An Oka Manifold? Finnur Lárusson

Total Page:16

File Type:pdf, Size:1020Kb

An Oka Manifold? Finnur Lárusson WHATIS... ? an Oka Manifold? Finnur Lárusson The prototypical complex manifold is the com- in general, is more important. A complex manifold plex plane C. In three cases out of four we find X is Kobayashi hyperbolic if there is a metric (a something interesting by considering the class nondegenerate distance function) d on X such that of complex manifolds X with “many” or “few” d(f (z), f (w)) ≤ δ(z; w) for all holomorphic maps holomorphic maps X ! C or C ! X. The trick, of f from the open unit disc D = fz 2 C : jzj < 1g to course, is to come up with a fruitful interpretation X, and all z; w 2 D. Here δ denotes the Poincaré of the words “many” and “few”. distance on D. Picard’s little theorem says that the As undergraduates, most of us take a course in twice-punctured plane Cnf0; 1g is Brody hyperbolic; complex analysis on domains in C. Many of the the- it is in fact Kobayashi hyperbolic. orems proved in such a course extend to a class of Hyperbolicity problems in higher-dimensional manifolds called Stein manifolds. Stein manifolds complex geometry have been intensively studied play a fundamental role in higher-dimensional in recent years. Many deep problems remain un- complex analysis and complex geometry, similar solved, some to do with a mysterious connection to affine varieties in algebraic geometry. One of the many equivalent definitions of a Stein with arithmetic. S. Lang conjectured that a smooth manifold X says, roughly speaking, that there are complex projective variety defined over a number many holomorphic maps X ! C, enough in fact to field K is Kobayashi hyperbolic if and only if it has embed X as a closed complex submanifold of Cm only finitely many rational points over each finite for some m. Another is the famous Theorem B of extension of K. In the one-dimensional case, this is H. Cartan that for every coherent analytic sheaf a celebrated theorem of G. Faltings. F on X, the cohomology groups Hk(X; F) vanish It is only recently that a good notion of a for all k ≥ 1. A third is a convexity property: there complex manifold X having “many” holomorphic is a proper smooth function X ! [0; 1) which is maps C ! X has emerged. The new notion has its strictly plurisubharmonic. Plurisubharmonicity is origins in a seminal paper of M. Gromov, the 2009 ordinary convexity weakened just enough to make Abel laureate, published in 1989 [2]. Gromov’s it biholomorphically invariant. The equivalence of ideas and results have been developed further over any two of these definitions is a deep theorem. the past ten years, primarily by F. Forstneriˇc,partly While it is nontrivial to interpret the word in joint work with J. Prezelj. Forstneriˇchas proved “many”, the word “few” has a straightforward inter- the equivalence of over a dozen properties, saying, pretation as “no nonconstant”. A complex manifold in one way or another, that a complex manifold X is Brody hyperbolic if every holomorphic map is the target of many holomorphic maps from C ! C X is constant. It turns out that the notion [1]. He has named such manifolds Oka manifolds, of Kobayashi hyperbolicity, equivalent to Brody after K. Oka, a pioneer in several complex variables. hyperbolicity for compact manifolds but stronger In the remainder of this article, we will motivate Finnur Lárusson is associate professor of mathematics at the definition of an Oka manifold, sketch what the University of Adelaide. His email address is finnur. is known about them, and mention two major [email protected]. applications of the ambient theory. 50 Notices of the AMS Volume 57, Number 1 (What about the fourth class, of complex man- map f : S ! X can be deformed to a holomorphic ifolds with “few” holomorphic maps to C? Even map. If f is already holomorphic on a subvariety if we interpret “few” as “no nonconstant”, this T of S, then the restriction f jT may be kept fixed class seems too big to be of interest. It contains all during the deformation. If f is already holomorphic compact manifolds and a whole lot more.) on a holomorphically convex compact subset K of Runge and Weierstrass. The story begins with S, then the restriction f jK may be kept arbitrarily two well-known theorems of nineteenth-century close to being fixed during the deformation. All complex analysis concerning a domain Ω in C. The this can be done parametrically. If we have a family Runge approximation theorem says that if K is a of maps f , depending continuously on a parameter compact subset of Ω with no holes in Ω, then every in a compact subset P of Rk, then the maps can holomorphic map K ! C can be approximated, be deformed with continuous dependence on the uniformly on K, by holomorphic maps Ω ! C. (By parameter. If the maps parameterized by a compact a holomorphic map K ! C we mean a holomorphic subset of P are already holomorphic on S, then function on some open neighborhood of K.) The they may be kept fixed during the deformation. Weierstrass theorem says that if T is a discrete It follows that the inclusion O(S; X) > C(S; X) subset of Ω, then every map T ! C extends to a is a weak homotopy equivalence. Here, the spaces holomorphic map Ω ! C. O(S; X) of holomorphic maps and C(S; X) of In the formative years of modern complex anal- continuous maps S ! X are endowed with the ysis, in the mid-twentieth century, these theorems compact-open topology. were extended to higher dimensions, generalizing Ω Examples. The “classical” examples of Oka to a Stein manifold S. The Oka-Weil approximation manifolds, by renowned work of H. Grauert from theorem replaces the topological condition that K around 1960, are complex Lie groups and their have no holes in S with the subtle, nontopological homogeneous spaces. Among other examples are condition that K be holomorphically convex in S. the complement in Cn of an algebraic or a tame This means that for every x 2 S n K, there is a analytic subvariety of codimension at least 2, the holomorphic function f on S with jf (x)j > sup jf j. K complement in complex projective space of a The Cartan extension theorem, on the other hand, subvariety of codimension at least 2, Hopf mani- generalises T to a closed complex subvariety of folds, Hirzebruch surfaces, and the complement S and says that every holomorphic map T ! C of a finite set in a complex torus of dimension at extends to a holomorphic map S ! C. least 2. A Riemann surface is Oka if and only We usually consider these theorems as results if it is not hyperbolic. Our understanding of the about Stein manifolds, and of course they are, but geography of Oka manifolds is poor. For example, we can also view them as expressing properties it is an open problem to determine which compact of the target C. We can then formulate them for a complex surfaces are Oka. general target. To avoid topological obstructions, Gromov’s Oka Principle. The most important which are not relevant here, we restrict ourselves to very special S, K, and T . sufficient condition for the Oka property to hold CAP and CIP. A complex manifold X satisfies is ellipticity, introduced by Gromov in [2]. It is yet the convex approximation property (CAP) if, when- another way to say that a complex manifold X is ever K is a convex compact subset of Cm for the target of many holomorphic maps from C. More some m, every holomorphic map K ! X can be precisely, X is elliptic if there is a holomorphic approximated, uniformly on K, by holomorphic map s : E ! X, called a dominating spray, defined maps Cm ! X. A complex manifold X satisfies the on the total space of a holomorphic vector bundle convex interpolation property (CIP) if, whenever T E over X, such that s(0x) = x and sjEx ! X is a is a contractible subvariety of Cm for some m, every submersion at 0x for all x 2 X. The theorem that holomorphic map T ! X extends to a holomorphic ellipticity implies the Oka property is one version map Cm ! X. of Gromov’s Oka principle. It is rather easy to see that CIP implies CAP. (This A Stein manifold is elliptic if and only if it is Oka. is not to say that the Cartan extension theorem There are no known examples of Oka manifolds implies the Oka-Weil approximation theorem: the that are not elliptic. So why focus on the Oka proof that CIP implies CAP uses the Oka-Weil property rather than ellipticity? One reason is that theorem.) Forstneriˇc’swork contains a difficult, the Oka property has good functorial properties roundabout proof of the converse; no simple proof that we cannot at present prove or disprove for is known. ellipticity. We define a complex manifold to be Oka if it Model categories. There is abstract homotopy satisfies the equivalent properties CAP and CIP. theory lurking in the background. The author has Oka Properties. There are more than a dozen shown that the category of complex manifolds can other so-called Oka properties that are nontrivially be embedded into a model category in the sense of equivalent to CAP and CIP. If S is a Stein manifold D. Quillen (roughly speaking, a category in which and X is an Oka manifold, then every continuous one can do homotopy theory) in such a way that a January 2010 Notices of the AMS 51 manifold is cofibrant if and only if it is Stein, and fibrant if and only if it is Oka.
Recommended publications
  • Bulletin De La S
    BULLETIN DE LA S. M. F. NGAIMING MOK An embedding theorem of complete Kähler manifolds of positive bisectional curvature onto affine algebraic varieties Bulletin de la S. M. F., tome 112 (1984), p. 197-258 <http://www.numdam.org/item?id=BSMF_1984__112__197_0> © Bulletin de la S. M. F., 1984, tous droits réservés. L’accès aux archives de la revue « Bulletin de la S. M. F. » (http: //smf.emath.fr/Publications/Bulletin/Presentation.html) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/ conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Bull. Soc. math. France, 112, 1984, p. 197-258. AN EMBEDDING THEOREM OF COMPLETE KAHLER MANIFOLDS OF POSITIVE BISECTIONAL CURVATURE ONTO AFFINE ALGEBRAIC VARIETIES BY NGAIMING MOK (*) R£SUM£. — Nous prouvons qu'une variete complete kahleriennc non compacte X de courbure biscctionnclle positive satisfaisant qudques conditions quantitatives geometriques est biholomorphiqucment isomorphe a une varictc affine algebrique. Si X est une surface complcxe de courbure riemannienne positive satisfaisant les memes conditions quantitatives, nous demontrons que X est en fait biholomorphiquement isomorphe a C2. ABSTRACT. - We prove that a complete noncompact Kahler manifold X of positive bisectional curvature satisfying suitable growth conditions can be biholomorphicaUy embed- ded onto an affine algebraic variety. In case X is a complex surface of positive Riemannian sectional curvature satisfying the same growth conditions, we show that X is biholomorphic toC2.
    [Show full text]
  • The Grassmann Manifold
    The Grassmann Manifold 1. For vector spaces V and W denote by L(V; W ) the vector space of linear maps from V to W . Thus L(Rk; Rn) may be identified with the space Rk£n of k £ n matrices. An injective linear map u : Rk ! V is called a k-frame in V . The set k n GFk;n = fu 2 L(R ; R ): rank(u) = kg of k-frames in Rn is called the Stiefel manifold. Note that the special case k = n is the general linear group: k k GLk = fa 2 L(R ; R ) : det(a) 6= 0g: The set of all k-dimensional (vector) subspaces ¸ ½ Rn is called the Grassmann n manifold of k-planes in R and denoted by GRk;n or sometimes GRk;n(R) or n GRk(R ). Let k ¼ : GFk;n ! GRk;n; ¼(u) = u(R ) denote the map which assigns to each k-frame u the subspace u(Rk) it spans. ¡1 For ¸ 2 GRk;n the fiber (preimage) ¼ (¸) consists of those k-frames which form a basis for the subspace ¸, i.e. for any u 2 ¼¡1(¸) we have ¡1 ¼ (¸) = fu ± a : a 2 GLkg: Hence we can (and will) view GRk;n as the orbit space of the group action GFk;n £ GLk ! GFk;n :(u; a) 7! u ± a: The exercises below will prove the following n£k Theorem 2. The Stiefel manifold GFk;n is an open subset of the set R of all n £ k matrices. There is a unique differentiable structure on the Grassmann manifold GRk;n such that the map ¼ is a submersion.
    [Show full text]
  • Oka Manifolds: from Oka to Stein and Back
    ANNALES DE LA FACULTÉ DES SCIENCES Mathématiques FRANC FORSTNERICˇ Oka manifolds: From Oka to Stein and back Tome XXII, no 4 (2013), p. 747-809. <http://afst.cedram.org/item?id=AFST_2013_6_22_4_747_0> © Université Paul Sabatier, Toulouse, 2013, tous droits réservés. L’accès aux articles de la revue « Annales de la faculté des sci- ences de Toulouse Mathématiques » (http://afst.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://afst.cedram. org/legal/). Toute reproduction en tout ou partie de cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Annales de la Facult´e des Sciences de Toulouse Vol. XXII, n◦ 4, 2013 pp. 747–809 Oka manifolds: From Oka to Stein and back Franc Forstnericˇ(1) ABSTRACT. — Oka theory has its roots in the classical Oka-Grauert prin- ciple whose main result is Grauert’s classification of principal holomorphic fiber bundles over Stein spaces. Modern Oka theory concerns holomor- phic maps from Stein manifolds and Stein spaces to Oka manifolds. It has emerged as a subfield of complex geometry in its own right since the appearance of a seminal paper of M. Gromov in 1989. In this expository paper we discuss Oka manifolds and Oka maps. We de- scribe equivalent characterizations of Oka manifolds, the functorial prop- erties of this class, and geometric sufficient conditions for being Oka, the most important of which is Gromov’s ellipticity.
    [Show full text]
  • On Manifolds of Tensors of Fixed Tt-Rank
    ON MANIFOLDS OF TENSORS OF FIXED TT-RANK SEBASTIAN HOLTZ, THORSTEN ROHWEDDER, AND REINHOLD SCHNEIDER Abstract. Recently, the format of TT tensors [19, 38, 34, 39] has turned out to be a promising new format for the approximation of solutions of high dimensional problems. In this paper, we prove some new results for the TT representation of a tensor U ∈ Rn1×...×nd and for the manifold of tensors of TT-rank r. As a first result, we prove that the TT (or compression) ranks ri of a tensor U are unique and equal to the respective seperation ranks of U if the components of the TT decomposition are required to fulfil a certain maximal rank condition. We then show that d the set T of TT tensors of fixed rank r forms an embedded manifold in Rn , therefore preserving the essential theoretical properties of the Tucker format, but often showing an improved scaling behaviour. Extending a similar approach for matrices [7], we introduce certain gauge conditions to obtain a unique representation of the tangent space TU T of T and deduce a local parametrization of the TT manifold. The parametrisation of TU T is often crucial for an algorithmic treatment of high-dimensional time-dependent PDEs and minimisation problems [33]. We conclude with remarks on those applications and present some numerical examples. 1. Introduction The treatment of high-dimensional problems, typically of problems involving quantities from Rd for larger dimensions d, is still a challenging task for numerical approxima- tion. This is owed to the principal problem that classical approaches for their treatment normally scale exponentially in the dimension d in both needed storage and computa- tional time and thus quickly become computationally infeasable for sensible discretiza- tions of problems of interest.
    [Show full text]
  • INTRODUCTION to ALGEBRAIC GEOMETRY 1. Preliminary Of
    INTRODUCTION TO ALGEBRAIC GEOMETRY WEI-PING LI 1. Preliminary of Calculus on Manifolds 1.1. Tangent Vectors. What are tangent vectors we encounter in Calculus? 2 0 (1) Given a parametrised curve α(t) = x(t); y(t) in R , α (t) = x0(t); y0(t) is a tangent vector of the curve. (2) Given a surface given by a parameterisation x(u; v) = x(u; v); y(u; v); z(u; v); @x @x n = × is a normal vector of the surface. Any vector @u @v perpendicular to n is a tangent vector of the surface at the corresponding point. (3) Let v = (a; b; c) be a unit tangent vector of R3 at a point p 2 R3, f(x; y; z) be a differentiable function in an open neighbourhood of p, we can have the directional derivative of f in the direction v: @f @f @f D f = a (p) + b (p) + c (p): (1.1) v @x @y @z In fact, given any tangent vector v = (a; b; c), not necessarily a unit vector, we still can define an operator on the set of functions which are differentiable in open neighbourhood of p as in (1.1) Thus we can take the viewpoint that each tangent vector of R3 at p is an operator on the set of differential functions at p, i.e. @ @ @ v = (a; b; v) ! a + b + c j ; @x @y @z p or simply @ @ @ v = (a; b; c) ! a + b + c (1.2) @x @y @z 3 with the evaluation at p understood.
    [Show full text]
  • DIFFERENTIAL GEOMETRY COURSE NOTES 1.1. Review of Topology. Definition 1.1. a Topological Space Is a Pair (X,T ) Consisting of A
    DIFFERENTIAL GEOMETRY COURSE NOTES KO HONDA 1. REVIEW OF TOPOLOGY AND LINEAR ALGEBRA 1.1. Review of topology. Definition 1.1. A topological space is a pair (X; T ) consisting of a set X and a collection T = fUαg of subsets of X, satisfying the following: (1) ;;X 2 T , (2) if Uα;Uβ 2 T , then Uα \ Uβ 2 T , (3) if Uα 2 T for all α 2 I, then [α2I Uα 2 T . (Here I is an indexing set, and is not necessarily finite.) T is called a topology for X and Uα 2 T is called an open set of X. n Example 1: R = R × R × · · · × R (n times) = f(x1; : : : ; xn) j xi 2 R; i = 1; : : : ; ng, called real n-dimensional space. How to define a topology T on Rn? We would at least like to include open balls of radius r about y 2 Rn: n Br(y) = fx 2 R j jx − yj < rg; where p 2 2 jx − yj = (x1 − y1) + ··· + (xn − yn) : n n Question: Is T0 = fBr(y) j y 2 R ; r 2 (0; 1)g a valid topology for R ? n No, so you must add more open sets to T0 to get a valid topology for R . T = fU j 8y 2 U; 9Br(y) ⊂ Ug: Example 2A: S1 = f(x; y) 2 R2 j x2 + y2 = 1g. A reasonable topology on S1 is the topology induced by the inclusion S1 ⊂ R2. Definition 1.2. Let (X; T ) be a topological space and let f : Y ! X.
    [Show full text]
  • Manifold Reconstruction in Arbitrary Dimensions Using Witness Complexes Jean-Daniel Boissonnat, Leonidas J
    Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes Jean-Daniel Boissonnat, Leonidas J. Guibas, Steve Oudot To cite this version: Jean-Daniel Boissonnat, Leonidas J. Guibas, Steve Oudot. Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes. Discrete and Computational Geometry, Springer Verlag, 2009, pp.37. hal-00488434 HAL Id: hal-00488434 https://hal.archives-ouvertes.fr/hal-00488434 Submitted on 2 Jun 2010 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Manifold Reconstruction in Arbitrary Dimensions using Witness Complexes Jean-Daniel Boissonnat Leonidas J. Guibas Steve Y. Oudot INRIA, G´eom´etrica Team Dept. Computer Science Dept. Computer Science 2004 route des lucioles Stanford University Stanford University 06902 Sophia-Antipolis, France Stanford, CA 94305 Stanford, CA 94305 [email protected] [email protected] [email protected]∗ Abstract It is a well-established fact that the witness complex is closely related to the restricted Delaunay triangulation in low dimensions. Specifically, it has been proved that the witness complex coincides with the restricted Delaunay triangulation on curves, and is still a subset of it on surfaces, under mild sampling conditions. In this paper, we prove that these results do not extend to higher-dimensional manifolds, even under strong sampling conditions such as uniform point density.
    [Show full text]
  • Hodge Theory
    HODGE THEORY PETER S. PARK Abstract. This exposition of Hodge theory is a slightly retooled version of the author's Harvard minor thesis, advised by Professor Joe Harris. Contents 1. Introduction 1 2. Hodge Theory of Compact Oriented Riemannian Manifolds 2 2.1. Hodge star operator 2 2.2. The main theorem 3 2.3. Sobolev spaces 5 2.4. Elliptic theory 11 2.5. Proof of the main theorem 14 3. Hodge Theory of Compact K¨ahlerManifolds 17 3.1. Differential operators on complex manifolds 17 3.2. Differential operators on K¨ahlermanifolds 20 3.3. Bott{Chern cohomology and the @@-Lemma 25 3.4. Lefschetz decomposition and the Hodge index theorem 26 Acknowledgments 30 References 30 1. Introduction Our objective in this exposition is to state and prove the main theorems of Hodge theory. In Section 2, we first describe a key motivation behind the Hodge theory for compact, closed, oriented Riemannian manifolds: the observation that the differential forms that satisfy certain par- tial differential equations depending on the choice of Riemannian metric (forms in the kernel of the associated Laplacian operator, or harmonic forms) turn out to be precisely the norm-minimizing representatives of the de Rham cohomology classes. This naturally leads to the statement our first main theorem, the Hodge decomposition|for a given compact, closed, oriented Riemannian manifold|of the space of smooth k-forms into the image of the Laplacian and its kernel, the sub- space of harmonic forms. We then develop the analytic machinery|specifically, Sobolev spaces and the theory of elliptic differential operators|that we use to prove the aforementioned decom- position, which immediately yields as a corollary the phenomenon of Poincar´eduality.
    [Show full text]
  • Appendix D: Manifold Maps for SO(N) and SE(N)
    424 Appendix D: Manifold Maps for SO(n) and SE(n) As we saw in chapter 10, recent SLAM implementations that operate with three-dimensional poses often make use of on-manifold linearization of pose increments to avoid the shortcomings of directly optimizing in pose parameterization spaces. This appendix is devoted to providing the reader a detailed account of the mathematical tools required to understand all the expressions involved in on-manifold optimization problems. The presented contents will, hopefully, also serve as a solid base for bootstrap- ping the reader’s own solutions. 1. OPERATOR DEFINITIONS In the following, we will make use of some vector and matrix operators, which are rather uncommon in mobile robotics literature. Since they have not been employed throughout this book until this point, it is in order to define them here. The “vector to skew-symmetric matrix” operator: A skew-symmetric matrix is any square matrix A such that AA= − T . This implies that diagonal elements must be all zeros and off-diagonal entries the negative of their symmetric counterparts. It can be easily seen that any 2× 2 or 3× 3 skew-symmetric matrix only has 1 or 3 degrees of freedom (i.e. only 1 or 3 independent numbers appear in such matrices), respectively, thus it makes sense to parameterize them as a vector. Generating skew-symmetric matrices ⋅ from such vectors is performed by means of the []× operator, defined as: 0 −x 2× 2: = x ≡ []v × () × x 0 x 0 z y (1) − 3× 3: []v = y ≡ z0 − x × z −y x 0 × The origin of the symbol × in this operator follows from its application to converting a cross prod- × uct of two 3D vectors ( x y ) into a matrix-vector multiplication ([]x× y ).
    [Show full text]
  • Removal of Singularites for Stein Manifolds
    Removal of Singularities for Stein Manifolds Undergraduate Honors Thesis in Mathematics Luis Kumanduri Abstract We adapt the technique of removal of singularities to the holomorphic setting and prove a general flexibility result for holomorphic vector bundles over Stein manifolds. If D : V ! W is an elliptic differential operator between holomorphic vector bundles over a Stein Manifold, then a q-tuple (θ1; : : : ; θq) of holomorphic sections generating W may be deformed to an exact holomorphic q-tuple (Dφ1; : : : ; Dφq) generating W . We also prove a parametric version of this theorem with holomorphic dependence on a Stein parameter X and obtain a 1-parametric h-principle. The parametric h- principle works relative to closed complex analytic subsets A of X. As corollaries we will obtain h-principles for holomorphic immersions and free maps of Stein Manifolds. Contents 1 Introduction 2 2 Jets and the h-principle 4 2.1 Jet Bundles and Transversality . .4 2.2 Differential Relations and the h-principle . .6 3 Geometry of Several Complex Variables 9 3.1 Basics of Several Complex Variables . .9 3.2 Stein Manifolds . 12 3.3 Cartan's Theorems . 16 4 Holomorphic Transversality 20 5 Main Results 24 5.1 Proof of Main Theorem . 24 5.2 Parametric h-principle . 29 5.3 Applications . 31 1 1 Introduction Problems in smooth geometry are often subject to a partial differential inequality or rela- tion that satisfies an h-principle. For any differential relation, there is a notion of a formal solution where the derivatives are replaced with algebraic relations. In situations where formal solutions can be deformed into actual solutions, we say that a problem satisfies an h-principle.
    [Show full text]
  • Differential Forms As Spinors Annales De L’I
    ANNALES DE L’I. H. P., SECTION A WOLFGANG GRAF Differential forms as spinors Annales de l’I. H. P., section A, tome 29, no 1 (1978), p. 85-109 <http://www.numdam.org/item?id=AIHPA_1978__29_1_85_0> © Gauthier-Villars, 1978, tous droits réservés. L’accès aux archives de la revue « Annales de l’I. H. P., section A » implique l’accord avec les conditions générales d’utilisation (http://www.numdam. org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Ann. Inst. Henri Poincare, Section A : Vol. XXIX. n° L 1978. p. 85 Physique’ théorique.’ Differential forms as spinors Wolfgang GRAF Fachbereich Physik der Universitat, D-7750Konstanz. Germany ABSTRACT. 2014 An alternative notion of spinor fields for spin 1/2 on a pseudoriemannian manifold is proposed. Use is made of an algebra which allows the interpretation of spinors as elements of a global minimal Clifford- ideal of differential forms. The minimal coupling to an electromagnetic field is introduced by means of an « U(1 )-gauging ». Although local Lorentz transformations play only a secondary role and the usual two-valuedness is completely absent, all results of Dirac’s equation in flat space-time with electromagnetic coupling can be regained. 1. INTRODUCTION It is well known that in a riemannian manifold the laplacian D := - (d~ + ~d) operating on differential forms admits as « square root » the first-order operator ~ 2014 ~ ~ being the exterior derivative and e) the generalized divergence.
    [Show full text]
  • Lecture 12. Tensors
    Lecture 12. Tensors In this lecture we define tensors on a manifold, and the associated bundles, and operations on tensors. 12.1 Basic definitions We have already seen several examples of the idea we are about to introduce, namely linear (or multilinear) operators acting on vectors on M. For example, the metric is a bilinear operator which takes two vectors to give a real number, i.e. gx : TxM × TxM → R for each x is defined by u, v → gx(u, v). The difference between two connections ∇(1) and ∇(2) is a bilinear op- erator which takes two vectors and gives a vector, i.e. a bilinear operator Sx : TxM × TxM → TxM for each x ∈ M. Similarly, the torsion of a connec- tion has this form. Definition 12.1.1 A covector ω at x ∈ M is a linear map from TxM to R. The set of covectors at x forms an n-dimensional vector space, which we ∗ denote Tx M.Atensor of type (k, l)atx is a multilinear map which takes k vectors and l covectors and gives a real number × × × ∗ × × ∗ → R Tx : .TxM .../0 TxM1 .Tx M .../0 Tx M1 . k times l times Note that a covector is just a tensor of type (1, 0), and a vector is a tensor of type (0, 1), since a vector v acts linearly on a covector ω by v(ω):=ω(v). Multilinearity means that i1 ik j1 jl T c vi1 ,..., c vik , aj1 ω ,..., ajl ω i i j j 1 k 1 l . i1 ik j1 jl = c ...c aj1 ...ajl T (vi1 ,...,vik ,ω ,...,ω ) i1,...,ik,j1,...,jl 110 Lecture 12.
    [Show full text]