Appendix a Dirac Delta Function

Total Page:16

File Type:pdf, Size:1020Kb

Appendix a Dirac Delta Function Appendix A Dirac Delta Function In 1880 the self-taught electrical scientist Oliver Heaviside introduced the following function 1forx > 0 (x) = (A.1) 0forx < 0 which is now called Heaviside step function. This is a discontinous function, with a discontinuity of first kind (jump) at x = 0, which is often used in the context of the analysis of electric signals. Moreover, it is important to stress that the Haviside step function appears also in the context of quantum statistical physics. In fact, the Fermi-Dirac function (or Fermi-Dirac distribution) 1 Fβ(x) = , (A.2) eβ x + 1 proposed in 1926 by Enrico Fermi and Paul Dirac to describe the quantum statistical distribution of electrons in metals, where β = 1/(kB T ) is the inverse of the absolute temperature T (with kB the Boltzmann constant) and x = − μ is the energy of the electron with respect to the chemical potential μ, becomes the function (−x) in the limit of very small temperature T , namely 0forx > 0 lim Fβ(x) = (−x) = . (A.3) β→+∞ 1forx < 0 Inspired by the work of Heaviside, with the purpose of describing an extremely localized charge density, in 1930 Paul Dirac investigated the following “function” +∞ for x = 0 δ(x) = (A.4) 0forx = 0 L. Salasnich, Quantum Physics of Light and Matter, UNITEXT for Physics, 179 DOI: 10.1007/978-3-319-05179-6, © Springer International Publishing Switzerland 2014 180 Appendix A: Dirac Delta Function imposing that +∞ δ(x) dx = 1. (A.5) −∞ Unfortunately, this property of δ(x) is not compatible with the definition (A.4). In fact, from Eq. (A.4) it follows that the integral must be equal to zero. In other words, it does not exist a function δ(x) which satisfies both Eqs. (A.4) and (A.5). Dirac suggested that a way to circumvent this problem is to interpret the integral of Eq. (A.5)as +∞ +∞ δ(x) dx = lim δ(x) dx, (A.6) −∞ →0+ −∞ where δ(x) is a generic function of both x and such that +∞ for x = 0 lim δ(x) = , (A.7) →0+ 0forx = 0 +∞ δ(x) dx = 1. (A.8) −∞ Thus, the Dirac delta function δ(x) is a “generalized function” (but, strictly-speaking, not a function) which satisfy Eqs. (A.4) and (A.5) with the caveat that the integral in Eq. (A.5) must be interpreted according to Eq. (A.6) where the functions δ(x) satisfy Eqs. (A.7) and (A.8). There are infinite functions δ(x) which satisfy Eqs. (A.7) and (A.8). Among them there is, for instance, the following Gaussian 1 −x2/2 δ(x) = √ e , (A.9) π which clearly satisfies Eq. (A.7) and whose integral is equal to 1 for any value of . Another example is the function 1 for |x|≤/2 δ (x) = , (A.10) 0for|x| > /2 which again satisfies Eq. (A.7) and whose integral is equal to 1 for any value of . In the following we shall use Eq. (A.10) to study the properties of the Dirac delta function. According to the approach of Dirac, the integral involving δ(x) must be interpreted as the limit of the corresponding integral involving δ(x), namely +∞ +∞ δ(x) f (x) dx = lim δ(x) f (x) dx, (A.11) −∞ →0+ −∞ Appendix A: Dirac Delta Function 181 for any function f (x). It is then easy to prove that +∞ δ(x) f (x) dx = f (0). (A.12) −∞ by using Eq. (A.10) and the mean value theorem. Similarly one finds +∞ δ(x − c) f (x) dx = f (c). (A.13) −∞ Several other properties of the Dirac delta function δ(x) follow from its definition. In particular δ(−x) = δ(x), (A.14) 1 δ(ax) = δ(x) with a = 0, (A.15) |a| 1 δ( f (x)) = δ(x − x ) with f (x ) = 0. (A.16) | f (x )| i i i i Up to now we have considered the Dirac delta function δ(x) with only one variable x. It is not difficult to define a Dirac delta function δ(D)(r) in the case of a D- D D dimensional domain R , where r = (x1, x2, ..., xD) ∈ R is a D-dimensional vector: ( ) +∞ for r = 0 δ D (r) = (A.17) 0forr = 0 and ( ) δ D (r) d Dr = 1. (A.18) RD Notice that sometimes δ(D)(r) is written using the simpler notation δ(r). Clearly, also in this case one must interpret the integral of Eq. (A.18)as (D)( ) D = (D)( ) D , δ r d r lim δ r d r (A.19) RD →0+ RD (D) where δ (r) is a generic function of both r and such that ( ) +∞ for r = 0 lim δ D (r) = , (A.20) → + 0forr = 0 0 (D)( ) D = . lim δ r d r 1 (A.21) →0+ 182 Appendix A: Dirac Delta Function Several properties of δ(x) remain valid also for δ(D)(r). Nevertheless, some properties of δ(D)(r) depend on the space dimension D. For instance, one can prove the remarkable formula 1 ∇2 (ln |r|) for D = 2 (D)( ) = 2π , δ r 1 2 1 (A.22) − ∇ − for D ≥ 3 D(D−2)VD |r|D 2 ∇2 = ∂2 + ∂2 +···+ ∂2 = D/2/( + / ) where 2 2 2 and VD π 1 D 2 is the volume of ∂x1 ∂x2 ∂xD a D-dimensional ipersphere of unitary radius, with (x) the Euler Gamma function. In the case D = 3 the previous formula becomes ( ) 1 1 δ 3 (r) =− ∇2 , (A.23) 4π |r| which can be used to transform the Gauss law of electromagnetism from its integral form to its differential form. Appendix B Fourier Transform It was known from the times of Archimedes that, in some cases, the infinite sum of decreasing numbers can produce a finite result. But it was only in 1593 that the mathematician Francois Viete gave the first example of a function, f (x) = 1/(1−x), written as the infinite sum of power functions. This function is nothing else than the geometric series, given by ∞ 1 = xn, for |x| < 1. (B.1) 1 − x n=0 In 1714 Brook Taylor suggested that any real function f (x) which is infinitely differentiable in x0 and sufficiently regular can be written as a series of powers, i.e. ∞ n f (x) = cn (x − x0) , (B.2) n=0 where the coefficients cn are given by 1 ( ) c = f n (x ), (B.3) n n! 0 with f (n)(x) the n-th derivative of the function f (x). The series (B.2) is now called Taylor series and becomes the so-called Maclaurin series if x0 = 0. Clearly, the geometric series (B.1) is nothing else than the Maclaurin series, where cn = 1. We observe that it is quite easy to prove the Taylor series: it is sufficient to suppose that Eq. (B.2) is valid and then to derive the coefficients cn by calculating the derivatives of f (x) at x = x0; in this way one gets Eq. (B.3). In 1807 Jean Baptiste Joseph Fourier, who was interested on wave propagation and periodic phenomena, found that any sufficiently regular real function function f (x) which is periodic, i.e. such that L. Salasnich, Quantum Physics of Light and Matter, UNITEXT for Physics, 183 DOI: 10.1007/978-3-319-05179-6, © Springer International Publishing Switzerland 2014 184 Appendix B: Fourier Transform f (x + L) = f (x), (B.4) where L is the periodicity, can be written as the infinite sum of sinusoidal functions, namely ∞ a0 2π 2π f (x) = + an cos n x + bn sin n x , (B.5) 2 L L n=1 where 2 L/2 2π an = f (y) cos n y dy, (B.6) L − / L L 2 2 L/2 2π bn = f (y) sin n y dy. (B.7) L −L/2 L It is quite easy to prove also the series (B.5), which is now called Fourier series. In fact, it is sufficient to suppose that Eq. (B.5) is valid and then to derive the coefficients 2π 2π an and bn by multiplying both side of Eq. (B.5) by cos n L x and cos n L x respectively and integrating over one period L; in this way one gets Eqs. (B.6) and (B.7). It is important to stress that, in general, the real variable x of the function f (x) can represent a space coordinate but also a time coordinate. In the former case L gives the spatial periodicity and 2π/L is the wavenumber, while in the latter case L is the time periodicity and 2π/L the angular frequency. Taking into account the Euler formula in 2π x 2π 2π e L = cos n x + i sin n x (B.8) L L √ with i = −1 the imaginary unit, Fourier observed that his series (B.5) can be re-written in the very elegant form +∞ in 2π x f (x) = fn e L , (B.9) n=−∞ where L/2 1 −in 2π y fn = f (y) e L dy (B.10) L −L/2 are complex coefficients, with f0 = a0/2, fn = (an − ibn)/2ifn > 0 and fn = ( + )/ < ∗ = a−n ib−n 2ifn 0, thus fn f−n. The complex representation (B.9) suggests that the function f (x) can be periodic but complex, i.e. such that f : R → C. Moreover, one can consider the limit L →+∞of infinite periodicity, i.e. a function which is not periodic. In this limit Appendix B: Fourier Transform 185 Eq.
Recommended publications
  • Discontinuous Forcing Functions
    Math 135A, Winter 2012 Discontinuous forcing functions 1 Preliminaries If f(t) is defined on the interval [0; 1), then its Laplace transform is defined to be Z 1 F (s) = L (f(t)) = e−stf(t) dt; 0 as long as this integral is defined and converges. In particular, if f is of exponential order and is piecewise continuous, the Laplace transform of f(t) will be defined. • f is of exponential order if there are constants M and c so that jf(t)j ≤ Mect: Z 1 Since the integral e−stMect dt converges if s > c, then by a comparison test (like (11.7.2) 0 in Salas-Hille-Etgen), the integral defining the Laplace transform of f(t) will converge. • f is piecewise continuous if over each interval [0; b], f(t) has only finitely many discontinuities, and at each point a in [0; b], both of the limits lim f(t) and lim f(t) t!a− t!a+ exist { they need not be equal, but they must exist. (At the endpoints 0 and b, the appropriate one-sided limits must exist.) 2 Step functions Define u(t) to be the function ( 0 if t < 0; u(t) = 1 if t ≥ 0: Then u(t) is called the step function, or sometimes the Heaviside step function: it jumps from 0 to 1 at t = 0. Note that for any number a > 0, the graph of the function u(t − a) is the same as the graph of u(t), but translated right by a: u(t − a) jumps from 0 to 1 at t = a.
    [Show full text]
  • GENERALIZED FUNCTIONS LECTURES Contents 1. the Space
    GENERALIZED FUNCTIONS LECTURES Contents 1. The space of generalized functions on Rn 2 1.1. Motivation 2 1.2. Basic definitions 3 1.3. Derivatives of generalized functions 5 1.4. The support of generalized functions 6 1.5. Products and convolutions of generalized functions 7 1.6. Generalized functions on Rn 8 1.7. Generalized functions and differential operators 9 1.8. Regularization of generalized functions 9 n 2. Topological properties of Cc∞(R ) 11 2.1. Normed spaces 11 2.2. Topological vector spaces 12 2.3. Defining completeness 14 2.4. Fréchet spaces 15 2.5. Sequence spaces 17 2.6. Direct limits of Fréchet spaces 18 2.7. Topologies on the space of distributions 19 n 3. Geometric properties of C−∞(R ) 21 3.1. Sheaf of distributions 21 3.2. Filtration on spaces of distributions 23 3.3. Functions and distributions on a Cartesian product 24 4. p-adic numbers and `-spaces 26 4.1. Defining p-adic numbers 26 4.2. Misc. -not sure what to do with them (add to an appendix about p-adic numbers?) 29 4.3. p-adic expansions 31 4.4. Inverse limits 32 4.5. Haar measure and local fields 32 4.6. Some basic properties of `-spaces. 33 4.7. Distributions on `-spaces 35 4.8. Distributions supported on a subspace 35 5. Vector valued distributions 37 Date: October 7, 2018. 1 GENERALIZED FUNCTIONS LECTURES 2 5.1. Smooth measures 37 5.2. Generalized functions versus distributions 38 5.3. Some linear algebra 39 5.4. Generalized functions supported on a subspace 41 6.
    [Show full text]
  • Laplace Transforms: Theory, Problems, and Solutions
    Laplace Transforms: Theory, Problems, and Solutions Marcel B. Finan Arkansas Tech University c All Rights Reserved 1 Contents 43 The Laplace Transform: Basic Definitions and Results 3 44 Further Studies of Laplace Transform 15 45 The Laplace Transform and the Method of Partial Fractions 28 46 Laplace Transforms of Periodic Functions 35 47 Convolution Integrals 45 48 The Dirac Delta Function and Impulse Response 53 49 Solving Systems of Differential Equations Using Laplace Trans- form 61 50 Solutions to Problems 68 2 43 The Laplace Transform: Basic Definitions and Results Laplace transform is yet another operational tool for solving constant coeffi- cients linear differential equations. The process of solution consists of three main steps: • The given \hard" problem is transformed into a \simple" equation. • This simple equation is solved by purely algebraic manipulations. • The solution of the simple equation is transformed back to obtain the so- lution of the given problem. In this way the Laplace transformation reduces the problem of solving a dif- ferential equation to an algebraic problem. The third step is made easier by tables, whose role is similar to that of integral tables in integration. The above procedure can be summarized by Figure 43.1 Figure 43.1 In this section we introduce the concept of Laplace transform and discuss some of its properties. The Laplace transform is defined in the following way. Let f(t) be defined for t ≥ 0: Then the Laplace transform of f; which is denoted by L[f(t)] or by F (s), is defined by the following equation Z T Z 1 L[f(t)] = F (s) = lim f(t)e−stdt = f(t)e−stdt T !1 0 0 The integral which defined a Laplace transform is an improper integral.
    [Show full text]
  • Rational Approximation of the Absolute Value Function from Measurements: a Numerical Study of Recent Methods
    Rational approximation of the absolute value function from measurements: a numerical study of recent methods I.V. Gosea∗ and A.C. Antoulasy May 7, 2020 Abstract In this work, we propose an extensive numerical study on approximating the absolute value function. The methods presented in this paper compute approximants in the form of rational functions and have been proposed relatively recently, e.g., the Loewner framework and the AAA algorithm. Moreover, these methods are based on data, i.e., measurements of the original function (hence data-driven nature). We compare numerical results for these two methods with those of a recently-proposed best rational approximation method (the minimax algorithm) and with various classical bounds from the previous century. Finally, we propose an iterative extension of the Loewner framework that can be used to increase the approximation quality of the rational approximant. 1 Introduction Approximation theory is a well-established field of mathematics that splits in a wide variety of subfields and has a multitude of applications in many areas of applied sciences. Some examples of the latter include computational fluid dynamics, solution and control of partial differential equations, data compression, electronic structure calculation, systems and control theory (model order reduction reduction of dynamical systems). In this work we are concerned with rational approximation, i.e, approximation of given functions by means of rational functions. More precisely, the original to be approximated function is the absolute value function (known also as the modulus function). Moreover, the methods under consideration do not necessarily require access to the exact closed-form of the original function, but only to evaluations of it on a particular domain.
    [Show full text]
  • 10 Heat Equation: Interpretation of the Solution
    Math 124A { October 26, 2011 «Viktor Grigoryan 10 Heat equation: interpretation of the solution Last time we considered the IVP for the heat equation on the whole line u − ku = 0 (−∞ < x < 1; 0 < t < 1); t xx (1) u(x; 0) = φ(x); and derived the solution formula Z 1 u(x; t) = S(x − y; t)φ(y) dy; for t > 0; (2) −∞ where S(x; t) is the heat kernel, 1 2 S(x; t) = p e−x =4kt: (3) 4πkt Substituting this expression into (2), we can rewrite the solution as 1 1 Z 2 u(x; t) = p e−(x−y) =4ktφ(y) dy; for t > 0: (4) 4πkt −∞ Recall that to derive the solution formula we first considered the heat IVP with the following particular initial data 1; x > 0; Q(x; 0) = H(x) = (5) 0; x < 0: Then using dilation invariance of the Heaviside step function H(x), and the uniquenessp of solutions to the heat IVP on the whole line, we deduced that Q depends only on the ratio x= t, which lead to a reduction of the heat equation to an ODE. Solving the ODE and checking the initial condition (5), we arrived at the following explicit solution p x= 4kt 1 1 Z 2 Q(x; t) = + p e−p dp; for t > 0: (6) 2 π 0 The heat kernel S(x; t) was then defined as the spatial derivative of this particular solution Q(x; t), i.e. @Q S(x; t) = (x; t); (7) @x and hence it also solves the heat equation by the differentiation property.
    [Show full text]
  • Techniques of Variational Analysis
    J. M. Borwein and Q. J. Zhu Techniques of Variational Analysis An Introduction October 8, 2004 Springer Berlin Heidelberg NewYork Hong Kong London Milan Paris Tokyo To Tova, Naomi, Rachel and Judith. To Charles and Lilly. And in fond and respectful memory of Simon Fitzpatrick (1953-2004). Preface Variational arguments are classical techniques whose use can be traced back to the early development of the calculus of variations and further. Rooted in the physical principle of least action they have wide applications in diverse ¯elds. The discovery of modern variational principles and nonsmooth analysis further expand the range of applications of these techniques. The motivation to write this book came from a desire to share our pleasure in applying such variational techniques and promoting these powerful tools. Potential readers of this book will be researchers and graduate students who might bene¯t from using variational methods. The only broad prerequisite we anticipate is a working knowledge of un- dergraduate analysis and of the basic principles of functional analysis (e.g., those encountered in a typical introductory functional analysis course). We hope to attract researchers from diverse areas { who may fruitfully use varia- tional techniques { by providing them with a relatively systematical account of the principles of variational analysis. We also hope to give further insight to graduate students whose research already concentrates on variational analysis. Keeping these two di®erent reader groups in mind we arrange the material into relatively independent blocks. We discuss various forms of variational princi- ples early in Chapter 2. We then discuss applications of variational techniques in di®erent areas in Chapters 3{7.
    [Show full text]
  • Schwartz Functions on Nash Manifolds and Applications to Representation Theory
    SCHWARTZ FUNCTIONS ON NASH MANIFOLDS AND APPLICATIONS TO REPRESENTATION THEORY AVRAHAM AIZENBUD Joint with Dmitry Gourevitch and Eitan Sayag arXiv:0704.2891 [math.AG], arxiv:0709.1273 [math.RT] Let us start with the following motivating example. Consider the circle S1, let N ⊂ S1 be the north pole and denote U := S1 n N. Note that U is diffeomorphic to R via the stereographic projection. Consider the space D(S1) of distributions on S1, that is the space of continuous linear functionals on the 1 1 1 Fr´echet space C (S ). Consider the subspace DS1 (N) ⊂ D(S ) consisting of all distributions supported 1 at N. Then the quotient D(S )=DS1 (N) will not be the space of distributions on U. However, it will be the space S∗(U) of Schwartz distributions on U, that is continuous functionals on the Fr´echet space S(U) of Schwartz functions on U. In this case, S(U) can be identified with S(R) via the stereographic projection. The space of Schwartz functions on R is defined to be the space of all infinitely differentiable functions that rapidly decay at infinity together with all their derivatives, i.e. xnf (k) is bounded for any n; k. In this talk we extend the notions of Schwartz functions and Schwartz distributions to a larger geometric realm. As we can see, the definition is of algebraic nature. Hence it would not be reasonable to try to extend it to arbitrary smooth manifolds. However, it is reasonable to extend this notion to smooth algebraic varieties.
    [Show full text]
  • Delta Functions and Distributions
    When functions have no value(s): Delta functions and distributions Steven G. Johnson, MIT course 18.303 notes Created October 2010, updated March 8, 2017. Abstract x = 0. That is, one would like the function δ(x) = 0 for all x 6= 0, but with R δ(x)dx = 1 for any in- These notes give a brief introduction to the mo- tegration region that includes x = 0; this concept tivations, concepts, and properties of distributions, is called a “Dirac delta function” or simply a “delta which generalize the notion of functions f(x) to al- function.” δ(x) is usually the simplest right-hand- low derivatives of discontinuities, “delta” functions, side for which to solve differential equations, yielding and other nice things. This generalization is in- a Green’s function. It is also the simplest way to creasingly important the more you work with linear consider physical effects that are concentrated within PDEs, as we do in 18.303. For example, Green’s func- very small volumes or times, for which you don’t ac- tions are extremely cumbersome if one does not al- tually want to worry about the microscopic details low delta functions. Moreover, solving PDEs with in this volume—for example, think of the concepts of functions that are not classically differentiable is of a “point charge,” a “point mass,” a force plucking a great practical importance (e.g. a plucked string with string at “one point,” a “kick” that “suddenly” imparts a triangle shape is not twice differentiable, making some momentum to an object, and so on.
    [Show full text]
  • Best L1 Approximation of Heaviside-Type Functions in a Weak-Chebyshev Space
    Best L1 approximation of Heaviside-type functions in Chebyshev and weak-Chebyshev spaces Laurent Gajny,1 Olivier Gibaru1,,2 Eric Nyiri1, Shu-Cherng Fang3 Abstract In this article, we study the problem of best L1 approximation of Heaviside-type functions in Chebyshev and weak-Chebyshev spaces. We extend the Hobby-Rice theorem [2] into an appro- priate framework and prove the unicity of best L1 approximation of Heaviside-type functions in an even-dimensional Chebyshev space under the condition that the dimension of the subspace composed of the even functions is half the dimension of the whole space. We also apply the results to compute best L1 approximations of Heaviside-type functions by polynomials and Her- mite polynomial splines with fixed knots. Keywords : Best approximation, L1 norm, Heaviside function, polynomials, polynomial splines, Chebyshev space, weak-Chebyshev space. Introduction Let [a, b] be a real interval with a < b and ν be a positive measure defined on a σ-field of subsets of [a, b]. The space L1([a, b],ν) of ν-integrable functions with the so-called L1 norm : b k · k1 : f ∈ L1([a, b],ν) 7−→ kfk1 = |f(x)| dν(x) Za forms a Banach space. Let f ∈ L1([a, b],ν) and Y be a subset of L1([a, b],ν) such that f∈ / Y where Y is the closure of Y . The problem of the best L1 approximation of the function f in Y consists in finding a function g∗ ∈ Y such that : ∗ arXiv:1407.0228v3 [math.FA] 26 Oct 2015 kf − g k1 ≤ kf − gk1, ∀g ∈ Y.
    [Show full text]
  • An Analytic Exact Form of the Unit Step Function
    Mathematics and Statistics 2(7): 235-237, 2014 http://www.hrpub.org DOI: 10.13189/ms.2014.020702 An Analytic Exact Form of the Unit Step Function J. Venetis Section of Mechanics, Faculty of Applied Mathematics and Physical Sciences, National Technical University of Athens *Corresponding Author: [email protected] Copyright © 2014 Horizon Research Publishing All rights reserved. Abstract In this paper, the author obtains an analytic Meanwhile, there are many smooth analytic exact form of the unit step function, which is also known as approximations to the unit step function as it can be seen in Heaviside function and constitutes a fundamental concept of the literature [4,5,6]. Besides, Sullivan et al [7] obtained a the Operational Calculus. Particularly, this function is linear algebraic approximation to this function by means of a equivalently expressed in a closed form as the summation of linear combination of exponential functions. two inverse trigonometric functions. The novelty of this However, the majority of all these approaches lead to work is that the exact representation which is proposed here closed – form representations consisting of non - elementary is not performed in terms of non – elementary special special functions, e.g. Logistic function, Hyperfunction, or functions, e.g. Dirac delta function or Error function and Error function and also most of its algebraic exact forms are also is neither the limit of a function, nor the limit of a expressed in terms generalized integrals or infinitesimal sequence of functions with point wise or uniform terms, something that complicates the related computational convergence. Therefore it may be much more appropriate in procedures.
    [Show full text]
  • Fundamental Theorems in Mathematics
    SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635].
    [Show full text]
  • Mathematical Problems on Generalized Functions and the Can–
    Mathematical problems on generalized functions and the canonical Hamiltonian formalism J.F.Colombeau [email protected] Abstract. This text is addressed to mathematicians who are interested in generalized functions and unbounded operators on a Hilbert space. We expose in detail (in a “formal way”- as done by Heisenberg and Pauli - i.e. without mathematical definitions and then, of course, without mathematical rigour) the Heisenberg-Pauli calculations on the simplest model close to physics. The problem for mathematicians is to give a mathematical sense to these calculations, which is possible without any knowledge in physics, since they mimick exactly usual calculations on C ∞ functions and on bounded operators, and can be considered at a purely mathematical level, ignoring physics in a first step. The mathematical tools to be used are nonlinear generalized functions, unbounded operators on a Hilbert space and computer calculations. This text is the improved written version of a talk at the congress on linear and nonlinear generalized functions “Gf 07” held in Bedlewo-Poznan, Poland, 2-8 September 2007. 1-Introduction . The Heisenberg-Pauli calculations (1929) [We,p20] are a set of 3 or 4 pages calculations (in a simple yet fully representative model) that are formally quite easy and mimick calculations on C ∞ functions. They are explained in detail at the beginning of this text and in the appendices. The H-P calculations [We, p20,21, p293-336] are a basic formulation in Quantum Field Theory: “canonical Hamiltonian formalism”, see [We, p292] for their relevance. The canonical Hamiltonian formalism is considered as mainly equivalent to the more recent “(Feynman) path integral formalism”: see [We, p376,377] for the connections between the 2 formalisms that complement each other.
    [Show full text]