Top Scientific Apps 200 61% Increase Molecular AMBER LAMMPS CHARMM NAMD Dynamics GROMACS DL_POLY 150 Quantum QMCPACK Gaussian 40% Increase Quantum Espresso NWChem Chemistry GAMESS-US VASP CAM-SE 100 Climate & COSMO NIM GEOS-5 Weather WRF Chroma GTS 50 Physics Denovo ENZO GTC MILC ANSYS Mechanical ANSYS Fluent 0 CAE MSC Nastran OpenFOAM 2010 2011 2012 SIMULIA Abaqus LS-DYNA Accelerated, In Development NVIDIA GPU Life Science Focus Molecular Dynamics: All codes are available AMBER, CHARMM, DESMOND, DL_POLY, GROMACS, LAMMPS, NAMD Great multi-GPU performance GPU codes: ACEMD, HOOMD-Blue Focus: scaling to large numbers of GPUs Quantum Chemistry: key codes ported or optimizing Active GPU acceleration projects: VASP, NWChem, Gaussian, GAMESS, ABINIT, Quantum Espresso, BigDFT, CP2K, GPAW, etc. -
Understanding How Birds Navigate
10.1117/2.1200909.1804 Understanding how birds navigate Ilia A. Solov’yov and Klaus Schulten A proposed model for migrating birds’ magnetic sense can withstand moderate orientational disorder of a key protein in the eye. Creatures as varied as salmon, honeybees, and migratory birds such as European robins have an intriguing ‘sixth’ sense that allows them to distinguish north from south.1–4 Yet despite decades of study, the physical basis of this magnetic sense re- mains elusive. Detailed understanding of magnetoreception in animals has tremendous applications. For example, it is well known that windmills constructed in the wrong places, espe- cially older ones, cause many bird deaths. Shielding these struc- tures with magnetic fields may reduce the death toll by keeping the animals away from the dangerous area. Similar shields could be used to protect airports from birds, as they regularly collide with airborne airplanes, causing severe problems. Damage by birds and other wildlife striking aircraft annually amounts to well over $600 million for US civil and military aviation and over 219 people have been killed worldwide as a result of wildlife Figure 1. Structure of cryptochrome, likely involved in avian mag- strikes since 1988.5 netoreception. The protein internally binds the FADH (the semi- Migratory birds’ magnetic sense may be based on the pro- reduced form of flavin adenine dinucleotide) cofactor, which governs its tein cryptochrome, found in the retina, the light-sensitive part of functioning capabilities. The signaling state is achieved through a the eyes. Cryptochrome’s functional capabilities depend on its light-induced electron-transfer reaction involving a chain of three orientation in an external magnetic field.6, 7 But it is present in tryptophan amino acids, Trp400, Trp377, and Trp324. -
CV (December 21, 2020) 1 Braun, Rosemary I
Rosemary Braun Curriculum Vitae Education Ph.D. (Physics) University of Illinois, Urbana–Champaign 2004 Dissertation: Molecular Dynamics Studies of Interfacial Effects on Protein Conformation Advisor: Prof. K. Schulten, Physics (Theoretical and Computational Biophysics Group) M.P.H. (Biostatistics) Johns Hopkins–Bloomberg School of Public Health 2006 Thesis: Identifying Differentially Expressed Gene–Pathway Combinations Advisor: Prof. G. Parmigiani, Biostatistics B.Sc. (Physics) Stony Brook University (SUNY Stony Brook) 1996 Honors College Thesis: Binary Pulsar Evolution Advisor: Prof G. E. Brown, Physics (Nuclear Theory Group) Academic Appointments Northwestern University Associate Professor 01/2021—present Molecular BioSciences [primary] Physics & Astronomy [courtesy] Assistant Professor 10/2011—12/2020 Biostatistics, Preventive Medicine [primary] Physics & Astronomy [courtesy] Engineering Sciences & Applied Mathematics [courtesy] Institute and center affiliations: Northwestern Institute on Complex Systems (NICO) R.H. Lurie Comprehensive Cancer Center NSF-Simons Center for Quantitative Biology National Institutes of Health Postdoctoral Fellow, National Cancer Institute 2005–2011 Laboratory of Population Genetics (PI: Ken Buetow) University of Illinois, Urbana-Champaign Postdoctoral Research Associate, Department of Physics 2004–2005 Graduate Research Assistant, Department of Physics 1997–2004 Stony Brook University (SUNY Stony Brook) Undergraduate Research Assistant, Department of Physics 1994–1995 Undergraduate Teaching Assistant, Department of Mathematics 1994–1995 Publications (Chronological) * corresponding author; y Braun lab student/postdoc [1] Justin Gullingsrud, Rosemary Braun, and Klaus Schulten. Reconstructing potentials of mean force through time series analysis of steered molecular dynamics simulations. Journal of Computational Physics, 151:190–211, 1999. CV (December 21, 2020) 1 Braun, Rosemary I. [2] Rosemary Braun, Mehmet Sarikaya, and Klaus Schulten. Genetically engineered gold-binding polypeptides: Structure prediction and molecular dynamics.