Supporting Information

Porous Hydroxide DioxideReduced Graphene

Ternary Hybrid Spheres as Excellent Supercapacitor Electrode Materials

Hao Chen ab, Shuxue Zhou, a and Limin Wu a*

aDepartment of Materials Science and Advanced Materials Laboratory, Fudan University,

Shanghai 20043, PR China; bSchool of Engineering, and National Engineering and Technology

Research Center of Woodbased Resources Comprehensive Utilization, Zhejiang Agriculture and

Forestry Unversity, Hangzhou Lin’an 311300, PR China

Email: [email protected]

1

Figure S1 . EDX spectra of (a) entire area, (b) center area, and (c) edge region of hybrid sphere supported on Cu grid with a lacey film. (d) Full XPS spectra of Ni(OH) 2MnO 2RGO (A in

2 brackets denotes Auger electron peaks). (e) Full XPS and (g) C1s XPS spectra of GO and RGO.

(f) Raman spectra of GO and RGO. (h) Photographs of asobtained Ni(OH) 2MnO 2 (left) and

Ni(OH) 2MnO 2RGO hybrid spheres (right) powders.

3

Table S1. Comparison of maximum Cs of the reported nickelmanganese oxide/hydroxide, graphene, nickel oxide/hydroxidegraphene, and nickel oxide/hydroxidegraphenebased composite pseudocapacitive materials and the present work.

–1 Electrodes based on materials Cs (F g ) Ref.

1. Nickelmanganese oxide/hydroxide composites Binary ManganeseNickel 160 (50 mV s –1) 1 Porous nickel manganite materials 180 (0.25 A g –1) 2 Nanosized NiMn Oxides 195 (10 mV s –1) 3 Mn/Ni mixed oxides 210 (0.12 A g –1) 4 Nickelmanganese oxide 284 (5 mV s –1) 5

–1 Ni(OH) 2MnO 2 coreshell nanostructures 355 (0.5 A g ) 6 Mesoporous MnNi oxides 411 (2 mV s –1) 7

–1 Nanostructured NiOMnO 2 composite 453 (10 mV s ) 8 Ultrafine MnNiCu oxides 490 (2 mV s –1) 9

–1 NiOMnO 2 coreshell nanocomposites 528 (1 mV s ) 10 Microporous nickelmanganese oxide 685 (2 mA cm –2) 11 Nanostructured MnNiCo oxides 1260 (1 A g –1) 12

–1 Ni(OH) 2MnO 2 hybrid nanosheets 2628 (3 A g ) 13* 2. Manganese dioxidegraphene composites

–1 GrapheneMnO 2 nanowall 122 (10 mV s ) 14

–1 GrapheneMnO 2 nanotubes 193 (0.2 A g ) 15

–1 Graphenehoneycomblike MnO 2 210 (0.5 A g ) 16

–1 Hydrothermally reduced grapheneMnO 2 212 (2 mV s ) 17

–1 Graphene OxideMnO2 nanowires 216 (0.15 A g ) 18

–1 Graphene nanosheetsMnO 2 235 (20 mV s ) 19

–1 Flexible grapheneMnO 2 composite papers 256 (0.5 A g ) 20

4

–1 Grapheneneedlelike MnO 2 260 (0.2 A g ) 21

–1 Graphene sheetMnO 2 sheet mutilayers 263 (0.283 A g ) 22

–1 Graphene nanoplateMnO 2 309 (5 mV s ) 23

–1 Nanostructured grapheneMnO 2 310 (2 mV s ) 24

–1 GrapheneMnO 2 nanostructured textiles 315 (2 mV s ) 25

2 Grapheneflowerlike MnO 2 328 (0.5 mA/cm ) 26

–1 GrapheneMnO 2 nanoparticles 365 (5 mV s ) 27

–1 GrapheneMnO 2 film 400 (10 mV s ) 28

–1 Reduced graphene oxideMnO 2 hollow sphere 578 (0.5 A g ) 29* 3. Nickel oxide/hydroxidegraphene composites Graphene sheetporous NiO hybrid film 400 (2 A g –1) 30 Graphene porous NiO nanocomposite 430 (0.2 A g–1) 31 Monolayer grapheneNiO nanosheets 525 (0.2 A g –1) 32 NiOattached graphene oxide nanosheets 569 (5 A g –1) 33 Reduced graphene oxidenickel oxide composite 770 (2 mV s –1) 34

–1 Ni(OH) 2graphene hybrid material 855 (5 mV s ) 35 Graphene oxidenickel oxide 890 (5 mV s –1) 36 Graphenenickel hydroxide nanosheet hybrid 1163 (5 mV s –1) 37

–1 Reduced graphene oxideαNi(OH) 2 hybrid composites 1215 (5 mV s ) 38

–1 Ni(OH) 2 nanoplates grown on graphene 1335 (2.8 A g ) 39

–1 Ni(OH) 2graphene 1735 (1 mV s ) 40

–1 Spherical αNi(OH) 2 grown on graphene 1761 (5 mV s ) 41

–1 Nanocomposites of Ni(OH) 2reduced graphene oxides 1804 (1 A g ) 42

–1 Ni(OH) 2 nanoflakes on reduced graphene oxide 1828 (1 A g ) 43 4. Nickelcobalt binary oxide/hydroxidegraphene composites Cobaltnickel oxidescarbon nanotube composites 569 (10 mA cm –2) 44 Graphenenickel cobaltite nanocomposite 618 (5 mV s–1) 45

5

–1 Co 0.45 Ni 0.55 O nanorods on reduced graphene oxide sheets 823 (1 A g ) 46

–1 NiCo 2O4reduced graphene oxide composites 835 (1 A g ) 47 Nickel cobalt oxidereduced graphite oxide composite 1222 (0.5 A g –1) 48

–1 Ni(OH) 2CoOreduced graphene oxide composites 1317 (2 A g ) 49

–1 Ni(OH) 2MnO 2RGO hybrid spheres 1985 (2 A g ) This work

* our previously reported work.

Table S2. Comparison of maximum densities and corresponding average power densities of some reported nickelmanganese oxide/hydroxide, manganese dioxidegraphene, nickel oxide/hydroxidegraphene, and nickelcobalt oxide/hydroxidegraphenebased composite pseudocapacitive materials and the present work

Electrodes based on materials Energy density Power density Ref. (Wh ⋅⋅⋅kg −1) (kW⋅⋅⋅kg −1)

Ni(OH) 2/MnO 2 core/shell nanostructures 41.2 0.50 6 Mn/Ni mixed oxides 3.12 1.00 4

GrapheneMnO 2 nanoparticles 50.2 0.22 27

Grapheneflowerlike MnO 2 11.4 25.8 (Pmax ) 26

GrapheneMnO 2 nanostructured textiles 12.5 110 (Pmax ) 25

Graphene nanosheetsMnO 2 33.1 20.4 (Pmax ) 19

GrapheneNi(OH) 2 nanoplates 37.0 10.0 39 Graphene Sheet/Porous NiO Hybrid Film 16.8 30

Ni(OH) 2MnO 2RGO hybrid spheres 54.0 0.39 This work

Pmax : maximum power density.

6

Table S3. Comparison of the maximum energy densities, corresponding average power densities and voltage range of some reported nickel or manganese oxide/hydroxide based asymmetric supercapacitors, and the present work

Energy Power Voltage Positive materials//negative materials density density Ref. range (V) (Wh ⋅⋅⋅kg −1) (kW⋅⋅⋅kg −1)

Graphitic hollow carbon spheresMnO 2 22.1 0.10 02 50 nanofibers//graphitic hollow carbon spheres

Graphite oxideMnO 2//graphite oxide 24.3 24.5 (Pmax ) 02 51

Ni(OH) 2//AC 25.0 0.61.3 52

MnO 2//graphene 25.2 0.10 02 53

K0.27 MnO 20.6H 2O//AC 25.3 0.14 01.8 54

MnO 2 nanowireSWCNT//In 2O3 nanowire 25.5 50.3 (Pmax ) 02 55 SWCNT

RGOMnO 2CNTs//ACWCNT 27.0 0.13 02 56

Ni(OH) 2//graphene 30.0 1.00 01.6 57

Poly(3,4ethylenedioxythiophene)MnO 2//AC 30.2 0.18 01.8 58

Ni(OH) 2MnO 2RGO hybrid spheres// FRGO 32.6 0.31 01.6 This work

AC: activated carbon, CNT: carbon nanotube, Pmax : maximum power density.

7

References for supporting information:

(1) Chen, Y. S.; Hu, C. C. Capacitive Characteristics of Binary ManganeseNickel Oxides

Prepared by Anodic Deposition. Electrochem. Solid St 2003, 6, A210A213.

(2) Pang, H.; Deng, J.; Wang, S.; Li, S.; Du, J.; Chen, J.; Zhang, J. Facile Synthesis of Porous

Nickel Manganite Materials and Their Morphology Effect on Electrochemical Properties.

RSC Adv. 2012, 2, 59305934.

(3) Zhou, J.; Shen, X.; Jing, M. Nanosized NiMn Oxides Prepared by the Citrate Gel Process

and Performances for Electrochemical Capacitors. J. Mater. Sci. Technol. 2006, 22 , 803

806.

(4) Kim, H.; Popov, B. N. Synthesis and Characterization of MnO 2Based Mixed Oxides as

Supercapacitors. J. Electrochem. Soc. 2003, 150 , D56D62.

(5) Wu, C.H.; Ma, J.S.; Lu, C.H. Synthesis and Characterization of NickelManganese Oxide

via the Hydrothermal Route for Electrochemical Capacitors. Curr. Appl. Phys. 2012, 12 ,

11901194.

(6) Jiang, H.; Li, C.; Sun, T.; Ma, J. HighPerformance Supercapacitor Material Based on

Ni(OH) 2 NanowireMnO 2 Nanoflakes CoreShell Nanostructures. Chem. Commun. 2012,

48 , 26062608.

(7) Fang, D.L.; Wu, B.C.; Yan, Y.; Mao, A.Q.; Zheng, C.H. Synthesis and Characterization

of Mesoporous MnNi Oxides for Supercapacitors. J. Solid State Electr 2012, 16 , 135142.

(8) Liu, E.H.; Li, W.; Li, J.; Meng, X.Y.; Ding, R.; Tan, S.T. Preparation and

Characterization of Nanostructured NiO/MnO 2 Composite Electrode for Electrochemical

Supercapacitors. Mater. Res. Bull. 2009, 44 , 11221126.

8

(9) Fang, D.L.; Chen, Z.D.; Wu, B.C.; Yan, Y.; Zheng, C.H. Preparation and

Electrochemical Properties of UltraFine MnNiCu Oxides for Supercapacitors. Mater.

Chem. Phys. 2011, 128 , 311316.

(10) Zhang, B.; Li, W.; Sun, J.; He, G.; Zou, R.; Hu, J.; Chen, Z. NiO/MnO 2 Core/Shell

Nanocomposites for HighPerformance Pseudocapacitors. Mater. Lett. 2014, 114 , 4043.

(11) Prasad, K. R.; Miura, N. Electrochemically Synthesized MnO 2Based Mixed Oxides for

High Performance Redox Supercapacitors. Electrochem. Commun. 2004, 6, 10041008.

(12) Luo, J.M.; Gao, B.; Zhang, X.G. High Capacitive Performance of Nanostructured MnNi

Co Oxide Composites for Supercapacitor. Mater. Res. Bull. 2008, 43 , 11191125.

(13) Chen, H.; Hu, L.; Yan, Y.; Che, R.; Chen, M.; Wu, L. OneStep Fabrication of Ultrathin

Porous Nickel HydroxideManganese Dioxide Hybrid Nanosheets for Supercapacitor

Electrodes with Excellent Capacitive Performance. Adv. Energy Mater. 2013, 3, 16361646.

(14) Zhu, C.; Guo, S.; Fang, Y.; Han, L.; Wang, E.; Dong, S. OneStep Electrochemical

Approach to the Synthesis of Graphene/MnO 2 Nanowall Hybrids. Nano Res. 2011, 4, 648

657.

(15) Lei, Z.; Shi, F.; Lu, L. Incorporation of MnO 2Coated Carbon Nanotubes between Graphene

Sheets as Supercapacitor Electrode. ACS Appl. Mater. Interfaces 2012, 4, 10581064.

(16) Zhu, J.; He, J. Facile Synthesis of GrapheneWrapped Honeycomb MnO 2 Nanospheres and

Their Application in Supercapacitors. ACS Appl. Mater. Interfaces 2012, 4, 17701776.

(17) Guan, C.; Liu, J.; Cheng, C.; Li, H.; Li, X.; Zhou, W.; Zhang, H.; Fan, H. J. Hybrid

Structure of Cobalt Monoxide Nanowire @ Nickel Hydroxidenitrate Nanoflake Aligned on

Nickel Foam for HighRate Supercapacitor. Energy Environ. Sci. 2011, 4, 44964499.

9

(18) Chen, S.; Zhu, J.; Wu, X.; Han, Q.; Wang, X. Graphene OxideMnO 2 Nanocomposites for

Supercapacitors. ACS Nano 2010, 4, 28222830.

(19) Rakhi, R. B.; Chen, W.; Cha, D.; Alshareef, H. N. High Performance Supercapacitors Using

Metal Oxide Anchored Graphene Nanosheet Electrodes. J. Mater. Chem. 2011, 21 , 16197

16204.

(20) Li, Z.; Mi, Y.; Liu, X.; Liu, S.; Yang, S.; Wang, J. Flexible Graphene/MnO 2 Composite

Papers for Supercapacitor Electrodes. J. Mater. Chem. 2011, 21 , 1470614711.

(21) Mao, L.; Zhang, K.; Chan, H. S. O.; Wu, J. Nanostructured MnO 2/Graphene Composites for

Supercapacitor Electrodes: the Effect of Morphology, Crystallinity and Composition. J.

Mater. Chem. 2012, 22 , 18451851.

(22) Li, Z.; Wang, J.; Liu, X.; Liu, S.; Ou, J.; Yang, S. Electrostatic LayerbyLayer Self

Assembly Multilayer Films Based On Graphene and Manganese Dioxide Sheets as Novel

Electrode Materials for Supercapacitors. J. Mater. Chem. 2011, 21 , 33973403.

(23) Huang, H.; Wang, X. Graphene NanoplateMnO 2 Composites for Supercapacitors: a

Controllable Oxidation Approach. Nanoscale 2011, 3, 31853191.

(24) Yan, J.; Fan, Z.; Wei, T.; Qian, W.; Zhang, M.; Wei, F. Fast and Reversible Surface Redox

Reaction of GrapheneMnO 2 Composites as Supercapacitor Electrodes. Carbon 2010, 48 ,

38253833.

(25) Yu, G.; Hu, L.; Vosgueritchian, M.; Wang, H.; Xie, X.; McDonough, J. R.; Cui, X.; Cui, Y.;

Bao, Z. SolutionProcessed Graphene/MnO 2 Nanostructured Textiles for HighPerformance

Electrochemical Capacitors. Nano Lett. 2011, 11 , 29052911.

(26) Cheng, Q.; Tang, J.; Ma, J.; Zhang, H.; Shinya, N.; Qin, L. C. Graphene and Nanostructured

MnO 2 Composite Electrodes for Supercapacitors. Carbon 2011, 49 , 29172925.

10

(27) Chen, C.Y.; Fan, C.Y.; Lee, M.T.; Chang, J.K. Tightly Connected MnO 2Graphene with

Tunable Energy Density and Power Density for Supercapacitor Applications. J. Mater.

Chem. 2012, 22 , 76977700.

(28) Lee, H.; Kang, J.; Cho, M. S.; Choi, J.B.; Lee, Y. MnO 2/Graphene Composite Electrodes

for Supercapacitors: the Effect of Graphene Intercalation on Capacitance. J. Mater. Chem.

2011, 21 , 1821518219.

(29) Chen, H.; Zhou, S.; Chen, M.; Wu, L. Reduced Graphene OxideMnO 2 Hollow Sphere

Hybrid Nanostructures as HighPerformance Electrochemical Capacitors. J. Mater. Chem.

2012, 22 , 2520725216.

(30) Xia, X.; Tu, J.; Mai, Y.; Chen, R.; Wang, X.; Gu, C.; Zhao, X. Graphene Sheet/Porous NiO

Hybrid Film for Supercapacitor Applications. Chem. -Eur. J. 2011, 17 , 1089810905.

(31) Jiang, Y.; Chen, D.; Song, J.; Jiao, Z.; Ma, Q.; Zhang, H.; Cheng, L.; Zhao, B.; Chu, Y. A

Facile Hydrothermal Synthesis of Graphene Porous NiO Nanocomposite and its Application

in Electrochemical Capacitors. Electrochim. Acta 2013, 91 , 173178.

(32) Zhao, B.; Song, J.; Liu, P.; Xu, W.; Fang, T.; Jiao, Z.; Zhang, H.; Jiang, Y. Monolayer

Graphene/NiO Nanosheets with TwoDimension Structure for Supercapacitors. J. Mater.

Chem. 2011, 21 , 1879218798.

(33) Wu, M.S.; Lin, Y.P.; Lin, C.H.; Lee, J.T. Formation of NanoScaled Crevices and

Spacers in NiOAttached Graphene Oxide Nanosheets for Supercapacitors. J. Mater. Chem.

2012, 22 , 24422448.

(34) Zhu, X.; Dai, H.; Hu, J.; Ding, L.; Jiang, L. Reduced Graphene OxideNickel Oxide

Composite as High Performance Electrode Materials for Supercapacitors. J. Power Sources

2012, 203 , 243249.

11

(35) Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H.; Dai, H. Advanced

Asymmetrical Supercapacitors Based on Graphene Hybrid Materials. Nano Res. 2011, 4,

729736.

(36) Yuan, B.; Xu, C.; Deng, D.; Xing, Y.; Liu, L.; Pang, H.; Zhang, D. Graphene Oxide/Nickel

Oxide Modified Glassy Carbon Electrode for Supercapacitor and Nonenzymatic Glucose

Sensor. Electrochim. Acta 2013, 88 , 708712.

(37) Zhu, J.; Chen, S.; Zhou, H.; Wang, X. Fabrication of a Low Defect Density Graphene

Nickel Hydroxide Nanosheet Hybrid with Enhanced Electrochemical Performance. Nano

Res. 2012, 5, 1119.

(38) Lee, J. W.; Ahn, T.; Soundararajan, D.; Ko, J. M.; Kim, J.D. NonAqueous Approach to

the Preparation of Reduced Graphene Oxide/αNi(OH) 2 Hybrid Composites and Their High

Capacitance Behavior. Chem. Commun. 2011, 47 , 63056307.

(39) Wang, H.; Casalongue, H. S.; Liang, Y.; Dai, H. Ni(OH) 2 Nanoplates Grown on Graphene

as Advanced Electrochemical Pseudocapacitor Materials. J. Am. Chem. Soc. 2010, 132 ,

74727477.

(40) Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F.

Advanced Asymmetric Supercapacitors Based on Ni(OH)2/Graphene and Porous Graphene

Electrodes with High Energy Density. Adv. Funct. Mater. 2012, 22 , 26322641.

(41) Yang, S.; Wu, X.; Chen, C.; Dong, H.; Hu, W.; Wang, X. Spherical αNi(OH) 2

Nanoarchitecture Grown on Graphene as Advanced Electrochemical Pseudocapacitor

Materials. Chem. Commun. 2012, 48 , 27732775.

12

(42) Xiao, J.; Yang, S. Nanocomposites of Ni(OH) 2/Reduced Graphene Oxides with

Controllable Composition, Size, and Morphology: Performance Variations as

Pseudocapacitor Electrodes. ChemPlusChem 2012, 77 , 807816.

(43) Chang, J.; Xu, H.; Sun, J.; Gao, L. High Pseudocapacitance Material Prepared via in Situ

Growth of Ni(OH) 2 Nanoflakes on Reduced Graphene Oxide. J. Mater. Chem. 2012, 22 ,

1114611150.

(44) Fan, Z.; Chen, J.; Cui, K.; Sun, F.; Xu, Y.; Kuang, Y. Preparation and Capacitive Properties

of CobaltNickel Oxides/Carbon Nanotube Composites. Electrochim. Acta 2007, 52 , 2959

2965.

(45) Wang, H.; Holt, C. B.; Li, Z.; Tan, X.; Amirkhiz, B.; Xu, Z.; Olsen, B.; Stephenson, T.;

Mitlin, D. GrapheneNickel Cobaltite Nanocomposite Asymmetrical Supercapacitor with

Commercial Level Mass Loading. Nano Res. 2012, 5, 605617.

(46) Xiao, J.; Yang, S. BioInspired Synthesis of NaCltype Co xNi 1xO (0 <= x < 1) Nanorods on

Reduced Graphene Oxide Sheets and Screening for Asymmetric Electrochemical

Capacitors. J. Mater. Chem. 2012, 22 , 1225312262.

(47) Jang, B. Z.; Liu, C.; Neff, D.; Yu, Z.; Wang, M. C.; Xiong, W.; Zhamu, A. Graphene

SurfaceEnabled IonExchanging Cells: NextGeneration HighPower Energy

Storage Devices. Nano Lett. 2011, 11 , 37853791.

(48) Wang, X.; Liu, W. S.; Lu, X.; Lee, P. S. Dodecyl SulfateInduced Fast Faradic Process in

Nickel Cobalt OxideReduced Graphite Oxide Composite Material and its Application for

Asymmetric Supercapacitor Device. J. Mater. Chem. 2012, 22 , 2311423119.

13

(49) Jiang, L.; Zou, R.; Li, W.; Sun, J.; Hu, X.; Xue, Y.; He, G.; Hu, J. Ni(OH) 2/CoO/Reduced

Graphene Oxide Composites with Excellent Electrochemical Properties. J. Mater. Chem. A

2013, 1, 478481.

(50) Lei, Z.; Zhang, J.; Zhao, X. S. Ultrathin MnO 2 Nanofibers Grown on Graphitic Carbon

Spheres as HighPerformance Asymmetric Supercapacitor Electrodes. J. Mater. Chem.

2012, 22 , 153160.

(51) Zhao, X.; Zhang, L.; Murali, S.; Stoller, M. D.; Zhang, Q.; Zhu, Y.; Ruoff, R. S.

Incorporation of Manganese Dioxide within Ultraporous Activated Graphene for High

Performance Electrochemical Capacitors. ACS Nano 2012, 6, 54045412.

(52) Park, J. H.; Park, O. O.; Shin, K. H.; Jin, C. S.; Kim, J. H. An Electrochemical Capacitor

Based on a Ni(OH) 2/Activated Carbon Composite Electrode. Electrochem. Solid State Lett.

2002, 5, H7H10.

(53) Cao, J.; Wang, Y.; Zhou, Y.; Ouyang, J.H.; Jia, D.; Guo, L. High voltage asymmetric

supercapacitor based on MnO 2 and graphene electrodes. J. Electroanal. Chem. 2013, 689 ,

201206.

(54) Qu, Q.; Li, L.; Tian, S.; Guo, W.; Wu, Y.; Holze, R. A cheap asymmetric supercapacitor

with high energy at high power: Activated carbon//K0.27 MnO 20.6H 2O. J. Power Sources

2010, 195 , 27892794.

(55) Chen, P. C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and Characterization of

Flexible Asymmetric Supercapacitors Based on TransitionMetalOxide Nanowire/Single

Walled Carbon Nanotube Hybrid ThinFilm Electrodes. ACS Nano 2010, 4, 44034411.

14

(56) Cheng, Y.; Zhang, H.; Lu, S.; Varanasi, C. V.; Liu, J. Flexible Asymmetric Supercapacitors

with High Energy and High Power Density in Aqueous Electrolytes. Nanoscale 2013, 5,

10671073.

(57) Hu, C.C.; Chen, J.C.; Chang, K.H. Cathodic Deposition of Ni(OH) 2 and Co(OH) 2 for

Asymmetric Supercapacitors: Importance of the Electrochemical Reversibility of Redox

Couples. J. Power Sources 2013, 221 , 128133.

(58) Tang, P.; Zhao, Y.; Xu, C. StepbyStep Assembled Poly(3,4

ethylenedioxythiophene)/Manganese Dioxide Composite Electrodes: Tuning the Structure

for High Electrochemical Performance. Electrochim. Acta 2013, 89 , 300309.

15