Chapter 9: Glossary

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 9: Glossary Glossary 9-1 Depleted UF6 PEIS 9 GLOSSARY accident: An unplanned sequence of events accident risk: Risk based on both the severity resulting in undesirable consequences, such as of an accident (consequence) and the probability the release of radioactive or hazardous material that the accident will occur. High-consequence to the environment. accidents that are unlikely to occur (low probability) may pose a low overall risk. For accident consequence assessment: An assess- purposes of comparison, accident risk is typically ment of the impacts following the occurrence of calculated by multiplying the accident an accident, independent of the probability of that consequence (e.g., dose or expected fatalities) by accident. The PEIS provides estimates of the the accident probability. consequences of a large number of possible accidents, ranging from those with low proba- accident risk assessment: An assessment that bility (rare) to those with relatively high proba- considers the probabilities and consequences of bility (frequent). a range of possible accidents, including low- probability accidents that have high conse- accident frequency: The likelihood that a quences and high-probability accidents that have specific accident will occur, that is, the proba- low consequences. The overall risk associated bility of occurrence. If an accident is esti- with an accident is generally estimated by mated to happen once every 50 years, the multiplying the accident consequence by the accident frequency is generally reported as probability of occurrence. 0.02 per year (1 occurrence divided by 50 years = 0.02 occurrences per year). For the PEIS, accident source term: The amount of radio- accident frequencies were grouped as follows: active or hazardous material released to the environment in dispersible form following an • I, likely (L) — The average frequency of accident. occurrence is estimated to be greater than or equal to 1 in 100 years. adsorption: Process in which solid surfaces attract and retain a layer of ions from a water • II, unlikely (U) — The average frequency solution. of occurrence is estimated to be 1 in 100 to 1 in 10,000 years. advection: The process by which material is transported by the bulk motion of flowing water. • III, extremely unlikely (EU) — The average frequency of occurrence is esti- air quality: Measure of the health-related and mated to be 1 in 10,000 to 1 in 1 million visual characteristics of the air, often derived years. from quantitative measurements of the concen- trations of specific injurious or contaminating • IV, incredible (I) — The average fre- substances. Air quality standards are the quency of occurrence is estimated to be prescribed level of constituents in the outside air less than 1 in 1 million years. that cannot be exceeded during a specific time in a specified area. Glossary 9-2 Depleted UF6 PEIS Air Quality Control Region (AQCR): An workforce and the public) and releases of interstate or intrastate area designated by the radioactive material to the environment as low as U.S. Environmental Protection Agency for the social, technical, economic, practical, and public attainment and maintenance of National Ambient policy considerations permit. ALARA is not a Air Quality Standards. dose limit; it is a practice that has as its objective the attainment of dose levels as far below ALARA: see as low as reasonably achievable. applicable limits as possible. alpha particle ("): A positively charged Atomic Energy Act of 1954: The Act that, particle consisting of two protons and two along with other related legislation, provided the neutrons that is emitted during radioactive decay Atomic Energy Commission (a predecessor of from the nucleus of certain nuclides. It is the least the U.S. Department of Energy) with authority to penetrating of the three common types of develop generally applicable standards for radiation (alpha, beta, and gamma). protecting the environment from radioactive materials. ambient air: The surrounding atmosphere as it exists around people, plants, and structures. attainment area: An area considered to have air quality as good as or better than the National American Indian Religious Freedom Act of Ambient Air Quality standards as defined in the 1978: The Act that established national policy to Clean Air Act. An area may be an attainment protect and preserve for Native Americans their area for one pollutant and a nonattainment area inherent right of freedom to believe, express, and for others (see also nonattainment area). exercise their traditional religions, including the rights of access to religious sites, use and Bald and Golden Eagle Protection Act, as possession of sacred objects, and freedom to amended: The Act making it unlawful to take, worship through traditional ceremonies and rites. pursue, molest, or disturb bald (American) and golden eagles, their nests, or their eggs anywhere AQCR: see Air Quality Control Region. in the United States. aquifer: A saturated subsurface geologic forma- beta particle ($): An elementary particle tion that can transmit significant quantities of emitted from a nucleus during radioactive decay; water. it is negatively or positively charged, identical in mass to an electron, and in most cases easily Archaeological and Historic Preservation Act: stopped, as by a thin sheet of metal or plastic. Act directed at the preservation of historic and archaeological data that would otherwise be lost biota: The plant and animal life of a region. as a result of federal construction. It authorizes the U.S. Department of the Interior to undertake blending: The mixing of two quantities of recovery, protection, and preservation of archae- uranium with different levels of enrichment to ological and historic data. produce uranium enriched to a level suitable for manufacture into a fuel. Depleted uranium can be as low as reasonably achievable (ALARA): blended with highly enriched uranium to produce An approach to control or manage radiation nuclear reactor fuel. exposures (both individual and collective to the Glossary 9-3 Depleted UF6 PEIS bounding: In the case of accident analysis, graphic dimensions of census tracts vary widely, bounding is a condition, consequence, or risk that depending on population settlement density. provides an upper limit that is not exceeded by Census tracts do not cross county borders. other conditions, consequences, or risks. This term is also used to identify conservative Clean Air Act: The Act that mandates the assumptions that will likely overestimate actual issuance and enforcement of air pollution control risks or consequences. standards for stationary sources and motor vehicles. breach: A general term referring to a hole in a cylinder or container. A breach may be caused by Clean Air Act Amendments of 1990: An Act corrosion or by mechanical forces, such as those that expanded the enforcement powers of the caused by a drop or contact with handling U.S. Environmental Protection Agency and equipment. added restrictions on air toxins, ozone-depleting chemicals, stationary and mobile emissions cancer: A group of diseases characterized by sources, and emissions implicated in acid rain uncontrolled cellular growth. Increased incidence and global warming. of cancer can be caused by exposure to radiation. Clean Water Act of 1972, 1987: The Act that candidate species: Plant or animal species that regulates the discharge of pollutants from a point are not yet officially listed as threatened or source into navigable waters of the United States endangered but are undergoing status review by in compliance with a National Pollution Dis- the U.S. Fish and Wildlife Service. These species charge Elimination System permit. Also are candidates for possible addition to the list of regulates discharges to or dredging of wetlands. threatened and endangered species. Code of Federal Regulations (CFR): The carbon monoxide (CO): A colorless, odorless codified form in which all federal regulations in gas that is toxic if breathed in high concentration force are published. over a period of time. Carbon monoxide is one of six criteria air pollutants specified under Title I of collective dose: Summation of individual the Clean Air Act. radiation doses received by all those exposed to the source or event being considered. The collec- cascade: The process system that is used to tive radiation dose received by a population separate the isotopic streams of uranium-235 and group is usually measured in units of person-rem. uranium-238 in gaseous diffusion plants. collective population risk: A measure of cask: A heavily shielded, typically robust con- possible loss in a group of people that takes into tainer for shipping or storing spent nuclear fuel. account the probability that the hazard will cause Spent nuclear fuel casks are usually cylindrical harm and the consequences of that event. The containers with radiation shielding provided by collective population risk does not express the steel, lead, concrete, or depleted uranium. risk to specific individual members of the population. census tract: An area usually containing between 2,500 and 8,000 persons that is used for committed effective dose equivalent: The sum organizing and monitoring census data. The geo- of the committed dose equivalents to various Glossary 9-4 Depleted UF6 PEIS tissues of the body, each multiplied by its weight- reasonably foreseeable future actions regardless ing factor. It does not include contributions from of what agency (federal or nonfederal), private external doses. Committed
Recommended publications
  • Depleted Uranium: a DOE Management Challenge
    Depleted Uranium: A DOE Management Challenge October 1995 U.S. Department of Energy Office of Environmental Management Office of Technology Development This report has been reproduced direcdy from die best available copy. Available to DOE and DOE Contractors from the Office of Scientific and Technical Information, P.O. Box 62, Oak Ridge, TN 37831; prices available from (615) 576-8401. Available to die pubfic from die U.S. Department of Commerce, Technology Administration, National Technical Information Service, Springfield, VA 22161, (703) 487-4650. Printed with soy ink on recycled paper DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, make any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. DOE/EM-0262 Depleted Uranium: A DOE Management Challenge October 1995 JSW O.STR.BUT.ON OF TH,S DOCUMENT » UNUM'TSD T U.S.
    [Show full text]
  • High-Density Concrete with Ceramic Aggregate Based on Depleted Uranium Dioxide
    HIGH-DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE S.G. Ermichev, V.I. Shapovalov, N.V.Sviridov (RFNC-VNIIEF, Sarov, Russia) V.K. Orlov, V.M. Sergeev, A. G. Semyenov, A.M. Visik, A.A. Maslov, A. V. Demin, D.D. Petrov, V.V. Noskov, V. I. Sorokin, O. I. Uferov (VNIINM, Moscow, Russia) L. Dole (ORNL, Oak Ridge, USA) Abstract - Russia is researching the production and testing of concretes with ceramic aggregate based on depleted uranium dioxide (UO2). These DU concretes are to be used as structural and radiation-shielded material for casks for A-plant spent nuclear fuel transportation and storage. This paper presents the results of studies aimed at selection of ceramics and concrete composition, justification of their production technology, investigation of mechanical properties, and chemical stability. This Project is being carried out at the A.A. Bochvar All-Russian Scientific-Research Institute of inorganic materials (VNIINM, Russia) and Russian Federal Nuclear Center – All-Russia Scientific Research Institute of Experimental Physics (RFNC-VNIIEF, Russia). This Project #2691 is financed by the International Science and Technology Center (ISTC) under collaboration of the Oak- Ridge National Laboratory (USA) I. INTRODUCTION The current practice of ensuring the required gamma conduction, thermo-, radiation and corrosion resistance, shielding and strength of metal-concrete casks is based on service life and water resistance. concrete density. For this purpose high-density rocks Specific characteristics of UO2’s chemical activity (magnetite, iron glance, barium sulfate, etc.) as well as because of its small size of particles and thus great specific scrap, scale, broken metal chips and others are introduced surface area prevent the use of traditional methods of UO2 into concrete as coarse aggregates.
    [Show full text]
  • Beneficial Uses of Depleted Uranium
    BENEFICIAL USES OF DEPLETED URANIUM Colette Brown U.S. Department of Energy Germantown, Maryland 20871 Allen G. Croff and M. Jonathan Haire Chemical Technology Division Oak Ridge National Laboratory* Oak Ridge, Tennessee 37831-6180 Prepared for the Beneficial Re-Use ‘97 Conference Knoxville, Tennessee August 5–7, 1997 _________________________ *Managed by Lockheed Martin Energy Research Corp., under contract DE-AC05-96OR22464 for the U.S. Department of Energy. BENEFICIAL USES OF DEPLETED URANIUM1 Colette Brown Allen G. Croff and M. Jonathan Haire U.S. Department of Energy Oak Ridge National Laboratory2 19901 Germantown Rd. P.O. Box 2008 Germantown, Maryland 20871 Oak Ridge, Tennessee 37831-6180 (301) 903-5512 (423) 574-7141 INTRODUCTION Naturally occurring uranium contains 0.71 wt % 235U. In order for the uranium to be useful in most fission reactors, it must be enriched—the concentration of the fissile isotope 235U must be increased. Depleted uranium (DU) is a co-product of the processing of natural uranium to produce enriched uranium, and DU has a 235U concentration of <0.71 wt %. In the United States, essentially all of the DU inventory is in the chemical form of uranium hexafluoride (UF6) and is stored in large cylinders above ground. If this co-product material were to be declared surplus, converted to a stable oxide form, and disposed, the costs are estimated to be several billion dollars. Only small amounts of DU have at this time been beneficially reused. The U.S. Department of Energy (DOE) has begun the Beneficial Uses of DU Project to identify large-scale uses of DU and encourage its reuse for the primary purpose of potentially reducing the cost and expediting the disposition of the DU inventory.
    [Show full text]
  • 1 Low Ph Concrete for Use in the US High-Level Waste Repository: Part I Overview
    1 Low pH Concrete for Use in the US High-Level Waste Repository: Part I Overview Leslie R. Dole and Catherine H. Mattus Nuclear Science Technology Division of Oak Ridge National Laboratory 1.1 Introduction The current baseline plan for the Yucca Mountain (YM) repository project (YMP) uses steel structures to stabilize the disposal drifts that are collectively over 65 kilometers in length (Figure 1-1). However using cementitious materials and application techniques, the potential exists to reduce the underground construction cost by 100’s of million of dollars, accelerate construction, and improve the repository’s performance. This development program was designed to meet the economic and engineering properties of the appropriate cementitious materials to build out these tunnels1. This work supposes that cementitious liners and inverts (the flat bedding placed in the drifts upon which the rails are laid) will be used ultimately in the second-generation repository design. This paper describes the required properties of Figure 1-1. Current YMP baseline underground tunnel YM-compatible cements build-out construction technology. and the program to develop and test materials for a suite of underground construction technologies. Specifically, this paper addresses mitigation of potential impacts of free calcium hydroxide in the concrete and grout binding matrices. Part II describes the formulation and testing in detail. 1.2 Background Based on several concerns described throughout the YMP document on the Evaluation of Alternative Materials for Emplacement Drift Ground Control (BCAA00000-01717-0200- 00013 REV 00)2, the wide use of cements is currently not included in the YM repository construction plans.
    [Show full text]
  • Optimization of Composition and Production Technology of High-Density Concrete with Ceramic Aggregate Based on Depleted Uranium Dioxide
    ICEM’05: The 9th International Conference on Environmental Remediation and Radioactive Waste Management September 4 – 8, 2005, Scottish Exhibition & Conference Centre, Glasgow, Scotland ICEM05-1356 OPTIMIZATION OF COMPOSITION AND PRODUCTION TECHNOLOGY OF HIGH-DENSITY CONCRETE WITH CERAMIC AGGREGATE BASED ON DEPLETED URANIUM DIOXIDE S.G. Ermichev, V.I. Shapovalov, N. V. Sviridov (RFNC-VNIIEF, Sarov, Russia) V.K. Orlov, V.M. Sergeev, A. G. Semyenov, A.M. Visik, A.A. Maslov, A. V. Demin, D.D. Petrov, V.V. Noskov, V. I. Sorokin, O. I. Yuferov (VNIINM, Moscow, Russia) L. Dole (ORNL, Oak Ridge, USA) ABSTRACT increase concrete density up to ∼ 4 gm/сm3 at strength of ∼ 79 MPa. Russian is researching the production and testing of concretes It is possible to increase efficiency, specific characteristics with ceramic aggregate based on depleted uranium dioxide and safety of casks due to inclusion of very dense depleted (UO2). These DU concretes (DUCRETE) are to be used as uranium dioxide (UO2) into concrete composition structural and radiation-shielded material for casks for A-plant Use of depleted uranium dioxide (UO2) in metal-concrete spent nuclear fuel transportation and storage. This paper casks, along with ensuring of required degree of gamma presents the results of studies aimed at selection of ceramics shielding, can also provide slowdown of fast neutrons due to and concrete composition, justification of their production high oxygen in depleted uranium dioxide (1.3 gm/cm3). This technology, investigation of mechanical properties, and allows capturing neutrons by thermal neutron absorption. This chemical stability. property is unique for such high-density shielding materials [1].
    [Show full text]
  • Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle
    INL/EXT-10-20652 Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle Erich Schneider Brett W. Carlsen Emily Tavrides August 2010 The INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance INL/EXT-10-20652 FCRD-SYSA-2010-000104 Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle Erich Schneider Brett W. Carlsen Emily Tavrides August 2010 Idaho National Laboratory Fuel Cycle Research & Development Idaho Falls, Idaho 83415 http://www.inl.gov Prepared for the U.S. Department of Energy Office of Nuclear Energy Under DOE Idaho Operations Office Contract DE-AC07-05ID14517 DISCLAIMER This information was prepared as an account of work sponsored by an agency of the U.S. Government. Neither the U.S. Government nor any agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness, of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. References herein to any specific commercial product, process, or service by trade name, trade mark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the U.S. Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the U.S. Government or any agency thereof. Measures of the Environmental Footprint of the Front End of the Nuclear Fuel Cycle August 23, 2010 iii EXECUTIVE SUMMARY Previous estimates of environmental impacts associated with the front end of the nuclear fuel cycle (FEFC) have focused primarily on energy consumption and CO2 emissions.
    [Show full text]
  • Abstracts of Papers As of February 3 1997 to Be Presented at Waste
    0* 'A!2ýJAJ U... sluwýa,,Za, :JO ,eAR aj-,,eq ý,360900 Nld IT-WM 31sym Had 10irOL6 OtrOOSESOL6 SESSION: 1-PLENARY SESSON-3-STATUS: OF LLR.WMIXED AT :COMPACTS AND.S.TATES-I - LEVERAGING RESOURCES ACRfOSS DOE SITES FOR FASTER AND MORE ECONOMICAL CLEANUPS WARD VALLEY 1996 - SCIENCE GONE SOUTH Lee A. Mclntire Richard F. Paton President Vice President Bechtel National, Inc American Ecology Corp. ABSTRACT Boise, Idaho Leveraging resources across DOE sites means sharing resources, avoiding duplica James A. Shaffner, P.E. Manager, Southwestern Compact Region lion, and taking advantage of technology irrespective ot where it was invenleo. Historically, DOE's numerous sites have been operated like independent silos; however, US Eocology Inc with the evoiving mission of these sites and with more tocus on cleanuu rather than on Rocklin, California production, opportunities for leveraging resources are right in front ot us. Two tactors that ABSTRACT allow for resource leveraging are the DOE's Contract Reform initiatives and the entry of The Ward Valley Land transfer impasse is a prime example ot the dilemma that results firms ihkeours into tnis growing market - firms that have the experience to integrate activ when political ideology is substituted for scientific method ina public policy debate. In the ities at multiple sites, leveraging the resources of those sites to create more business face of scientific tace, pleas by knowledgeable scientisls and doctors and to the eco opportunities for the customer at thai site, for other customers in our business, and, most nomic detriment of California, the Clinton administration n.,. steadfastly refused to trans importantly, for our employees.
    [Show full text]
  • Radiation Shielding for Storage and Transportation Cask Using Depleted Uranium Oxide in Cementitious Matrices Leslie R
    Radiation Shielding for Storage and Transportation Cask Using Depleted Uranium Oxide in Cementitious Matrices Leslie R. Dole Juan J. Ferrada Catherine H. Mattus U.S./Russian Depleted Uranium Workshop: Review of ISTC Projects Oak Ridge National Laboratory Oak Ridge, Tennessee May 17–21, 2004 OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY BACKGROUND •Combinations of gamma adsorbing DU and neutron absorbing hydrated binders are shown to effectively reduce the size and weight of storage, transport, and disposal casks •DUCRETE will become one of the materials of choice for advanced spent nuclear fuel (SNF) casks 9Requires the demonstration of low-cost fabrication processes 9Requires the demonstration of long-term durability under expected service conditions OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY Comparison of Equivalent Wall Thickness (in.) Shield Thickness 30 Neutrons Gamma 25 20 15 10 5 0 DUCRETE Uranium Metal Lead Metal Stainless Steel Concrete Dr. J. Sterbentz, INEEL J. W. Sterbentz, Shielding Evaluation of a Depleted Uranium Heavy Aggregate Concrete for Spent Fuel Storage Casks, INEL-94/0092 (Idaho Falls, Idaho: Idaho National Engineering and Environmental Laboratory, October 1994). OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY DUCRETE Casks are Considerably Smaller and lighter than Casks Constructed of Ordinary Concrete The DUCRETE cask is 35 tons lighter and 100 cm smaller in diameter than casks made from Cask Lid Air Outlet ordinary concrete. Multipurpose Sealed Basket (Shell Wall) SNF Fuel Assemblies Concrete Cask Liner Concrete Comparison of conventional and DUCRETE Air Inlet Duct spent-fuel dry storage casks/silos Air Entrance OAK RIDGE NATIONAL LABORATORY U.
    [Show full text]
  • Depleted Uranium
    MODULE 7.0: Depleted Uranium Introduction Welcome to Module 7 of the Uranium Enrichment Processes Directed Self-Study Course! This is the seventh of seven modules available in this self-study course. This module provides an overview of Depleted Uranium Management including quantities, options, regulatory requirements, current activities, and NRC involvement. This self-study module is designed to assist in accomplishing the learning objectives listed at the beginning of the module. The module has self-check questions and activities to help you assess your understanding of the concepts presented in the module. Before You Begin It is recommended that you have access to the following materials: 9 Trainee Guide 9 10 CFR Part 76, “Certification of Gaseous Diffusion Plants” 9 10 CFR Part 70, “Domestic Licensing of Special Nuclear” Material How to Complete 1. Review the learning objectives. this Module 2. Read each section within the module in sequential order. 3. Complete the self-check questions and activities. 4. Check off the tracking form as you complete the self-check questions and/or activities within the module. 5. Contact your administrator as prompted for a progress review meeting. 6. Contact your administrator as prompted for any additional materials and/or specific assignments. 7. Complete all assignments related to this module. If no other materials or assignments are given to you by your administrator, you have completed this module. 8. Ensure that you and your administrator have dated and initialed your progress on the tracking form. 9. Go to the next assigned module. Module 7.0: Depleted Uranium TABLE OF CONTENTS Learning Objectives .....................................................
    [Show full text]
  • Technical Issues Associated with Deep Repositories for Radioactive Waste in Different Geological Environments
    Technical issues associated with deep repositories for radioactive waste in different geological environments Better regulation science programme Science report: SC060054/SR1 The Environment Agency is the leading public body protecting and improving the environment in England and Wales. It’s our job to make sure that air, land and water are looked after by everyone in today’s society, so that tomorrow’s generations inherit a cleaner, healthier world. Our work includes tackling flooding and pollution incidents, reducing industry’s impacts on the environment, cleaning up rivers, coastal waters and contaminated land, and improving wildlife habitats. This report is the result of research commissioned and funded by the Environment Agency’s Science Programme. Published by: Author(s): Environment Agency, Rio House, Waterside Drive, R Metcalfe, SP Watson, Aztec West, Almondsbury, Bristol, BS32 4UD Tel: 01454 624400 Fax: 01454 624409 Dissemination Status: www.environment-agency.gov.uk Publicly available ISBN: 978-1-84911-092-1 Keywords: Radioactive waste, Repositories, Geological © Environment Agency – August 2009 environment, Disposal concepts, Technical issues All rights reserved. This document may be reproduced Research Contractor: with prior permission of the Environment Agency. Quintessa Limited, The Hub, 14 Station Road, Henley- on-Thames, Oxon. RG9 1AY The views and statements expressed in this report are those of the author alone. The views or statements Environment Agency’s Project Manager: expressed in this publication do not necessarily David Copplestone, Richard Fairclough House, represent the views of the Environment Agency and the Warrington Environment Agency cannot accept any responsibility for such views or statements. Collaborator(s): A Bath, T McEwen, D.
    [Show full text]
  • Beneficial Uses of Tails from Nuclear Fuel Production Into Spent Fuel
    Beneficial Uses of Tails from Nuclear Fuel Production in Spent Fuel Storage Cask Manufacturing Juan J. Ferrada and Leslie R. Dole Oak Ridge National Laboratory P.O. Box 2008 Oak Ridge, Tennessee 37831-6179 Tel: (865) 574-4998; E-mails: ferradajj@ornl.gov, dolelr@ornl.gov Manuscript Date: April 7, 2005 Paper prepared for AIChE Spring National Meeting April 10-14, Hyatt Regency, Atlanta, GA The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________ *Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Beneficial Uses of Tails from Nuclear Fuel Production in Spent Fuel Storage Cask Manufacturing Juan J. Ferrada and Leslie R. Dole Oak Ridge National Laboratory Oak Ridge, TN 37831-6166 Phone: 865-574-4998 ferradajj@ornl.gov, dolelr@ornl.gov ABSTRACT The depleted uranium (DU) inventory in the United States exceeds 500,000 metric tons (tonnes). This paper reviews the status of U.S. Department of Energy (DOE) research concerning the use of its inventory of DU as neutron and gamma shielding as uranium oxide (UOx) in nonmetallic matrices (e.g., concrete). This program envisions that a large portion of the U.S. inventory of DU will be used in the fabrication of nuclear shielding for the storage, transport, and disposal of spent nuclear fuels.* Just in the storage of commercial U.S.
    [Show full text]
  • Depleted-Uranium Uses R&D Program
    DEPLETED-URANIUM USES R&D PROGRAM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory* Oak Ridge, Tennessee 37831-6180 August 2000 For the Waste Management 2001 Symposium Tucson, Arizona February 25–March 1, 2001 Session 9.3: Advances in Depleted Uranium Technology The submitted manuscript has been authored by a contractor of the U.S. Government under contract DE-AC05-00OR22725. Accordingly, the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes. _________________________ *Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. DEPLETED-URANIUM USES R&D PROGRAM Robert R. Price U.S. Department of Energy Germantown, Maryland 20874 M. Jonathan Haire and Allen G. Croff Chemical Technology Division Oak Ridge National Laboratory Oak Ridge, Tennessee 37831-6180 ABSTRACT The U.S. government has -500,000 metric tons (t) of surplus depleted uranium (DU) stored at U.S. Department of Energy sites across the country. This material is mostly stored in the form of depleted uranium hexafluoride (DUF6 ), resulting from enrichment operations. DOE has decided to convert the DUF6 inventory to a more chemically stable form. DOE has initiated the DU Uses Research and Development (R&D) Program to ensure the most effective disposition of the converted DU. This program will explore potential beneficial uses of the converted DU, the fluorine associated with the DUF66 , and emptied carbon-steel DUF storage cylinders, which were used during conversion of the DUF6 .
    [Show full text]