<<

Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Natural Mass Hierarchy in Potts-Yukawa Systems & Its Implementations in Asymptotic Safety

Passant Ali

University of Cologne / University of Bonn

07.07.2020

1 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Outline

Motivation

Statement of our Idea

Introducing the Potts-Yukawa System (PYS)

Inclusion of Gravitational Effects

Discussion

2 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Motivation

2 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Standard Model Limitations

Hierarchy problems

Loop corrections to the higgs mass e.g,

|λ |2 h i ∆M = − top Λ2 + ··· H 8π2 UV

Wide range of elementary particles’ masses,

m m e ≈ 10−6, H ≈ 10−17 mτ mP SM :

Effective field theory ⇒ Limited validity at high UV (quantum triviality problem)

No widely accepted implementation of

3 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Statement of our Idea

"Another" approach to the

Potential Expansion :

Break U(1)- to a Zn-symmetry

Goldstone boson → pseudo-Goldstone boson w w mT  w/ non-vanishing mass  1 depending on n  mL Z

Using FRG : flow from a UV-cutoff to IR. Why FRG ?

- Inclusion of canonically irrelevant couplings - Dynamical generation of masses in the flow

Is it possible to Extend this mechanism to arbitrarily high scales ? ⇒ Modify theory & search for an interactive, UV fixed point

4 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

The Potts-Yukawa System (PYS)

4 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Scalar Invariants

1 We start w/ a complex field φ = √ (φ1 + iφ2) 2 α α α Projecting {φ1, φ2} onto the unit vectors e : ψ ≡ ei φi

Z3 Z6 Z12 Invariants constructed as power sum symmetric polynomials

X α k Pk = (ψ ) α

We choose the linear combination,

∗ ∗n n n+1 n ρ = φ φ , σn = (φ + φ ) + (−1) 2 ρ 2

5 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

∗ ∗n n n+1 n ρ = φ φ , σn = (φ + φ ) + (−1) 2 ρ 2

Expanding the potential, λ  n 4 2 λ2 = 0 SSB regime UZ [ρ, σn; x] = λ (ρ − κ) + (ρ − κ) + gnσn + ··· 2 2 κ = 0 SYM regime

Z3 Z6 Z12 Zn→∞ ∼ U(1)

W/ Longitudinal and Transverse masses {in SSB}

2 2 2 n −1 mL = 2λ4κ , mT = n κ 2 gn

κ : needs fine-tuning, λ4 : runs logarithmically, gn : (n > 4) faster than logarithmically

6 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Microscopic (UV) Theory −→ Macroscopic (IR) Theory : The Functional Group

6 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

The Functional

Wilson’s Idea : Integrate out modes along infinitesimal momentum shells.

Full Effective Γ[φ] ⇒ Effective Average Action Γk [φ] | {z } | {z } (Legendre transform of exp{Z[J}]) (Obtained by adding a regulator term),

Adding to the action, 1 Z ∆Sk [φ] = φ(−q)Rk (q)φ(q) 2 q Where,

lim Rk (q) > 0 q2/k 2 →0

lim Rk (q) = 0 k 2/q2 →0

lim Rk (q) → ∞ k2→Λ→∞

7 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

The Functional Renormalization Group

 k  Given, t = ln Λ , ∂t = −k∂k

The Wetterich (flow) Eq :   1  (2) −1 ∂t Γ = STr Γ + R (∂t R ) k 2 k k k

Solution : trajectory in Theory space. End-points are : The bare action (UV-limit) The full effective action (IR-limit).

Precise trajectory depends on Rk . We use the Litim regulator,

2 2 2 2 Rk ≈ Zφ,k (k − q )Θ(k − q )

8 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

PYS Flow

8 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

The Potts-Yukawa System Flow

Our microscopic action becomes,

U(1) Zn SPYS = Sφ + Sφ + Sψ + Sψφ,

Giving the effective average action,

Z  Z h i  φ,k 2 2 Zn / Γk = (∂µφ1) + (∂µφ2) + Uk + Zψ,k ψj ∂ψj + hk ψj (φ1 + iγ5φ2) ψj x 2

Where, j ∈ {1, NF }

With the potential expansion,

λ λ Zn 4 2 6 3 U [ρ, σn; x] = λ (ρ − κ) + (ρ − κ) + (ρ − κ) + gnσn k 2 2 3!

9 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Generated Masses

Theory’s masses :

Eigen-values of Hessian of Γk ,

m2 = 2λ κ L 4 Z3

2 2 n/2−1 mT = n κ gn

2 2 mψ = h κ

Z∞

For numerical analysis, the choices of {d = 4 & n = 6} are made !

10 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Flow Equations

1   ∂t u = −du + d − 2 + ηφ 2ρu ;ρ + nσnu ;σ k k 2 k k " # 4Ω  η  1  η  1  η  1 + d 1 − φ + 1 − φ − d 1 − ψ 2 2 γ 2 d d + 2 1 + mT d + 2 1 + mL d + 1 1 + mψ

β-functions :

! ! m m ∂t ∂ uk = ∂t λ2m, ∂t ∂ uk = ∂t gm ρ˜ ρ˜=κ σ˜n ρ˜=κ σ˜n=0 σ˜n=0

The Yukawa coupling & Anomalous dimensions :

h2 h2 1 η = , η = φ SYM 2 ψ SYM 2 2 8π 16π (1 + λ2) h2  1 1  ∂ h2 = η + 2η  h2 + + t SYM φ ψ 2 2 48π (1 + λ2) (1 + λ2)

11 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

The Running Couplings

d = 4, dγ = 4, n = 6, tUV = 15.

Ignoring ηϕ, ηψ in quantum corrections

Inspiration from the SM values

vev ≈ 246, mt ≈ 173, mH ≈ 125 GeV

Initial conditions estimates

2 λ2 ≈ 0.0055, λ4 ≈ 0.087, h ≈ 0.48

2 0 2 0 −2 λ2 ∝ k , λ4 ∝ k , h ∝ k , g6 ∝ k

⇒ Fine-tune λ2 && choose g6 ≈ 0.10

tc ≈ 7.1 of SSB

11 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

The Running Couplings

d = 4, dγ = 4, n = 6, tUV = 15.

Ignoring ηϕ, ηψ in quantum corrections

Inspiration from the SM values

vev ≈ 246, mt ≈ 173, mH ≈ 125 GeV

Initial conditions estimates

2 λ2 ≈ 0.0055, λ4 ≈ 0.087, h ≈ 0.48

2 0 2 0 −2 λ2 ∝ k , λ4 ∝ k , h ∝ k , g6 ∝ k

⇒ Fine-tune λ2 && choose g6 ≈ 0.10

tc ≈ 7.1 of SSB

12 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

The Running Couplings

λ4 :

Dashed : Global U(1) (g6 = 0)

λ4 runs logarithmically to IR

Solid : Z6 symmetry (finite g6) 2 λ4 freeze out below scales ∼ κ g6 Goldstone mode gains mass

g6 : Dies off towards IR.

13 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Generated Mass Hierarchy

At t IR = −20,

−2 vev ≈ 241 GeV, mH ≈ 127 GeV, mT ≈ 10 GeV, mt ≈ 170 GeV

With a hierarchy,

m H ≈ 0.75 ∼ 1 mt m T ≈ 7.9 · 10−5  1 mH

Hence we have,

2 Flow to IR O(h ) ∼ O (λ4) ∼ O (g6) ======⇒ O(mt ) ∼ O(mH )  O(mT ) 0.5 0.1 0.1

14 / 24 Bypass the UV cutoff : Extend to arbitrarily high scales

Combine our mechanism of mass-hierarchy w/ asymptotically-safe gravity

In asymptotic safety :

We can thus have a non-trivial theory at arbitrarily high energies, w/ guaranteed non-divergence

Provide a solid, non-perturbative approach to quantum gravity

Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Asymptotic Safety Inclusion

15 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Asymptotic Safety Inclusion

Bypass the UV cutoff : Extend to arbitrarily high scales

Combine our mechanism of mass-hierarchy w/ asymptotically-safe gravity

In asymptotic safety :

We can thus have a non-trivial theory at arbitrarily high energies, w/ guaranteed non-divergence

Provide a solid, non-perturbative approach to quantum gravity

15 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Asymptotic Safety Inclusion

Require our theory to have UV fixed point (FP)

Observables in IR are governed by the FP

If FP is interactive & UV-attractive, ⇒ A predictive, asymptotically-safe theory is established. [15]

General form of β-functions : w/ g, Λ : gravitational couplings.

  2 3 βλ = b0 + b1 + gfλ(g, Λ) λ + b2λ + b3λ + ···

  Sign of b1 + gfλ(g, Λ) determine if FP is UV/IR attractive.

2 If b0 = 0. Non trivial solution : Must have a loop diagram ∝ λ or higher

16 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Asymptotic Safety Inclusion

Current Model

- For n > 4 : No one-loop diagram ⇒ No non-trivial UV FP - For n = 3 or 4 :

Possible Non-trivial FP ⇒ No mass hierarchy ! gn marginal, runs logarithmically to IR Extension : a complex field χ transforming under an independent U(1)

Include a Z3-symmetric χ-flavored term.

Microscopic action becomes

g U(1) U(1) Z6 Z3 SPYS = Sϕ + Sχ + Sϕ + Sχ + Sϕχ + Sψ + Sψϕ, Ansatz for the effective action Z n ∗ ∗ Z3,6 ∗ ∗ Γk = Zφ,k ∂µφ ∂µφ + Zχ,k ∂µχ ∂µχ + Uk [φ, φ , χ, χ ; x] x ∗ o +iZψ,k ψ∂ψ/ + hk ψ [(1 − γ5)φ − (1 + γ5)φ ] ψ

17 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Implementation

Extend to 2 complex fields,

1 1 φ = √ (φ1 + iφ2) , χ = √ (χ1 + iχ2) 2 2 W/ charges s.t. 2πi 8πi φ → e 6 φ , χ → e 6 χ Obtaining the invariants :

∗ ) ρφ = φ φ ∗ U(1) - symmetric ρχ = χ χ

 ∗3 3 τ = χ + χ Z3 - symmetric

 ∗6 6 σ = φ + φ Z6 - symmetric ∗2 ∗ 2   ζ1 = φ χ + φ χ  ∗4 4 ∗  ζ2 = φ χ + φ χ  i.a terms ∗2 ∗4 2 4 ζ3 = φ χ + φ χ   ∗2 2 2 ∗2 ζ4 = φ χ + φ χ

18 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Implementation

  A closer look at the term φ2χ + φ∗2χ∗

 2 2 Featuring : φ1χ2 , φ1χ2 , φ1φ2χ1

Charges running through loop arising from the Z3,6 symmetries.

SYM : ! 3 - Charges = 0 ⇒ No λ term under Z3,6

- Including a scale-dependent ηφ/χ can induce a λ3 term via :

SSB : Acquired vev in φ sector - φ∗/φ , φ/φ i.a. can arise ⇒ Possibility to generate λ3 term.

19 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Selected β-Functions : SYM

g2 h2 η = 2,1 + ϕ 2  2  2 2 4π λ0,2 + 1 λ2,0 + 1 8π 9g2 g2 η = 0,3 + 2,1 χ 2  4 2  4 8π λ0,2 + 1 8π λ2,0 + 1

 ηχ  g2,1λ2,2  βg = g2,1 fλ + ηϕ + − 1 + √ + O g2,1 2,1 2  2  2 8 2π λ0,2 + 1 λ2,0 + 1

!  3  1 g 4g g 6g λ β = g f + η − 1 + − 2,3a + 2,1 2,2 + 0,3 0,4 g 0,3 0,3 λ χ 2  2  3  3 2 16π λ2,0 + 1 λ2,0 + 1 λ0,2 + 1

3 Indeed we see both ηφ & ηχ supplying βg2,1 with g2,1 contributions

20 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Fixed Point Solutions

FP 1 initial conditions :

 g0,3 → 0.15, g2,1 → 0.30, h → 0.42, fλ → 0.99, fh → −0.0025

FP values Coupling Value Coupling Value

λ2,0 0.00657 λ0,2 0.00774

g0,3 0.147 g2,1 0.331

λ4,0 −0.00505 λ0,4 −0.0108

λ2,2 −0.0145 g2,2 −0.00347

g2,3 0.000358 g2,3a 0.000237

g4,1 0.0000404 g4,1a 0.000169

λ6,0 −0.00249 λ0,6 −0.00812

λ4,2 −0.0103 λ2,4 −0.0147

g6,0 −0.0000000707 g0,6 −0.000000468

g4,2 −0.00000157 g4,2a −0.00165

g2,4 −0.00000225 g2,4a −0.00230 h 0.280

21 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Fixed Point Solutions

FP 2 initial conditions :

 g0,3 → 1.0, g2,1 → 1.3, h → 0.42, fλ → 0.99, fh → −0.0060

FP values Coupling Value Coupling Value

λ2,0 0.0184 λ0,2 0.0414

g0,3 0.362 g2,1 0.544

λ4,0 −0.0549 λ0,4 −0.486

λ2,2 −0.280 g2,2 −0.0573

g2,3 0.0793 g2,3a 0.0538

g4,1 0.00396 g4,1a 0.0194

λ6,0 −0.103 λ0,6 −3.40

λ4,2 −0.747 λ2,4 −2.19

g6,0 −0.0000479 g0,6 −0.00405

g4,2 −0.00232 g4,2a −0.106

g2,4 −0.00706 g2,4a −0.284 h 0.429

22 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Fixed Point Solutions

As for the Stability Matrices

FP 1

Sorted -ve Eigenvalues = 1.02, 1.00, −0.000759, −0.00444, −0.00783, −0.917, − 0.948, −0.968, −1.00, −1.92, −1.95, −1.98, −2.00, − 2.84, −2.88, −2.90, −2.93, −2.95, −3.00, −3.00, − 3.00, −3.01, −3.01

FP 2

Sorted -ve Eigenvalues = 1.11, 1.01, 0.0572, 0.0189, −0.00637, −0.592, − 0.679, −0.906, −1.02, −1.65, −1.80, −1.95, − 1.99, −2.34, −2.56, −2.67, −2.77, −2.83, − 2.96, −2.99, −3.00, −3.01, −3.02

23 / 24 Extended scalar sector for asymptotic safety inclusion.

Solved for an interactive UV fixed point.

FP values are very sensitive to fh initial condition

FP values signify an unstable potential

In SYM : all ∝ λ3 vertices arise from anomalous dimensions contributions

Next step : Do calculation in SSB to see if problem persists

In SSB : Fermion sector would couple to χ field as well !

Worth noting : Set discrete symmetry precludes gauge fields inclusion !

Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Discussion

Broken U(1) global symmetry to a Zn-symmetry Established a mass hierarchy in scalar sector in IR

24 / 24 FP values are very sensitive to fh initial condition

FP values signify an unstable potential

In SYM : all ∝ λ3 vertices arise from anomalous dimensions contributions

Next step : Do calculation in SSB to see if problem persists

In SSB : Fermion sector would couple to χ field as well !

Worth noting : Set discrete symmetry precludes gauge fields inclusion !

Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Discussion

Broken U(1) global symmetry to a Zn-symmetry Established a mass hierarchy in scalar sector in IR

Extended scalar sector for asymptotic safety inclusion.

Solved for an interactive UV fixed point.

24 / 24 Next step : Do calculation in SSB to see if problem persists

In SSB : Fermion sector would couple to χ field as well !

Worth noting : Set discrete symmetry precludes gauge fields inclusion !

Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Discussion

Broken U(1) global symmetry to a Zn-symmetry Established a mass hierarchy in scalar sector in IR

Extended scalar sector for asymptotic safety inclusion.

Solved for an interactive UV fixed point.

FP values are very sensitive to fh initial condition

FP values signify an unstable potential

In SYM : all ∝ λ3 vertices arise from anomalous dimensions contributions

24 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Discussion

Broken U(1) global symmetry to a Zn-symmetry Established a mass hierarchy in scalar sector in IR

Extended scalar sector for asymptotic safety inclusion.

Solved for an interactive UV fixed point.

FP values are very sensitive to fh initial condition

FP values signify an unstable potential

In SYM : all ∝ λ3 vertices arise from anomalous dimensions contributions

Next step : Do calculation in SSB to see if problem persists

In SSB : Fermion sector would couple to χ field as well !

Worth noting : Set discrete symmetry precludes gauge fields inclusion !

24 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

Thanks For Your Attention

24 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

References

[1] Bertrand DELAMOTTE. “An Introduction to the Nonperturbative Renormalization Group”. In : Lecture Notes in Physics (2012), p. 49-132. ISSN : 1616-6361. DOI : 10.1007/978-3-642-27320-9_2. URL : http://dx.doi.org/10.1007/978-3-642-27320-9_2. [2] Astrid EICHHORN. An asymptotically safe guide to quantum gravity and matter. 2018. arXiv : 1810.07615 [hep-th].

[3] Astrid EICHHORN et Aaron HELD. “Viability of quantum-gravity induced ultraviolet completions for matter”. In : Physical Review D 96.8 (oct. 2017). ISSN : 2470-0029. DOI : 10.1103/physrevd.96.086025. URL : http://dx.doi.org/10.1103/PhysRevD.96.086025.

[4] Astrid EICHHORN, Aaron HELD et Jan M. PAWLOWSKI. “Quantum-gravity effects on a Higgs-Yukawa model”. In : Phys. Rev. D 94 (10 nov. 2016), p. 104027. DOI : 10.1103/PhysRevD.94.104027. URL : https://link.aps.org/doi/10.1103/PhysRevD.94.104027.

[5] Astrid EICHHORN et al. “Quantum gravity fluctuations flatten the Planck-scale Higgs potential”. In : Physical Review D 97.8 (avr. 2018). ISSN : 2470-0029. DOI : 10.1103/physrevd.97.086004. URL : http://dx.doi.org/10.1103/PhysRevD.97.086004. [6] Lin FEI et al. Yukawa CFTs and Emergent . 2016. arXiv : 1607.05316 [hep-th].

24 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

References

[7] Holger GIES. “Introduction to the Functional RG and Applications to Gauge Theories”. In : Lecture Notes in Physics (2012), p. 287-348. ISSN : 1616-6361. DOI : 10.1007/978-3-642-27320-9_6. URL : http://dx.doi.org/10.1007/978-3-642-27320-9_6.

[8] Holger GIES et Michael M. SCHERER. “Asymptotic safety of simple Yukawa systems”. In : The European Physical Journal C 66.3-4 (fév. 2010), p. 387-402. ISSN : 1434-6052. DOI : 10.1140/epjc/s10052-010-1256-z. URL : http://dx.doi.org/10.1140/epjc/s10052-010-1256-z.

[9] Clemens GNEITING. “Higgs Mass Bounds from Renormalization Flow”. Mém. de mast. Philosophenweg 16, 69120 Heidelberg, DE : Faculty of Physics et Astronomy, University of Heidelberg, 2005.

[10] Geoffrey R GOLNER. “Investigation of the potts model using renormalization-group techniques”. In : Physical Review B 8.7 (1973), p. 3419.

[11] WK74 Wilson KG et JB KOGUT. “The renormalization group and the\({{\epsilon}}\)-expansion”. In : Phys. Rept 12 (1974), p. 75-200.

[12] F. LÉONARD, B. DELAMOTTE et N. WSCHEBOR. Naturally light scalar particles : a generic and simple mechanism. 2018. arXiv : 1802.09418 [hep-ph].

24 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

References

[13]FL ÉONARD,BDELAMOTTE et Nicolás WSCHEBOR. “Naturally light scalar particles : a generic and simple mechanism”. In : arXiv preprint arXiv :1802.09418 (2018).

[14] Daniel F. LITIM. “Optimized renormalization group flows”. In : Physical Review D 64.10 (oct. 2001). ISSN : 1089-4918. DOI : 10.1103/physrevd.64.105007. URL : http://dx.doi.org/10.1103/PhysRevD.64.105007.

[15] Andreas NINK. UV Critical Surface. Scholarpedia, 8(7) :31015. 2013. URL : http://www.scholarpedia.org/article/File:UVCriticalSurface.png.

[16] Stefan RECHENBERGER. “Asymptotic Safety of Yukawa Systems”. Mém. de mast. Max-Wien-Platz 1, 07743 Jena, DE : Physikalisch-Astronomische Fakultät Friedrich Schiller Universiät Jena, 2010.

[17] Michael SCHERER. “Introduction to Renormalization with Applications in Condensed-Matter and High-Energy Physics”. In : (2018).

[18] Emilio TORRES et al. “Fermion-induced quantum criticality with two length scales in Dirac systems”. In : Physical Review B 97.12 (mar. 2018). ISSN : 2469-9969. DOI : 10.1103/physrevb.97.125137. URL : http://dx.doi.org/10.1103/PhysRevB.97.125137.

[19] Christof WETTERICH. “Exact evolution equation for the effective potential”. In : Physics Letters B 301.1 (1993), p. 90-94.

24 / 24 Motivation Potts-Yukawa System Functional RG PYS Flow Asymptotic Safety Discussion References

References

[20] Fa-Yueh WU. “The potts model”. In : Reviews of modern physics 54.1 (1982), p. 235.

[21] RKP ZIA et DJ WALLACE. “Critical behaviour of the continuous n-component Potts model”. In : Journal of Physics A : Mathematical and General 8.9 (1975), p. 1495.

[22] Riccardo Ben Alı ZINATI et Alessandro CODELLO. “Functional RG approach to the Potts model”. In : Journal of Statistical Mechanics : Theory and Experiment 2018.1 (2018), p. 013206.

24 / 24