Instantons and Large N an Introduction to Non-Perturbative Methods in QFT

Total Page:16

File Type:pdf, Size:1020Kb

Instantons and Large N an Introduction to Non-Perturbative Methods in QFT Preprint typeset in JHEP style - PAPER VERSION Instantons and large N An introduction to non-perturbative methods in QFT Marcos Mari˜no D´epartement de Physique Th´eorique et Section de Math´ematiques, Universit´ede Gen`eve, Gen`eve, CH-1211 Switzerland [email protected] Abstract: Lecture notes for a course on non-perturbative methods in QFT. Contents 1. Introduction 2 2. Instantons in quantum mechanics 4 2.1 QM as a one-dimensional field theory 4 2.2 Unstable vacua in quantum mechanics 8 2.3 A toy model integral 9 2.4 Path integral around an instanton in QM 12 2.5 Calculation of functional determinants I: solvable models 18 2.6 Calculation of functional determinants II: Gelfand–Yaglom method 22 2.7 Instantons in the double well 29 2.8 Multi-instantons in the double well 32 2.9 The dilute instanton approximation 36 2.10 Beyond the dilute instanton approximation 37 3. Unstable vacua in QFT 40 3.1 Bounces in scalar QFT 40 3.2 The fate of the false vacuum 45 3.3 Instability of the Kaluza–Klein vacuum 45 4. Large order behavior and Borel summability 49 4.1 Perturbation theory at large order 49 4.2 The toy model integral, revisited 50 4.3 The anharmonic oscillator 52 4.4 Asymptotic expansions and Borel resummation 55 4.5 Borel transforms and large order behavior 60 4.6 Instantons and large order behavior in quantum theory 62 4.6.1 Stable vacua 63 4.6.2 Unstable vacua 63 4.6.3 Complex instantons 64 4.6.4 Cancellation of nonperturbative ambiguities 65 5. Nonperturbative aspects of gauge theories 67 5.1 Conventions and basics 67 5.2 Topological charge and θ vacua 68 5.3 Instantons in Yang–Mills theory 71 5.4 Instantons and theta vacua 76 5.5 Renormalons 79 6. Instantons, fermions and supersymmetry 84 6.1 Instantons in supersymmetric quantum mechanics 84 6.1.1 General aspects 84 6.1.2 Supersymmetry breaking 86 6.1.3 Instantons and fermionic zero modes 88 6.2 Fermions and anomalies in Yang–Mills theory 94 – 1 – 7. Sigma models at large N 98 7.1 The O(N) non-linear sigma model 98 N 1 7.2 The P − sigma model 102 7.2.1 The model and its instantons 102 7.2.2 The effective action at large N 105 7.2.3 Topological susceptibility at large N 107 8. The 1/N expansion in QCD 109 8.1 Fatgraphs 109 8.2 Large N rules for correlation functions 114 8.3 QCD spectroscopy at large N: mesons and glueballs 117 8.4 Baryons at large N 118 8.5 Analyticity in the 1/N expansion 120 8.6 Large N instantons 123 9. A solvable toy model: large N matrix quantum mechanics 125 9.1 Defining the model. Perturbation theory 125 9.2 Exact ground state energy in the planar approximation 127 9.3 Excited states, or glueball spectrum 131 9.4 Some examples 132 9.5 Large N instantons in matrix quantum mechanics 134 9.6 Adding fermions, or meson spectrum 136 10. Applications in QCD 141 10.1 Chiral symmetry and chiral symmetry breaking 141 10.2 The U(1) problem 145 10.3 The U(1) problem at large N. Witten–Veneziano formula 146 A. Polology and spectral representation 149 B. Chiral Lagrangians 151 C. Effective action for large N sigma models 156 1. Introduction A nonperturbative effect in QFT or QM is an effect which can not be seen in perturbation theory. In these notes we will study two types of nonperturbative effects. The first type is due to instantons, i.e. to nontrivial solutions to the classical equations of motion. If g is the coupling constant, these effects have the dependence A/g e− . (1.1) Notice that this is small if g is small, but on the other hand it is completely invisible in perturbation theory, since it displays an essential singularity at g = 0. – 2 – Figure 1: Two quantum-mechanical potentials where instanton effects change qualitatively our understanding of the vacuum structure. Instanton effects are responsible of one of the most important quantum-mechanical effect: tunneling through a potential barrier. This effect changes qualitatively the structure of the quantum vacuum. In a potential with a perturbative ground state degeneracy, like the one shown on the l.h.s. of Fig. 1, tunneling effects lift the degeneracy. There a single ground state, and the energy difference between the ground state and the first excited state is an instanton effect of the form (1.1), A/g E (g) E (g) e− . (1.2) 1 − 0 ∼ In a potential with a metastable vacuum, like the one shown in the r.h.s. of Fig. 1, the perturbative vacuum obtained by small quantum fluctuations around this metastable vac- uum will eventually decay. This means that the ground state energy has a small imaginary part, A/g E (g)=Re E (g)+iIm E (g), Im E (g) e− (1.3) 0 0 0 0 ∼ which also has the dependence on g typical of an instanton effect. Some of these instanton effects appear as well in quantum field theories, and they are an important source of information about the dynamics of these theories. However, there are many important strong coupling phenomena in QFT, like confinement and chiral symmetry breaking in QCD, which can not be explained in a satisfactory way in terms of instantons. We should warn the reader that this is a somewhat polemical statement, since for example practicioners of the instanton liquid approach claim that they can explain many aspects of nonperturbative QCD with a semi-phenomenological model based on instanton physics (see [73] for a review). Some aspects of this debate were first pointed out by Witten in his seminal paper [86], and the debate is still going on (see for example [46]). A different type of nonperturbative method in QFT is based on resumming an infinite subset of diagrams in perturbation theory. This is nonperturbative in the sense that, typically, the effects that one discovers in this way cannot be seen at any finite order of perturbation theory. As an illustration of this, taken from [87], consider the following series: (log g)2 (log g)3 f (g)= g g log g + g g + (1.4) 0 − 2 − 6 · · · We see that, order by order in perturbation theory, one has the property lim f0(g) = 0. (1.5) g 0 → – 3 – However, each term vanishes more slowly than the one before, and taking into account all the terms in the series one finds f0(g) = 1. Therefore, the property (1.5), which holds at any order in perturbation theory, is not a property of the full resummed series, which satisfies instead lim f0(g) = 0. (1.6) g 0 6 → In this sense, the result (1.6) should be also regarded as a nonperturbative effect. Notice that, in this approach, one does not consider a different saddle-point in the path integral, as in instanton physics. Rather, one resums an infinite number of terms in the perturbative series around the conventional vacuum. The most powerful nonperturbative method of this type is probably the 1/N expansion of gauge theories [77], where one re-organizes the set of diagrams appearing in perturbation theory according to their dependence on the number N of degrees of freedom. In these notes we give a pedagogical introduction to these two methods, instantons and large N. We will present general aspects of these methods and we will illustrate them in exactly solvable models. 2. Instantons in quantum mechanics 2.1 QM as a one-dimensional field theory We first recall that the ground state energy of a quantum mechanical system in a poten- tial W (q) can be extracted from the small temperature behavior of the thermal partition function, βH(β) Z(β) = tr e− , (2.1) as 1 E = lim log Z(β). (2.2) − β β →∞ In the path integral formulation, S(q) Z(β)= [q(t)]e− , (2.3) D Z where S(q) is the action of the Euclidean theory, β/2 1 S(q)= dt (q ˙(t))2 + W (q(t)) (2.4) β/2 2 Z− and the path integral is over periodic trajectories q( β/2) = q(β/2). (2.5) − We note that the Euclidean action can be regarded as an action in Lagrangian mechanics, β/2 1 S(q)= dt (q ˙(t))2 V (q) (2.6) β/2 2 − Z− where the potential is V (q)= W (q), (2.7) − – 4 – i.e. it is the inverted potential of the original problem. It is possible to compute the ground state energy by using Feynman diagrams. We will assume that the potential W (q) is of the form m2 W (q)= q2 + W (q) (2.8) 2 int where Wint(q) is the interaction term. Then, the path integral defining Z can be computed in standard Feynman perturbation theory by expanding in Wint(q). We will actually work in the limit in which β , since in this limit many features are simpler, like for example →∞ the form of the propagator. In this limit, the free energy will be given by β times a β- independent constant, as follows from (2.2). In order to extract the ground state energy we have to take into account the following 1. Since we have to consider F (β) = log Z(β), only connected bubble diagrams con- tribute. 2. The standard Feynman rules in position space will lead to n integrations, where n is the number of vertices in the diagram.
Recommended publications
  • Radiative Corrections in Curved Spacetime and Physical Implications to the Power Spectrum and Trispectrum for Different Inflationary Models
    Radiative Corrections in Curved Spacetime and Physical Implications to the Power Spectrum and Trispectrum for different Inflationary Models Dissertation zur Erlangung des mathematisch-naturwissenschaftlichen Doktorgrades Doctor rerum naturalium der Georg-August-Universit¨atG¨ottingen Im Promotionsprogramm PROPHYS der Georg-August University School of Science (GAUSS) vorgelegt von Simone Dresti aus Locarno G¨ottingen,2018 Betreuungsausschuss: Prof. Dr. Laura Covi, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Karl-Henning Rehren, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Dorothea Bahns, Mathematisches Institut, Universit¨atG¨ottingen Miglieder der Prufungskommission:¨ Referentin: Prof. Dr. Laura Covi, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Korreferentin: Prof. Dr. Dorothea Bahns, Mathematisches Institut, Universit¨atG¨ottingen Weitere Mitglieder der Prufungskommission:¨ Prof. Dr. Karl-Henning Rehren, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Stefan Kehrein, Institut f¨urTheoretische Physik, Universit¨atG¨ottingen Prof. Dr. Jens Niemeyer, Institut f¨urAstrophysik, Universit¨atG¨ottingen Prof. Dr. Ariane Frey, II. Physikalisches Institut, Universit¨atG¨ottingen Tag der mundlichen¨ Prufung:¨ Mittwoch, 23. Mai 2018 Ai miei nonni Marina, Palmira e Pierino iv ABSTRACT In a quantum field theory with a time-dependent background, as in an expanding uni- verse, the time-translational symmetry is broken. We therefore expect loop corrections to cosmological observables to be time-dependent after renormalization for interacting fields. In this thesis we compute and discuss such radiative corrections to the primordial spectrum and higher order spectra in simple inflationary models. We investigate both massless and massive virtual fields, and we disentangle the time dependence caused by the background and by the initial state that is set to the Bunch-Davies vacuum at the beginning of inflation.
    [Show full text]
  • Scalar Quantum Electrodynamics
    A complex system that works is invariably found to have evolved from a simple system that works. John Gall 17 Scalar Quantum Electrodynamics In nature, there exist scalar particles which are charged and are therefore coupled to the electromagnetic field. In three spatial dimensions, an important nonrelativistic example is provided by superconductors. The phenomenon of zero resistance at low temperature can be explained by the formation of so-called Cooper pairs of electrons of opposite momentum and spin. These behave like bosons of spin zero and charge q =2e, which are held together in some metals by the electron-phonon interaction. Many important predictions of experimental data can be derived from the Ginzburg- Landau theory of superconductivity [1]. The relativistic generalization of this theory to four spacetime dimensions is of great importance in elementary particle physics. In that form it is known as scalar quantum electrodynamics (scalar QED). 17.1 Action and Generating Functional The Ginzburg-Landau theory is a three-dimensional euclidean quantum field theory containing a complex scalar field ϕ(x)= ϕ1(x)+ iϕ2(x) (17.1) coupled to a magnetic vector potential A. The scalar field describes bound states of pairs of electrons, which arise in a superconductor at low temperatures due to an attraction coming from elastic forces. The detailed mechanism will not be of interest here; we only note that the pairs are bound in an s-wave and a spin singlet state of charge q =2e. Ignoring for a moment the magnetic interactions, the ensemble of these bound states may be described, in the neighborhood of the superconductive 4 transition temperature Tc, by a complex scalar field theory of the ϕ -type, by a euclidean action 2 3 1 m g 2 E = d x ∇ϕ∗∇ϕ + ϕ∗ϕ + (ϕ∗ϕ) .
    [Show full text]
  • Asymptotically Flat, Spherical, Self-Interacting Scalar, Dirac and Proca Stars
    S S symmetry Article Asymptotically Flat, Spherical, Self-Interacting Scalar, Dirac and Proca Stars Carlos A. R. Herdeiro and Eugen Radu * Departamento de Matemática da Universidade de Aveiro and Centre for Research and Development in Mathematics and Applications (CIDMA), Campus de Santiago, 3810-183 Aveiro, Portugal; [email protected] * Correspondence: [email protected] Received: 14 November 2020; Accepted: 1 December 2020; Published: 8 December 2020 Abstract: We present a comparative analysis of the self-gravitating solitons that arise in the Einstein–Klein–Gordon, Einstein–Dirac, and Einstein–Proca models, for the particular case of static, spherically symmetric spacetimes. Differently from the previous study by Herdeiro, Pombo and Radu in 2017, the matter fields possess suitable self-interacting terms in the Lagrangians, which allow for the existence of Q-ball-type solutions for these models in the flat spacetime limit. In spite of this important difference, our analysis shows that the high degree of universality that was observed by Herdeiro, Pombo and Radu remains, and various spin-independent common patterns are observed. Keywords: solitons; boson stars; Dirac stars 1. Introduction and Motivation 1.1. General Remarks The (modern) idea of solitons, as extended particle-like configurations, can be traced back (at least) to Lord Kelvin, around one and half centuries ago, who proposed that atoms are made of vortex knots [1]. However, the first explicit example of solitons in a relativistic field theory was found by Skyrme [2,3], (almost) one hundred years later. The latter, dubbed Skyrmions, exist in a model with four (real) scalars that are subject to a constraint.
    [Show full text]
  • A Solvable Tensor Field Theory Arxiv:1903.02907V2 [Math-Ph]
    A Solvable Tensor Field Theory R. Pascalie∗ Universit´ede Bordeaux, LaBRI, CNRS UMR 5800, Talence, France, EU Mathematisches Institut der Westf¨alischen Wilhelms-Universit¨at,M¨unster,Germany, EU August 3, 2020 Abstract We solve the closed Schwinger-Dyson equation for the 2-point function of a tensor field theory with a quartic melonic interaction, in terms of Lambert's W-function, using a perturbative expansion and Lagrange-B¨urmannresummation. Higher-point functions are then obtained recursively. 1 Introduction Tensor models have regained a considerable interest since the discovery of their large N limit (see [1], [2], [3] or the book [4]). Recently, tensor models have been related in [5] and [6], to the Sachdev-Ye-Kitaev model [7], [8], [9], [10], which is a promising toy-model for understanding black holes through holography (see also [11], [12], the lectures [13] and the review [14]). In this paper we study a specific type of tensor field theory (TFT) 1. More precisely, we consider a U(N)-invariant tensor models whose kinetic part is modified to include a Laplacian- like operator (this operator is a discrete Laplacian in the Fourier transformed space of the tensor index space). This type of tensor model has originally been used to implement renormalization techniques for tensor models (see [16], the review [17] or the thesis [18] and references within) and has also been studied as an SYK-like TFT [19]. Recently, the functional Renormalization Group (FRG) as been used in [20] to investigate the existence of a universal continuum limit in tensor models, see also the review [21].
    [Show full text]
  • Arxiv:2003.01034V1 [Hep-Th] 2 Mar 2020 Im Oe.Frta Esntelna Oe a Etogta Ge a Large As the Thought in Be Solved Be Can Can Model Models Linear These the One
    Inhomogeneous states in two dimensional linear sigma model at large N A. Pikalov1,2∗ 1Moscow Institute of Physics and Technology, Dolgoprudny 141700, Russia 2Institute for Theoretical and Experimental Physics, Moscow, Russia (Dated: March 3, 2020) In this note we consider inhomogeneous solutions of two-dimensional linear sigma model in the large N limit. These solutions are similar to the ones found recently in two-dimensional CP N sigma model. The solution exists only for some range of coupling constant. We calculate energy of the solutions as function of parameters of the model and show that at some value of the coupling constant it changes sign signaling a possible phase transition. The case of the nonlinear model at finite temperature is also discussed. The free energy of the inhomogeneous solution is shown to change sign at some critical temperature. I. INTRODUCTION Two-dimensional linear sigma model is a theory of N real scalar fields and quartic O(N) symmetric interaction. The model has two dimensionful parameters: mass of the particles and coupling constant. In the limit of infinite coupling one can obtain the nonlinear O(N) arXiv:2003.01034v1 [hep-th] 2 Mar 2020 sigma model. For that reason the linear model can be thought as a generalization of the nonlinear one. These models can be solved in the large N limit, see [1] for a review. In turn O(N) sigma model is quite similar to the CP N sigma model. Recently the large N CP N sigma model was considered on a finite interval with various boundary conditions [2–8] and on circle [9–12].
    [Show full text]
  • Physics 215C: Particles and Fields Spring 2019
    Physics 215C: Particles and Fields Spring 2019 Lecturer: McGreevy These lecture notes live here. Please email corrections to mcgreevy at physics dot ucsd dot edu. Last updated: 2021/04/20, 14:28:40 1 Contents 0.1 Introductory remarks for the third quarter................4 0.2 Sources and acknowledgement.......................7 0.3 Conventions.................................8 1 Anomalies9 2 Effective field theory 20 2.1 A parable on integrating out degrees of freedom............. 20 2.2 Introduction to effective field theory.................... 25 2.3 The color of the sky............................. 30 2.4 Fermi theory of Weak Interactions..................... 32 2.5 Loops in EFT................................ 33 2.6 The Standard Model as an EFT...................... 39 2.7 Superconductors.............................. 42 2.8 Effective field theory of Fermi surfaces.................. 47 3 Geometric and topological terms in field theory actions 58 3.1 Coherent state path integrals for bosons................. 58 3.2 Coherent state path integral for fermions................. 66 3.3 Path integrals for spin systems....................... 73 3.4 Topological terms from integrating out fermions............. 86 3.5 Pions..................................... 89 4 Field theory of spin systems 99 4.1 Transverse-Field Ising Model........................ 99 4.2 Ferromagnets and antiferromagnets..................... 131 4.3 The beta function for 2d non-linear sigma models............ 136 4.4 CP1 representation and large-N ...................... 138 5 Duality 148 5.1 XY transition from superfluid to Mott insulator, and T-duality..... 148 6 Conformal field theory 158 6.1 The stress tensor and conformal invariance (abstract CFT)....... 160 6.2 Radial quantization............................. 166 6.3 Back to general dimensions......................... 172 7 Duality, part 2 179 7.1 (2+1)-d XY is dual to (2+1)d electrodynamics.............
    [Show full text]
  • Adiabatic Limits and Renormalization in Quantum Spacetime
    DOTTORATO DI RICERCA IN MATEMATICA XXXII CICLO DEL CORSO DI DOTTORATO Adiabatic limits and renormalization in quantum spacetime Aleksei Bykov A.A. 2019/2020 Docente Guida/Tutor: Prof. D. Guido Relatore: Prof. G. Morsella Coordinatore: Prof. A. Braides Contents 1 Introduction 4 2 Doplicher-Fredenhagen-Roberts Quantum Spacetime 11 2.1 Construction and basic facts . 11 2.2 Quantum fields on the DFR QST and the role of Qµν . 12 2.2.1 More general quantum fields in DFR QST . 13 2.3 Optimally localised states and the quantum diagonal map . 17 3 Perturbation theory for QFT and its non-local generalization 21 3.1 Hamiltonian perturbation theory . 22 3.1.1 Ordinary QFT . 22 3.1.2 Non-local case: fixing HI ............................. 26 3.1.3 Hamiltonian approach: fixing Hint ........................ 35 3.2 Lagrangian perturbation theories . 38 3.3 Yang-Feldman quantizaion . 41 3.4 LSZ reduction . 41 4 Feynman rules for non-local Hamiltonian Perturbation theory 45 5 Lagrangian reformulation of the Hamiltonian Feynman rules 52 6 Corrected propagator 57 7 Adiabatic limit 61 7.1 Weak adiabatic limit and the LSZ reduction . 61 7.1.1 Existence of the weak adiabatic limit . 61 7.1.2 Feynman rules from LSZ reduction . 64 7.2 Strong adiabatic limit . 65 8 Renormalization 68 8.1 Formal renormalization . 68 8.2 The physical renormalization . 71 8.2.1 Dispersion relation renormalisation . 72 8.2.2 Field strength renormalization . 72 8.3 Conluding remarks on renormalisation . 73 9 Conclusions 75 9.1 Summary of the main results . 75 9.2 Outline of further directions .
    [Show full text]
  • The Higgs Trilinear Coupling and the Scale of New Physics
    The Higgs Trilinear Coupling and the Scale of New Physics Spencer Chang Department of Physics and Institute of Theoretical Science University of Oregon, Eugene, Oregon 97403 and Department of Physics National Taiwan University, Taipei, Taiwan 10617, ROC Markus A. Luty Center for Quantum Mathematics and Physics (QMAP) University of California, Davis, California 95616 Abstract We consider modifications of the Higgs potential due to new physics at high energy scales. These upset delicate cancellations predicted by the Standard Model for processes involving Higgs bosons and longitudinal gauge bosons, and lead to a breakdown of the theory at high energies. We focus on modifications of the Higgs trilinear coupling and use the violation of tree- level unitarity as an estimate of the scale where the theory breaks down. We obtain a completely model-independent bound of <∼ 13 TeV for an order-1 modification of the trilinear. We argue that this bound can be saturated only in fine-tuned models, and the scale of new physics is likely to be much lower. The most stringent bounds are obtained from amplitudes involving multiparticle states that are not conventional scattering states. Our results arXiv:1902.05556v2 [hep-ph] 31 Mar 2020 show that a future determination of the Higgs cubic coupling can point to a well-defined scale of new physics that can be targeted and explored at future colliders. 1 Introduction Many of the couplings of the 125 GeV Higgs boson to gauge bosons and fermions have been measured at the 10% level and agree with the predictions of the Standard Model [1, 2].
    [Show full text]
  • Homework 8 – Due Friday, Nov 17Th – 8A,8B,8C
    Homework 8 – due Friday, Nov 17th – 8A,8B,8C (8A) Field redefinitions and scattering Consider a seemingly complicated theory with the basic complex scalar field B (note that |x|2 = x∗x): g L = |(∂ B)(1 + gB)|2 − m2|B + B2|2 µ 2 1. Divide the Lagrangian for B into a free part and interaction terms. Compute the elastic N + N¯ → N + N¯ scattering amplitude in the tree level approximation, imagining that you follow the LSZ formula. Tree level means that there are no loops and therefore you don’t need any counterterms. However, you will need a g2 vertex diagram as well as a diagram with two g cubic vertices. Also, you will need derivative interactions. With derivative interactions, it is not true that L = −H, and also, there are problems with commuting the time-derivatives through the normal-ordering symbol. Believe me that these two problems cancel and can be collectively ignored, as will be clear from Feynman’s path integral formulation later. Assume L = −H and be sloppy about permuting the T , ∂µ symbols. 2. Now pretend that someone brings you a secret message that says: g ψ = B + B2 2 Using this field redefinition, guess what is the Lagrangian for ψ – it is very simple! – and verify it by an actual calculation. What is the scattering amplitude for ψ quanta? This question should be supersimple. Use this simple answer as a hint to fix any combinatorial errors in the calculation with B if you have errors. 3. If you do the same calculation in the B variables or the ψ variables, will the off-shell Green’s functions of B and those of ψ be equal (yes/no)? Should they be (yes/no)? Should the on-shell amplitudes be equal (yes/no)? Comment: An advantage of the LSZ formalism is that it doesn’t matter whether you assign a field like B or a field like ψ to the particle.
    [Show full text]
  • Lectures on Quantum Field Theory
    Lectures on Quantum Field Theory Aleksandar R. Bogojevi´c1 Institute of Physics P. O. Box 57 11000 Belgrade, Yugoslavia March, 1998 1Email: [email protected] ii Contents 1 Linearity and Combinatorics 1 1.1 Schwinger–DysonEquations. 1 1.2 GeneratingFunctionals. 3 1.3 FreeFieldTheory ........................... 6 2 Further Combinatoric Structure 7 2.1 ClassicalFieldTheory ......................... 7 2.2 TheEffectiveAction .......................... 8 2.3 PathIntegrals.............................. 10 3 Using the Path Integral 15 3.1 Semi-ClassicalExpansion . 15 3.2 WardIdentities ............................. 18 4 Fermions 21 4.1 GrassmannNumbers.......................... 21 5 Euclidean Field Theory 27 5.1 Thermodynamics ............................ 30 5.2 WickRotation ............................. 31 6 Ferromagnets and Phase Transitions 33 6.1 ModelsofFerromagnets . 33 6.2 TheMeanFieldApproximation. 34 6.3 TransferMatrices............................ 35 6.4 Landau–Ginsburg Theory . 36 6.5 TowardsLoopExpansion . 38 7 The Propagator 41 7.1 ScalarPropagator ........................... 41 7.2 RandomWalk.............................. 43 iii iv CONTENTS 8 The Propagator Continued 47 8.1 The Yukawa Potential . 47 8.2 VirtualParticles ............................ 49 9 From Operators to Path Integrals 53 9.1 HamiltonianPathIntegral. 53 9.2 LagrangianPathIntegral . 55 9.3 QuantumFieldTheory. 57 10 Path Integral Surprises 59 10.1 Paths that don’t Contribute . 59 10.2 Lagrangian Measure from SD Equations . 62 11 Classical Symmetry 67 11.1 NoetherTechnique . 67 11.2 Energy-Momentum Tensors Galore . 70 12 Symmetry Breaking 73 12.1 GoldstoneBosons............................ 73 12.2 TheHiggsMechanism . 77 13 Effective Action to One Loop 81 13.1 TheEffectivePotential. 81 13.2 The O(N)Model............................ 86 14 Solitons 89 14.1 Perturbative vs. Semi-Classical . 89 14.2 ClassicalSolitons ............................ 90 14.3 The φ4 Kink .............................
    [Show full text]
  • Quantum Field Theory and Particle Physics
    Quantum Field Theory and Particle Physics Badis Ydri Département de Physique, Faculté des Sciences Université d’Annaba Annaba, Algerie 2 YDRI QFT Contents 1 Introduction and References 1 I Path Integrals, Gauge Fields and Renormalization Group 3 2 Path Integral Quantization of Scalar Fields 5 2.1 FeynmanPathIntegral. .. .. .. .. .. .. .. .. .. .. .. 5 2.2 ScalarFieldTheory............................... 9 2.2.1 PathIntegral .............................. 9 2.2.2 The Free 2 Point Function . 12 − 2.2.3 Lattice Regularization . 13 2.3 TheEffectiveAction .............................. 16 2.3.1 Formalism................................ 16 2.3.2 Perturbation Theory . 20 2.3.3 Analogy with Statistical Mechanics . 22 2.4 The O(N) Model................................ 23 2.4.1 The 2 Point and 4 Point Proper Vertices . 24 − − 2.4.2 Momentum Space Feynman Graphs . 25 2.4.3 Cut-off Regularization . 27 2.4.4 Renormalization at 1 Loop...................... 29 − 2.5 Two-Loop Calculations . 31 2.5.1 The Effective Action at 2 Loop ................... 31 − 2.5.2 The Linear Sigma Model at 2 Loop ................. 32 − 2.5.3 The 2 Loop Renormalization of the 2 Point Proper Vertex . 35 − − 2.5.4 The 2 Loop Renormalization of the 4 Point Proper Vertex . 40 − − 2.6 Renormalized Perturbation Theory . 42 2.7 Effective Potential and Dimensional Regularization . .......... 45 2.8 Spontaneous Symmetry Breaking . 49 2.8.1 Example: The O(N) Model ...................... 49 2.8.2 Glodstone’s Theorem . 55 3 Path Integral Quantization of Dirac and Vector Fields 57 3.1 FreeDiracField ................................ 57 3.1.1 Canonical Quantization . 57 3.1.2 Fermionic Path Integral and Grassmann Numbers . 58 4 YDRI QFT 3.1.3 The Electron Propagator .
    [Show full text]
  • The Standard Model of Particle Physics and Beyond
    Context Relativity - gauge theories The Standard Model of particle physics Beyond the Standard Model Summary The Standard Model of particle physics and beyond. Benjamin Fuks & Michel Rausch de Traubenberg IPHC Strasbourg / University of Strasbourg. [email protected] & [email protected] Slides available on http://www.cern.ch/fuks/esc.php 6-13 July 2011 The Standard Model of particle physics and beyond. Benjamin Fuks & Michel Rausch de Traubenberg - 1 Context Relativity - gauge theories The Standard Model of particle physics Beyond the Standard Model Summary Outline. 1 Context. 2 Special relativity and gauge theories. Action and symmetries. Poincar´eand Lorentz algebras and their representations. Relativistic wave equations. Gauge symmetries - Yang-Mills theories - symmetry breaking. 3 Construction of the Standard Model. Quantum Electrodynamics (QED). Scattering theory - Calculation of a squared matrix element. Weak interactions. The electroweak theory. Quantum Chromodynamics. 4 Beyond the Standard Model of particle physics. The Standard Model: advantages and open questions. Grand unified theories. Supersymmetry. Extra-dimensional theories. String theory. 5 Summary. The Standard Model of particle physics and beyond. Benjamin Fuks & Michel Rausch de Traubenberg - 2 Context Relativity - gauge theories The Standard Model of particle physics Beyond the Standard Model Summary Building blocks describing matter. Atom compositness. * Neutrons. * Protons. * Electrons. Proton and neutron compositness. * Naively: up and down quarks. * In reality: dynamical objects made of • Valence and sea quarks. • Gluons [see below...]. Beta decays. − * n ! p + e +ν ¯e . * Needs for a neutrino. The Standard Model of particle physics and beyond. Benjamin Fuks & Michel Rausch de Traubenberg - 3 Context Relativity - gauge theories The Standard Model of particle physics Beyond the Standard Model Summary Three families of fermionic particles [Why three?].
    [Show full text]