Universidade De Lisboa Faculdade De Ciências

Total Page:16

File Type:pdf, Size:1020Kb

Universidade De Lisboa Faculdade De Ciências UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS Characterization of mRNA Dysfunctional Mechanisms Associated with the Genetic Disease Cystic Fibrosis Doutoramento em Bioquímica Especialidade de Genética Molecular Verónica Manuela Rôxo Felício Tese orientada por: Professora Doutora Margarida Amaral Documento especialmente elaborado para a obtenção do grau de doutor 2018 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS Characterization of mRNA Dysfunctional Mechanisms Associated with the Genetic Disease Cystic Fibrosis Doutoramento em Bioquímica Especialidade de Genética Molecular Verónica Manuela Rôxo Felício Tese orientada por: Professora Doutora Margarida Amaral Júri: Presidente: ● Doutora Amélia Pilar Grases dos Santos Silva Rauter, Professora Catedrática e Presidente do Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade de Lisboa (FCUL) Vogais: ● Doutora Luísa Maria Ferreira Romão Loison, Investigadora Principal do Instituto Nacional de Saúde Doutor Ricardo Jorge; ● Doutora Luísa Maria Quental Mota Vieira, Investigadora Principal da Unidade de Genética e Patologia Molecular do Hospital do Divino Espírito Santo de Ponta Delgada ● Doutra Margarida Sofia Pereira Duarte Amaral, Professora Catedrática da Faculdade de Ciências da Universidade de Lisboa; ● Doutora Rita Maria Pulido Garcia Zilhão Aranha Moreira, Professora Auxiliar da Faculdade de Ciências da Universidade de Lisboa; ● Doutora Margarida Henriques da Gama Carvalho, Professora Auxiliar da Faculdade de Ciências da Universidade de Lisboa; Documento especialmente elaborado para a obtenção do grau de doutor Fundação para a Ciência e Tecnologia do Ministério da Ciência, Tecnologia e Ensino Superior, SFRH/BD/87478/2012 2018 Aos meus filhos Francisco e Xavier E ao meu marido Gonçalo OS três pilares da minha vida I II Acknowledgments/Agradecimentos Agradeço a todos os que contribuíram, de forma direta ou indireta, para a realização deste trabalho. Salientando o meu agradecimento: Em especial à minha orientadora Professora Doutora Margarida Amaral, por todo o apoio e suporte, pela transmissão de conhecimentos, por me ter proporcionado a excelente oportunidade de trabalhar no seu laboratório e por toda a confiança em mim depositada ao longo destes anos. Agradeço toda a paciência, motivação, desafios propostos e a oportunidade de trabalhar com alguém com tanta dedicação, entusiasmo, determinação e rigor. À Doutora Anabela Ramalho, uma grande impulsionadora do meu doutoramento e que me deu todas as bases para o mesmo. Os seus ensinamentos de trabalho de bancada foram uma mais valia na realização do trabalho laboratorial, tudo o que aprendi sobre genotipagem, PCR, mini-genes, mutações é a si que devo. Obrigada pela sua disponibilidade para as minhas dúvidas e pela sua ajuda na resolução de problemas. Ao ministério da Ciência e Ensino Superior e à Fundação para a Ciência e a Tecnologia, por terem possibilitado a realização deste trabalho, através da concessão da bolsa de doutoramento de que fui recipiente. Ao Departamento de Química e Bioquímica da Faculdade de Ciências da Universidade de Lisboa e ao BioISI - Biosystems & Integrative Sciences Institute por me acolherem durante o meu trabalho de doutoramento. Quero agradecer à Dra. Celeste Barreto, à Dra. Luísa Pereira, ao Dr. Carlos Lopes, e ao Dr. José Cavaco pela colaboração preciosa com pacientes de FQ. Comecei este doutoramento rodeada de pessoas maravilhosas que foram seguindo as suas vidas ao longo do tempo, mas a quem devo muito. Marta Palma, Marisa Sousa, Inna Uliyakina e Simão Luz não estiveram presentes fisicamente até ao fim, mas mesmo longe ajudaram. Muito obrigada pelo constante apoio, amizade e disponibilidade para ajudar em qualquer questão. Os vossos conselhos e sugestões foram absolutamente fulcrais para a minha evolução enquanto pessoa e cientista. Quero agradecer todos os meus colegas de laboratório: À Susana Igreja pela ajuda e apoio nas experiências, projetos, relatórios e na minha tese de doutoramento; ao Hugo Botelho muito obrigada por todos os ensinamentos de microscopia, análise de resultados, pelas folhas de excel super cromas para os ensaios de efluxo e pela maravilhosa capacidade que tens para tornares tudo mais fácil de perceber. Mas principalmente, muito obrigada pelas pausas, III pelos momentos de desanuviar a cabeça e organizar ideias; ao Luka Clarke pela ajuda, partilha de conhecimentos e companhia no trabalho com pacientes. ao Professor Carlos Farinha pelos ensinamentos; ao Luís Marques pela paciência no microscópio e pelas pausas para café; à Sofia Correia, à Madalena, à Margarida, à Sofia Ramalho, à Iris Silva, à Ines Pankonien, ao Luís Sousa obrigada pelas conversas de laboratório que ajudaram na resolução de alguns problemas e também proporcionaram um ambiente divertido. Em último, mas muito importante, pessoas que considero mais que colegas de laboratório, pessoas que considero amigas. Sara Canato, obrigada por tudo, obrigada pelo apoio, pela ajuda, pela cumplicidade, foste mais que uma colega de trabalho. Nikhil Awatade, thank you for the teachings, for the opportunity to work closer to the patients, for the conversations, for the long hours of work always with good disposition. Remain the memories of days and nights making lungs, that October will never be forgotten. João Santos, Joana Lérias, Arsénia Massinga, Iris Silva e José Múrias vocês foram suportes importantes no laboratório, proporcionaram momentos maravilhosos no trabalho, mas principalmente estiveram presentes na minha vida. Todos vocês deixaram marca em mim como cientista pelas conversas e sugestões, mas marcaram-me muito mais como pessoa, obrigada por isso. Não posso deixar de agradecer às três da vida airada, Ana Luísa e Sara Fernandes, pelas conversas, pelas fugidas ao café, pelo apoio, carinho e amizade que sempre transmitiram. Pelas loucuras e pelos momentos sérios, um muito obrigado, foram um grande pilar nesta fase da minha vida, em muitas alturas pensei que não aguentava, mas vocês mostraram que tudo se faz e que em grupo é muito mais fácil. Á minha família devo muito mais que um simples obrigado. Mãe e pai vocês sempre foram a minha inspiração, a minha força ajudaram-me a remar em direção aos meus objetivos. A vocês devo ter chegado ao fim desta etapa. Ao meu irmão agradeço as vezes que me deu na cabeça e me deu força para chegar ao fim. Às minhas avós, aos meus tios, aos meus padrinhos, aos meus priminhos e afilhada, à minha cunhada e sobrinha agradeço os momentos de distração e alegrias que me ajudaram a superar momentos mais difíceis deste doutoramento. Aos meus sogros agradeço a motivação e a insistência e ajuda para terminar esta fase da minha vida. Foram uma grande ajuda neste processo final, sem vocês não teria conseguido. Aos meus filhos, Francisco e Xavier e ao meu marido Gonçalo, os pilares da minha vida, que me fazem levantar todos os dias com um sorriso e me mostram que eu sou capaz, aos meus 3 homens a quem eu devo tudo…OBRIGADA por compreenderem as minhas ausências, a minha falta de tempo e por vezes de paciência. Gonçalo sem o teu encorajamento e compreensão, teria sido impossível para mim terminar o meu doutoramento. IV Verónica Manuela Rôxo Felício foi bolseira de doutoramento da Fundação para a Ciência e Tecnologia do Ministério da Ciência, Tecnologia e Ensino Superior. SFRH/BD/87478/2012 V VI SUMMARY Cystic Fibrosis (CF) is the most common autosomal disease in Caucasians, with an estimated incidence of 1:6000 births in Portugal. The most relevant clinical aspect of its classic manifestation is chronic lung disease, which is the main cause of morbidity and mortality. Other symptoms include, pancreatic dysfunction, male infertility and high concentrations of chloride (Cl-) in sweat. However, even though the classic form of the disease is well defined, its pathophysiology is not completely understood with this pleiotropic disease having highly variable manifestations of clinical phenotypes. Novel therapies aim to correct the basic defect, specifically focusing on the rescue of Cystic fibrosis transmembrane conductance regulator (CFTR) function in CF airways. Most of these CFTR modulator strategies target the F508del, the most common mutation. Nevertheless, widespread evidence has demonstrated that a significant number of CF- causing mutations affect splicing efficiency and the stability of mRNA molecules. Here, we propose to elucidate the regulatory mechanisms underlying these CF-associated mutations. To this end, our aims are: 1) to identify CFTR gene mutations in individuals with non-CF chronic lung diseases, namely chronic obstructive pulmonary disease (COPD), asthma and disseminated bronchiectasis (DB); 2) to identify CFTR gene mutations in individuals with a suspicion of CF, followed by the analysis of CFTR expression in their native tissues to characterize the impact of CFTR splicing or premature termination codon (PTC) mutations in the structure and levels of mRNA; 3) to identify key factors in the nonsense/mediated decay (NMD) pathway by automated microscopy screens using a cell model expressing a novel CFTR NMD-PTC/read-through mini-gene reporter; and 4) to screen for novel compounds suppressing PTC mutations by automated microscopy screens using the previous cell-based model, as potential corrective therapies for CF. The expected results will provide knowledge on RNA-processing dysfunction and on the efficacy of novel RNA modulator compounds towards a "personalised medicine" approach. Regarding the first objective, our data show that 7 (out of 136) patients with non-CF
Recommended publications
  • FUSIP1 Polyclonal Antibody Catalog Number PA5-41929 Product Data Sheet
    Lot Number: A9C701N Website: thermofisher.com Customer Service (US): 1 800 955 6288 ext. 1 Technical Support (US): 1 800 955 6288 ext. 441 thermofisher.com/contactus FUSIP1 Polyclonal Antibody Catalog Number PA5-41929 Product Data Sheet Details Species Reactivity Size 100 µl Tested species reactivity Equine, Guinea Pig, Human, Mouse, Host / Isotype Rabbit IgG Rabbit, Rat Class Polyclonal Tested Applications Dilution * Type Antibody Immunohistochemistry (Paraffin) 4-8 µg/mL (IHC (P)) Immunogen Synthetic peptide directed towards the C-terminal of human FUSIP1 Western Blot (WB) 0.2-1 µg/mL Conjugate Unconjugated * Suggested working dilutions are given as a guide only. It is recommended that the user titrate the product for use in their own experiment using appropriate negative and positive controls. Form Liquid Concentration 0.5mg/mL Purification Affinity Chromatography Storage Buffer PBS with 2% sucrose Contains 0.09% sodium azide Storage Conditions -20° C, Avoid Freeze/Thaw Cycles Product Specific Information Peptide sequence: TDSKTHYKSG SRYEKESRKK EPPRSKSQSR SQSRSRSKSR SRSWTSPKSS Sequence homology: Guinea Pig: 100%; Horse: 100%; Human: 100%; Mouse: 100%; Rabbit: 100%; Rat: 100% Background/Target Information FUSIP1 is a member of the serine-arginine (SR) family of proteins, which is involved in constitutive and regulated RNA splicing. Members of this family are characterized by N-terminal RNP1 and RNP2 motifs, which are required for binding to RNA, and multiple C-terminal SR/RS repeats, which are important in mediating association with other cellular proteins. This protein can influence splice site selection of adenovirus E1A pre-mRNA. It interacts with the oncoprotein TLS, and abrogates the influence of TLS on E1A pre-mRNA splicing.This gene product is a member of the serine-arginine (SR) family of proteins, which is involved in constitutive and regulated RNA splicing.
    [Show full text]
  • Coupling of Spliceosome Complexity to Intron Diversity
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coupling of spliceosome complexity to intron diversity Jade Sales-Lee1, Daniela S. Perry1, Bradley A. Bowser2, Jolene K. Diedrich3, Beiduo Rao1, Irene Beusch1, John R. Yates III3, Scott W. Roy4,6, and Hiten D. Madhani1,6,7 1Dept. of Biochemistry and Biophysics University of California – San Francisco San Francisco, CA 94158 2Dept. of Molecular and Cellular Biology University of California - Merced Merced, CA 95343 3Department of Molecular Medicine The Scripps Research Institute, La Jolla, CA 92037 4Dept. of Biology San Francisco State University San Francisco, CA 94132 5Chan-Zuckerberg Biohub San Francisco, CA 94158 6Corresponding authors: [email protected], [email protected] 7Lead Contact 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.03.19.436190; this version posted March 20, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. SUMMARY We determined that over 40 spliceosomal proteins are conserved between many fungal species and humans but were lost during the evolution of S. cerevisiae, an intron-poor yeast with unusually rigid splicing signals. We analyzed null mutations in a subset of these factors, most of which had not been investigated previously, in the intron-rich yeast Cryptococcus neoformans.
    [Show full text]
  • FUSIP1 (SRSF10) (NM 006625) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RC221759 FUSIP1 (SRSF10) (NM_006625) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: FUSIP1 (SRSF10) (NM_006625) Human Tagged ORF Clone Tag: Myc-DDK Symbol: SRSF10 Synonyms: FUSIP1; FUSIP2; NSSR; PPP1R149; SFRS13; SFRS13A; SRp38; SRrp40; TASR; TASR1; TASR2 Vector: pCMV6-Entry (PS100001) E. coli Selection: Kanamycin (25 ug/mL) Cell Selection: Neomycin ORF Nucleotide >RC221759 ORF sequence Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGTCCCGCTACCTGCGTCCCCCCAACACGTCTCTGTTCGTCAGGAACGTGGCCGACGACACCAGGTCTG AAGACTTGCGGCGTGAATTTGGTCGTTATGGTCCTATAGTTGATGTGTATGTTCCACTTGATTTCTACAC TCGCCGTCCAAGAGGATTTGCTTATGTTCAATTTGAGGATGTTCGTGATGCTGAAGACGCTTTACATAAT TTGGACAGAAAGTGGATTTGTGGACGGCAGATTGAAATACAGTTTGCCCAGGGGGATCGAAAGACACCAA ATCAGATGAAAGCCAAGGAAGGGAGGAATGTGTACAGTTCTTCACGCTATGATGATTATGACAGATACAG ACGTTCTAGAAGCCGAAGTTATGAAAGGAGGAGATCAAGAAGTCGGTCTTTTGATTACAACTATAGAAGA TCGTATAGTCCTAGAAACAGTAGACCGACTGGAAGACCACGGCGTAGCAGAAGCCATTCCGACAATGATA GACCAAACTGCAGCTGGAATACCCAGTACAGTTCTGCTTACTACACTTCAAGAAAGATC ACGCGTACGCGGCCGCTCGAGCAGAAACTCATCTCAGAAGAGGATCTGGCAGCAAATGATATCCTGGATT ACAAGGATGACGACGATAAGGTTTAA Protein Sequence: >RC221759 protein sequence Red=Cloning site Green=Tags(s) MSRYLRPPNTSLFVRNVADDTRSEDLRREFGRYGPIVDVYVPLDFYTRRPRGFAYVQFEDVRDAEDALHN
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Location Analysis of Estrogen Receptor Target Promoters Reveals That
    Location analysis of estrogen receptor ␣ target promoters reveals that FOXA1 defines a domain of the estrogen response Jose´ e Laganie` re*†, Genevie` ve Deblois*, Ce´ line Lefebvre*, Alain R. Bataille‡, Franc¸ois Robert‡, and Vincent Gigue` re*†§ *Molecular Oncology Group, Departments of Medicine and Oncology, McGill University Health Centre, Montreal, QC, Canada H3A 1A1; †Department of Biochemistry, McGill University, Montreal, QC, Canada H3G 1Y6; and ‡Laboratory of Chromatin and Genomic Expression, Institut de Recherches Cliniques de Montre´al, Montreal, QC, Canada H2W 1R7 Communicated by Ronald M. Evans, The Salk Institute for Biological Studies, La Jolla, CA, July 1, 2005 (received for review June 3, 2005) Nuclear receptors can activate diverse biological pathways within general absence of large scale functional data linking these putative a target cell in response to their cognate ligands, but how this binding sites with gene expression in specific cell types. compartmentalization is achieved at the level of gene regulation is Recently, chromatin immunoprecipitation (ChIP) has been used poorly understood. We used a genome-wide analysis of promoter in combination with promoter or genomic DNA microarrays to occupancy by the estrogen receptor ␣ (ER␣) in MCF-7 cells to identify loci recognized by transcription factors in a genome-wide investigate the molecular mechanisms underlying the action of manner in mammalian cells (20–24). This technology, termed 17␤-estradiol (E2) in controlling the growth of breast cancer cells. ChIP-on-chip or location analysis, can therefore be used to deter- We identified 153 promoters bound by ER␣ in the presence of E2. mine the global gene expression program that characterize the Motif-finding algorithms demonstrated that the estrogen re- action of a nuclear receptor in response to its natural ligand.
    [Show full text]
  • Primepcr™Assay Validation Report
    PrimePCR™Assay Validation Report Gene Information Gene Name DiGeorge syndrome critical region gene 14 Gene Symbol Dgcr14 Organism Mouse Gene Summary The human ortholog of this gene is located within the minimal DGS critical region (MDGCR) thought to contain the gene(s) responsible for a group of developmental disorders. These disorders include DiGeorge syndrome velocardiofacial syndrome conotruncal anomaly face syndrome and some familial or sporadic conotruncal cardiac defects which have been associated with microdeletion of human chromosome band 22q11.2. The encoded protein localizes to the nucleus and the orthologous protein in humans co-purifies with C complex spliceosomes. Multiple transcript variants encoding different isoforms have been found for this gene. Gene Aliases AI462402, D16H22S1269E, Dgcr1, Dgsi, ES2, Es2el RefSeq Accession No. NC_000082.6, NT_039624.8, NT_187007.1 UniGene ID Mm.256480 Ensembl Gene ID ENSMUSG00000003527 Entrez Gene ID 27886 Assay Information Unique Assay ID qMmuCID0011048 Assay Type SYBR® Green Detected Coding Transcript(s) ENSMUST00000003621 Amplicon Context Sequence GCCTGTAGCTTCTCCACATCAGGGAAGAAGTCTCTCTGGATAACTGTCTGAAGTC CCTCGATGTACTCTTCTTCATCCAGGACCCGCTGCCTGCTTCTCGCAACTCCGG CCT Amplicon Length (bp) 82 Chromosome Location 16:17910201-17911217 Assay Design Intron-spanning Purification Desalted Validation Results Efficiency (%) 95 R2 0.9994 cDNA Cq 21.87 Page 1/5 PrimePCR™Assay Validation Report cDNA Tm (Celsius) 79.5 gDNA Cq 23.94 Specificity (%) 100 Information to assist with data interpretation is provided
    [Show full text]
  • Parallel Next Generation Sequencing of DNA and RNA from a Single
    www.nature.com/scientificreports OPEN Towards Improving Embryo Prioritization: Parallel Next Generation Sequencing of DNA and Received: 2 August 2018 Accepted: 14 January 2019 RNA from a Single Trophectoderm Published: xx xx xxxx Biopsy Noga Fuchs Weizman1, Brandon A. Wyse1, Ran Antes1, Zenon Ibarrientos1, Mugundhine Sangaralingam1, Gelareh Motamedi1, Valeriy Kuznyetsov1, Svetlana Madjunkova1 & Cliford L. Librach1,2,3,4 Improved embryo prioritization is crucial in optimizing the results in assisted reproduction, especially in light of increasing utilization of elective single embryo transfers. Embryo prioritization is currently based on morphological criteria and in some cases incorporates preimplantation genetic testing for aneuploidy (PGT-A). Recent technological advances have enabled parallel genomic and transcriptomic assessment of a single cell. Adding transcriptomic analysis to PGT-A holds promise for better understanding early embryonic development and implantation, and for enhancing available embryo prioritization tools. Our aim was to develop a platform for parallel genomic and transcriptomic sequencing of a single trophectoderm (TE) biopsy, that could later be correlated with clinical outcomes. Twenty-fve embryos donated for research were utilized; eight for initial development and optimization of our method, and seventeen to demonstrate clinical safety and reproducibility of this method. Our method achieved 100% concordance for ploidy status with that achieved by the classic PGT-A. All sequencing data exceeded quality control metrics. Transcriptomic sequencing data was sufcient for performing diferential expression (DE) analysis. All biopsies expressed specifc TE markers, further validating the accuracy of our method. Using PCA, samples clustered in euploid and aneuploid aggregates, highlighting the importance of controlling for ploidy in every transcriptomic assessment.
    [Show full text]
  • CRNKL1 Is a Highly Selective Regulator of Intron-Retaining HIV-1 and Cellular Mrnas
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934927; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 CRNKL1 is a highly selective regulator of intron-retaining HIV-1 and cellular mRNAs 2 3 4 Han Xiao1, Emanuel Wyler2#, Miha Milek2#, Bastian Grewe3, Philipp Kirchner4, Arif Ekici4, Ana Beatriz 5 Oliveira Villela Silva1, Doris Jungnickl1, Markus Landthaler2,5, Armin Ensser1, and Klaus Überla1* 6 7 1 Institute of Clinical and Molecular Virology, University Hospital Erlangen, Friedrich-Alexander 8 Universität Erlangen-Nürnberg, Erlangen, Germany 9 2 Berlin Institute for Medical Systems Biology, Max-Delbrück-Center for Molecular Medicine in the 10 Helmholtz Association, Robert-Rössle-Strasse 10, 13125, Berlin, Germany 11 3 Department of Molecular and Medical Virology, Ruhr-University, Bochum, Germany 12 4 Institute of Human Genetics, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen- 13 Nürnberg, Erlangen, Germany 14 5 IRI Life Sciences, Institute für Biologie, Humboldt Universität zu Berlin, Philippstraße 13, 10115, Berlin, 15 Germany 16 # these two authors contributed equally 17 18 19 *Corresponding author: 20 Prof. Dr. Klaus Überla 21 Institute of Clinical and Molecular Virology, University Hospital Erlangen 22 Friedrich-Alexander Universität Erlangen-Nürnberg 23 Schlossgarten 4, 91054 Erlangen 24 Germany 25 Tel: (+49) 9131-8523563 26 e-mail: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.04.934927; this version posted February 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder.
    [Show full text]
  • C2orf3 (GCFC2) (NM 001201334) Human Tagged ORF Clone Product Data
    OriGene Technologies, Inc. 9620 Medical Center Drive, Ste 200 Rockville, MD 20850, US Phone: +1-888-267-4436 [email protected] EU: [email protected] CN: [email protected] Product datasheet for RG234563 C2orf3 (GCFC2) (NM_001201334) Human Tagged ORF Clone Product data: Product Type: Expression Plasmids Product Name: C2orf3 (GCFC2) (NM_001201334) Human Tagged ORF Clone Tag: TurboGFP Symbol: GCFC2 Synonyms: C2orf3; DNABF; GCF; TCF9 Vector: pCMV6-AC-GFP (PS100010) E. coli Selection: Ampicillin (100 ug/mL) Cell Selection: Neomycin This product is to be used for laboratory only. Not for diagnostic or therapeutic use. View online » ©2021 OriGene Technologies, Inc., 9620 Medical Center Drive, Ste 200, Rockville, MD 20850, US 1 / 4 C2orf3 (GCFC2) (NM_001201334) Human Tagged ORF Clone – RG234563 ORF Nucleotide >RG234563 representing NM_001201334 Sequence: Red=Cloning site Blue=ORF Green=Tags(s) TTTTGTAATACGACTCACTATAGGGCGGCCGGGAATTCGTCGACTGGATCCGGTACCGAGGAGATCTGCC GCCGCGATCGCC ATGAAGAGAGAGAGCGAAGATGACCCTGAGAGTGAGCCTGATGACCATGAAAAGAGAATACCATTTACTC TAAGACCTCAAACACTTAGACAAAGGATGGCTGAGGAATCAATAAGCAGAAATGAAGAAACAAGTGAAGA AAGTCAGGAAGATGAAAAGCAAGATACTTGGGAACAACAGCAAATGAGGAAAGCAGTTAAAATCATAGAG GAAAGAGACATAGATCTTTCCTGTGGCAATGGATCTTCAAAAGTGAAGAAATTTGATACTTCCATTTCAT TTCCGCCAGTAAATTTAGAAATTATAAAGAAGCAATTAAATACTAGATTAACATTACTACAGGAAACTCA CCGCTCACACCTGAGGGAGTATGAAAAATACGTACAAGATGTCAAAAGCTCAAAGAGTACCATCCAGAAC CTAGAGAGTTCATCAAATCAAGCTCTAAATTGTAAATTCTATAAAAGCATGAAAATTTATGTGGAAAATT TAATTGACTGCCTTAATGAAAAGATTATCAACATCCAAGAAATAGAATCATCCATGCATGCACTCCTTTT
    [Show full text]
  • Essential Genes and Their Role in Autism Spectrum Disorder
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations 2017 Essential Genes And Their Role In Autism Spectrum Disorder Xiao Ji University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Bioinformatics Commons, and the Genetics Commons Recommended Citation Ji, Xiao, "Essential Genes And Their Role In Autism Spectrum Disorder" (2017). Publicly Accessible Penn Dissertations. 2369. https://repository.upenn.edu/edissertations/2369 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/2369 For more information, please contact [email protected]. Essential Genes And Their Role In Autism Spectrum Disorder Abstract Essential genes (EGs) play central roles in fundamental cellular processes and are required for the survival of an organism. EGs are enriched for human disease genes and are under strong purifying selection. This intolerance to deleterious mutations, commonly observed haploinsufficiency and the importance of EGs in pre- and postnatal development suggests a possible cumulative effect of deleterious variants in EGs on complex neurodevelopmental disorders. Autism spectrum disorder (ASD) is a heterogeneous, highly heritable neurodevelopmental syndrome characterized by impaired social interaction, communication and repetitive behavior. More and more genetic evidence points to a polygenic model of ASD and it is estimated that hundreds of genes contribute to ASD. The central question addressed in this dissertation is whether genes with a strong effect on survival and fitness (i.e. EGs) play a specific oler in ASD risk. I compiled a comprehensive catalog of 3,915 mammalian EGs by combining human orthologs of lethal genes in knockout mice and genes responsible for cell-based essentiality.
    [Show full text]
  • Table SI. Genes Upregulated ≥ 2-Fold by MIH 2.4Bl Treatment Affymetrix ID
    Table SI. Genes upregulated 2-fold by MIH 2.4Bl treatment Fold UniGene ID Description Affymetrix ID Entrez Gene Change 1558048_x_at 28.84 Hs.551290 231597_x_at 17.02 Hs.720692 238825_at 10.19 93953 Hs.135167 acidic repeat containing (ACRC) 203821_at 9.82 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 1559509_at 9.41 Hs.656636 202957_at 9.06 3059 Hs.14601 hematopoietic cell-specific Lyn substrate 1 (HCLS1) 202388_at 8.11 5997 Hs.78944 regulator of G-protein signaling 2 (RGS2) 213649_at 7.9 6432 Hs.309090 serine and arginine rich splicing factor 7 (SRSF7) 228262_at 7.83 256714 Hs.127951 MAP7 domain containing 2 (MAP7D2) 38037_at 7.75 1839 Hs.799 heparin binding EGF like growth factor (HBEGF) 224549_x_at 7.6 202672_s_at 7.53 467 Hs.460 activating transcription factor 3 (ATF3) 243581_at 6.94 Hs.659284 239203_at 6.9 286006 Hs.396189 leucine rich single-pass membrane protein 1 (LSMEM1) 210800_at 6.7 1678 translocase of inner mitochondrial membrane 8 homolog A (yeast) (TIMM8A) 238956_at 6.48 1943 Hs.741510 ephrin A2 (EFNA2) 242918_at 6.22 4678 Hs.319334 nuclear autoantigenic sperm protein (NASP) 224254_x_at 6.06 243509_at 6 236832_at 5.89 221442 Hs.374076 adenylate cyclase 10, soluble pseudogene 1 (ADCY10P1) 234562_x_at 5.89 Hs.675414 214093_s_at 5.88 8880 Hs.567380; far upstream element binding protein 1 (FUBP1) Hs.707742 223774_at 5.59 677825 Hs.632377 small nucleolar RNA, H/ACA box 44 (SNORA44) 234723_x_at 5.48 Hs.677287 226419_s_at 5.41 6426 Hs.710026; serine and arginine rich splicing factor 1 (SRSF1) Hs.744140 228967_at 5.37
    [Show full text]
  • Structural and Biochemical Studies of the Human DEAD-Box Helicase Dbp5 and Nucleoporin Nup214 Involved in Mrna Export‟ (Grade: 1.0) Since Sep
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Structural and Biochemical Studies of the Human DEAD-box Helicase Dbp5 and Nucleoporin Nup214 Involved in mRNA Export Holger von Moeller aus Leverkusen 2009 Erklärung Diese Dissertation wurde im Sinne von §13 Abs. 3 der Promotionsordnung vom 29. Januar 1998 von Frau Prof. Dr. Elena Conti betreut. Ehrenwörtliche Versicherung Diese Dissertation wurde selbständig, ohne unerlaubte Hilfe erarbeitet. München, am 28.05.2009 Holger von Moeller Dissertation eingereicht am: 29.05.2009 1. Gutachter Prof. Dr. Elena Conti 2. Gutachter Prof. Dr. Patrick Cramer Mündliche Prüfung am: 30.09.2009 Meinen Eltern Abstract The hallmark of eukaryotic evolution was the development of the nucleus in cells. This compartmentalization requires the nucleocytoplasmic transport of thousands of molecules. The gate into and out of the nucleus is the nuclear pore complex (NPC). One of the molecules that needs to be exported from the nucleus is messenger RNA (mRNA). mRNA associates with proteins in the nucleus forming a messenger ribonucleoprotein particle (mRNP). mRNPs bind to dedicated transport factors that facilitate movement through the NPC. One protein that associates to mRNPs is the helicase Dbp5, which belongs to the DEAD-box family of RNA helicases. Dbp5 is essential for mRNA export in both yeast and humans. It binds RNA and is concentrated and locally activated at the cytoplasmic side of the nuclear pore complex, where it interacts with the cytoplasmic nucleoporin Nup214. In my PhD work, I have determined the crystal structures of human Dbp5 bound to RNA and AMPPNP, and bound to Nup214.
    [Show full text]