Article Large Deviations Properties of Maximum Entropy Markov Chains from Spike Trains Rodrigo Cofré 1,* , Cesar Maldonado 2 and Fernando Rosas 3,4 1 Centro de Investigación y Modelamiento de Fenómenos Aleatorios, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile 2 IPICYT/División de Matemáticas Aplicadas, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico;
[email protected] 3 Centre of Complexity Science and Department of Mathematics, Imperial College London, London SW7 2AZ, UK;
[email protected] 4 Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK * Correspondence:
[email protected]; Tel.: +56-32-2603625 Received: 6 June 2018; Accepted: 11 July 2018; Published: 3 August 2018 Abstract: We consider the maximum entropy Markov chain inference approach to characterize the collective statistics of neuronal spike trains, focusing on the statistical properties of the inferred model. To find the maximum entropy Markov chain, we use the thermodynamic formalism, which provides insightful connections with statistical physics and thermodynamics from which large deviations properties arise naturally. We provide an accessible introduction to the maximum entropy Markov chain inference problem and large deviations theory to the community of computational neuroscience, avoiding some technicalities while preserving the core ideas and intuitions. We review large deviations techniques useful in spike train statistics to describe properties of accuracy and convergence in terms of sampling size. We use these results to study the statistical fluctuation of correlations, distinguishability, and irreversibility of maximum entropy Markov chains. We illustrate these applications using simple examples where the large deviation rate function is explicitly obtained for maximum entropy models of relevance in this field.