<<

Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

INDEX

Page numbers in italic denote figures. Page numbers in bold denote tables. Letters A and B indicate references to appendices and textboxes, respectively.

absorption lines 105 111, 111–112 Apollo Missions to the Moon 144–145, 145 size 168 acceleration Apollo 11 144–145 distribution 258, 258–259, 259 centripetal 72 far side images 174, 175 astrology 33 Newton’s second law of motion 69–70 archaeoastronomy 39–40 testing the theory 35–36 72–73, 73 Arecibo radio telescope 134 data 37, 37–39, 38, 481 accretion disks 520, 520–525, 521 resolving power 134 unconscious bias 36–37 accuracy, importance of 274, 306 rotation of Mercury 184 Astronomical Unit 6.6, 54B, 318 active optics 129–130 Ariel 239, 240 astronomy 1–3 Adams, John Couch (1819–1892) 234 Aristarcus of Samos (c.310–230BC) 40–43 ancient 33–34, 40–47 Neptune 233 disregard for data 57 disregard for data 57–59 adaptive optics 130 distances of and Moon 41–43, 42 from space 137–149 Albireo, visual binary 349 phases of the moon 40–41, 41 comparison with ground-based Alcor, visual 348 arithmetic, exponential astronomy 148–149 Aldrin, Edward, Apollo 11 Mission 144–145 division 564A gamma-ray 143–144 Alfve´n, Hannes (1905–1995), temperature multiplication 600–601 ground-based, comparison with of corona 339, 340 Armstrong, Neil, Apollo 11 Mission 144–145 space-based astronomy ALH 84001 Martian meteorite 572–573, 573 asteroid belt 170, 257 148–149 Allen Hills meteorite 572–573, 573 asteroids 170, 257, 257–274 139–141 Allen Telescope Array, SETI 585 axis of rotation 23 origins 33 Almagest, Ptolemy 44 brightness 259–260, 260 radar Alpha Centauri 356 Ceres 257 Doppler effect 98–99 center of mass 300B, 301B relative size 168, 169, 170 rotation of Mercury 184 detection of planets 297B, 297–298 danger of collision 256, 264–274 radio 132–136 hypothetical visit by Cassini Mission bull’s eye analogy 264, 264–265, 265B, X-ray 141–143 577B, 576–577 certainty and uncertainty 271–273 see also archaeoastronomy altitude-azimuth mount 123 chances of impact 267–269 Atacama Large Millimeter Array amino acids, Miller–Urey experiment 567, congressional hearings 269–270 (ALMA) 135, 135 567–568 deflection dilemma 270 atmosphere ammonia impact rate 268 absence of liquid 570 importance of accuracy 274 Mercury 186–187 outer solar system 388 mass extinction 266 Moon 176, 177, 186 amplitude 93–94 public policy 270–271 Earth, pressure and temperature 193 Andromeda 116, 117, 489–495 relative velocity 265–266, 266 193–194 nova explosions 489–491, 494 difference from comets 289 escape of 186–187 490, 494 fragmentation 258, 258–259, 259 Mars 205–207 work of Hubble 493 icy 289 and past climate change 209–210 Angstrom 98 Ida 257 Titan 232–233 Antarctica Kirkwood Gaps 260–262, 261 Uranus 238 analogy with Mars environment 570 number of 259 Venus 188 ozone depletion 195–196, 196 257, 289 greenhouse effect 188–189, 189 Antennae Galaxy 502, 505 period, Kirkwood Gaps 260–262 atmospheric turbulence 126–127, 127 Hubble Space Telescope 507 rotation 259–260 effect on Mars 204 Aorounga Crater 251 spin axes 260 and site selection 130–131

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

638 Index

atoms 107–109 Milky Way Galaxy 524 gravity-assist orbit 81–82, 82 black holes 435–436 quarks 436 hypothetical visit to Alpha Centauri charge 108 Schwarzschild radius 433, 434 576–577 emission and absorption of light 108–109 and Type II supernovae 442, plutonium, uncertainty 85 mass 108 442–443, 443 Cassiopeia, Cas A radio source 509–510 neutron stars 427–428 blackbody radiation 99–102 Catholic Church, persecution of Galileo nuclear structure 399–400 Cosmic Background Radiation 56–57 quantum mechanics 109–110 551–553, 552 CCD see Charge-Coupled Device (CCD) size 107 early universe 548 celestial equator 18–19 structure 107, 107–108, 108 Jupiter 218–219, 219B celestial globe 18, 18–19 auroras, and solar flares 337 solar flares 336–337 celestial pole 7, 18 spectrum 103–105, 105 celestial sphere 18 Babylon, ancient astronomy 34 Stefan–Boltzmann law 100–102, 101B, cells, fossil 566, 568 bacteria 102B center of mass motion fossilized 566 Jupiter 218–219 binary stars 348–349, 349 stromatolites 566 Wien law 102, 140 Sirius A and B 424–425, 425 Baily’s beads 25 X-ray astronomy 143 directly searching 301 Barnard’s Galaxy 497 blue shift 95 HD 209458 star 304 Barnard’s Star 356 blurring indirectly searching 298, 298–300, Barringer Crater 251 atmospheric turbulence 126–127, 299, 300 Bell, Jocelyn, pulsars 429 127 Doppler effect 302–303, 302B, 303B bias, unconscious 36–37 and site selection 130–131 Cepheid variable stars 418–419 Big Bang 451, 550 diffraction 126–127, 127, 127–128 gas pressure 418–419 and creation of universe 550–551, 551 focal length 126, 126–127, 127 luminosity 458–461, 459 expansion of Universe, formation of Bok globules 377 and globular clusters 458–461 500, 500–509 bolometer 140 luminosity and distance 539–540, 540B and quantum mechanics 550 Brahe, Tycho (1546–1601) 51, 51–52 luminosity and globular clusters, errors “big science” 150–153 comets 276 491–492 funding 151–153 supernova 437, 439 velocity-distance relation, work of binary stars 347–349, 349 Uraniborg observatory 51–52, 52 Hubble 534–535, 535B, 536 astrometric 348 brightness 89–90 vibration 307 center of mass 348–349, 349 absolute 89–90, 91 Ceres 257 eclipsing 348 apparent 89, 90, 91 relative size 168, 169, 170 planets, possibility of life 575–576, 576 inverse square law 90–92, 91 certainty, and uncertainty 82–85, 271 Sirius A and B 424–425, 425 brown dwarfs 410–411 asteroid impact 268, 271–273, 272, 273 spectroscopic 348 butterfly diagram 330, 331 CETI (Communicating with Extra spectrum 348 Terrestrial Intelligence) 577–579 visual 348, 349 Callisto, craters 225–226, 226 messages 586–590 bipolar jets 377–378, 378B, 378, 379 Caloris impact basin, Mercury 185–186 globular cluster M13, 589, 589–590 black holes 433–437 cannibalism, galactic 505–506 Pioneer Interstellar Plaques 587–588, accretion disks 520–525 canyons, Mars 207 588 dark matter hypothesis 477–478, Capricornus, visibility 16 Chandra X-ray Observatory 143 478B, 479 carbon Chandrasekhar, Subramanyan in galaxies 522–524 burning 417–418 (1910–1995) 143 Galaxy M87 523, 523–524 formation, in red giants 416, 442 Chandrasekhar limit 427 general relativity 434–437 isotopes 566–567, 568 Charge-Coupled Device (CCD) images singularity 435, 436 carbon dioxide 131–132 time slows down 436, 436–437 Earth’s atmosphere 196–197, 197 limit to enlargement 125–126, 126 trapping of light 434–435, 435 greenhouse effect, Venus 189 telescopes 125 trapping of matter 435 Mars 205–207 Charon 243, 244 ultimate nature of matter Cartwheel Galaxy 502, 507 synchronous rotation 182, 243 435–436 Cassegrain reflecting telescope 121, 121 Chicago gravitation 433, 435, 436 Cassini division, Rings of Saturn 228 day length, and rotational axis 21, 22, 23 gravitational potential energy, quasar Cassini Mission 146, 146–147 day length and angle of Sun’s rays energy source 518–521 Enceladus 231–232 22–23, 23, 24

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

Index 639

Chicxulub impact crater 266, 267 maps 17, 17, 611A MACHOs 479–482, 480 Chiron 289 visibility 14–16, 15, 611A mass 475–476 chlorofluorocarbons (CFCs), and ozone 195 continental drift 197–198, 199 WIMPs 483 chromatic aberration 122, 122 convection, in stars 407, 410 data chromosphere 335 Copernican Principle 420 importance of 57–58 temperature 338 Copernicus, Nicholas (1473–1543) 47, MACHOs 481–483 circles 52, 53, 54 47–51 testing the theory, astrology 37, 37–39, 38 Circular Orbit Formula 73–74, 74B, 78, criticism of Ptolemy 48 day length, seasonal variation 21–22, 22 79–80 motion of Earth 47–48, 50 rotation axis 21–22 Rings of Saturn 229B work of Galileo 56–57 daylight savings time 28 climate change, Mars 209–210 planetary motion, hypothesis testing decoupling, of 548, 552, 552, 553 clock drive see sidereal drive 49–50 Deep Impact mission, Tempel-1 comet 281 clouds, Venus 188 retrograde motion 48 Deferent collimator 142, 143 corona, solar 338 Copernicus 48 coma, comets 280 at solar eclipse 25 Ptolemy 45, 45–47 comets 171, 274–289, 275 holes, and solar wind 341 degeneracy pressure 427 anatomy 280 temperature 338, 338–340 Deimos 165 Chiron 289 Cosmic Geometry Explorer 543–544 316, 356 coma 280 cosmic inflation 549, 553 distance 360 difference from asteroids 289 Cosmic Microwave Background Radiation density Hale-Bopp 274 100, 551–553, 552 and expansion of the universe 538 Halley’s 275 cosmic ray exposure ages, meteorites 255, critical density 538, 538 meteor showers 250 255–256 measurement 539–541 nucleus, spacecraft observation cosmic web 556 density waves, spiral arms 466, 467 280–281, 281 origin 556–557 deuteron 404, 405 as harbingers of ill fortune 276–295 Cosmological Constant 537, 544 diffraction, blurring 126–128, 127 long-period and short-period 288–289 cosmology 529–557 diffraction gratings 132 main-belt 289 cosmos see universe dinosaurs, mass extinction 266 and meteor showers 249–250, 250, 250 Coude reflecting telescope 121, 121 discovery process 493–495 motion 275–276 Crab 437, 438, 439 evidence 493–495 nucleus 280–281, 281 Crab Pulsar 431, 437, 438 Occam’s Razor 494 mass 284B, 284–285; loss of 285 Craters psychological factors 494 Oort Cloud 286, 286–288 Callisto 225–226, 226 Discovery Program 147 orbit 53, 275–276, 289 impact 248 disk see Milky Way Galaxy, disk; origin 290–291 early Earth 563–565 protoplanetary disk physical nature of Jupiter’s Galilean moons 226–227, 227 division, exponential arithmetic 601–602 theory confirmation 280 Mars 207, 208, 209 DNA, fossilized 566 theory creation 278–279 meteors 251 Doppler effect 95–99 and planetesimals 290–291 Moon 174, 175, 177, 177–178, 179 astronomical uses 98–99 Stardust Mission 282, 282–284, 283 Mooney analogy 177, 177, 178 components of motion 96 survival time 284–286, 285B creation 550–551 electromagnetic waves 95–96 tails 274 A, radio source 509, 509–510, 510 extra-solar planets, center of mass composition 278, 279 energy requirement 510–511 302–303, 303B length and distance from Sun 277 globular cluster 462 pointing away from Sun 278, 279, 280 Dactyl 257 mathematics 96–98, 97B, 98B Tempel-1 Dark Ages, history of universe 548 origin 96, 97 nucleus, Deep Impact mission 281 dark energy 451, 545–546 relative motion 95–96, 96 Stardust Mission 284 dark matter 451, 473–483 Rings of Saturn 228, 228 Wild 2, Stardust Mission 282–284 Doppler effect 99 rotation of Mercury 184 Compton Gamma Ray Observatory 144 hot 557 sound waves 95 condensation, protoplanetary disk 386, 387 hypotheses 476–483 vibrating stars 307 conduction, in stars 407 black holes 477–478, 478B, 479 double blind experiments 36 14, 14–18, 315 interstellar dust 477, 478, 479 Drake equation, SETI 579–584, 580, 581 apparent motion of Sun 16–18, 17 planets 476–477, 477B, 478, 479 dust compounds, protoplanetary disk 388 distorting 315, 316 lambda cold 556–557, 557 dynamical friction 505–506, 506

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

640 Index

Eagle nebula, evaporation 379 Eccentricity equator Earth 165, 191–204, 192 of circle 52, 54 apparent rotation of sky 7 age dating 369 of ellipse 52, 54, 257 apparent rotation of Sun 4, 5 atmosphere of planets 165, 169 Earth’s velocity 8–9 carbon dioxide increase 196–197, 197 eclipses 24–28, 25 see also celestial equator composition 194 lunar 26–28, 27 Eratosthenes (276–196BC) global warming 196–197 partial 27 position of Sun 43 human alteration of 194–197 penumbral 27 radius of Earth 43, 43–44, 44B ozone 194–195, 196; depletion 195–196 total 27–28 escape velocity 79 pressure and temperature 193, 193–194 solar 24–26, 26 atmospheric gases 186–187 biosphere 204 ecliptic 18, 19 Eta Aquarid meteor shower 250 continental drift 197–198, 199 plane of solar system 45, 46, 169 ethane, liquid 570, 570 crust 204 Egypt, ancient astronomy 33 Europa, oceans 223–225, 224, 574 density 200–201 Eight Burst Nebula 420 Evidence average 170B Einstein, Albert (1879–1955) bottom-up theory of galaxy formation distance from Sun 19–20, 20, 161–162 Cosmological Constant 537, 544 508–509 162B, 318, 322 expanding universe 537–538 process of discovery 493–495 Aristarcus 41–43 models 537–538, 538 evolutionary tracks, protostars distance to Moon 25 Theory of Relativity 374–375, 375 Aristarcus 41–43 testing 13; unconscious bias 37 experiments, design of 36–39 effect of hypothetical supernova 438–439 electrical repulsion data 37, 37–39 force of gravity 67B, 67 nuclear fusion double blind 36 gravitational force of Moon 179–180, helium 415 unconscious bias 36–37 180, 181 hydrogen 403, 403–404 extinction see mass extinction gravitational force of Sun 72–73 electromagnetic radiation extremophiles 569 impacts, prevention of life 563–565, Doppler effect 95–96 564B, 565B, 568 see also blackbody radiation falling interior 200–204, 203 electromagnetic waves see waves, and orbital motion 71, 72, 79, 80 core; liquid 202, 202–203, 204; solid electromagnetic path independent of mass 78 mantle 204 electrons 107–108, 399–400 far infrared radiation 140 ionosphere, and solar flares 337 emission and absorption of light Fermi Gamma Ray Observatory 144 life on 563–569 108–109 First Lagrangian Point, SOHO 324–325, earliest records 566–567 matter waves 109, 109–110 325 evolution 568–569 quantum mechanics 109, 109–110 fission, nuclear 400, 401 prevention 563–565, 564B, 565B, 568 elements flares, solar 336, 336–338 map 18 protoplanetary disk 387–388, 388 auroras 337 motion spectra 106, 106 effect on Earth’s ionosphere 337 Copernicus 47–48, 50 see also heavy elements Flat Earth theory 5, 7 Galileo 56–57 ellipses, Kepler’s first law of planetary predictions 6 orbit 17 motion 52–53, 53, 54, 78–79 flux 90, 91 radius 161–162, 162B elliptical galaxies 449, 450, 495 sunlight on Mars and Uranus 167 velocity 162 formation 507, 508, 508, 509 focal length 126 phases 13–14, 14 emission lines 105–106, 106, 111, 112 and blurring 126–127, 127 place in universe 1.4B Enceladus, liquid water 231–232 Fomalhaut 356 plate tectonics 198–200, 199, 200 energy direct evidence of planet 306 radius, Eratosthenes 44B, 43, 43–44 abstract concept 263–264 force: Newton’s second law of motion red giant Sun 417 for life 574 69–70, 72–73 rotation 4, 4–5 nuclear 399–405 Fornax, Hubble Ultra Deep Field velocity 8, 9B see also Sun, energy 450, 451 rotation axis, and day length 21–22, 23, 24 energy levels 108–109, 110 fossils water, liquid 191–192, 192 diagrams 110, 111, 111–112 cells 566, 568 white dwarf Sun 427 epicycle Martian meteorite 572–573, 573 eccentric Copernicus 48 stromatolites 566, 568 Copernicus 48 Ptolemy 45, 46–47 Free Will idea 6 Ptolemy 45, 46 equant, Ptolemy 45–46, 46, 48 frequency 93–94

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

Index 641

friction radio 509–511 globular clusters 315, 316 dynamical 505–506, 506 509, 509–510, 510; energy distribution 458–461 and inertia 68, 68–69 requirements 510–511 Cepheid variable stars 458–461; errors funding 151–152 M87, black hole 523, 523–524 491–492 big science 151–153 searching for black holes 522–524 Doppler effect 462 small science 151 size 496, 498 M13, CETI message 589, 589–590 fusion, nuclear 400, 400–405 spiral 449, 450, 495 M55 barred, NGC 1300 450, 495 population II high-velocity stars 468 galaxies 449–451, 450, 488–525 NGC 4414 450 HR diagram 468, 468–469, 471 Andromeda 116, 117, 489–495 star formation 497–498 Gondwana 198 nova explosions 489–490, 490–491, 494 spiral arms 465–467, 466, 496 granulation 329 stars 490, 494 density waves 466, 467 gravitation 64–65 work of Hubble 493 high-mass star formation 466–467, atoms, interstellar clouds 373–374, 374 Antennae 502, 505 497–498 black holes 433, 435, 436 cannibalism 505–506 star formation 497–498, 507 and the expanding universe 537–538, Cartwheel 502, 507 Stephan’s quintet 501, 501 538, 538 classification 495, 495–496 types 450, 495 force of Sun on Earth’s orbit 72–73 nucleus 496 see also nebulae, spiral Newton’s constant (G) 65, 73B sphericity 496 Galileo Galilei (1564–1642) 55, 55–57 protostars 375–376, 376 spiral arms 496 Dialog concerning the Two Chief World in space 75–78, 76B, 76, 77B colors and stellar populations Systems (1632) 56–57 stars 405–406, 406, 415–416 496, 498 and the Inquisition 56–57 and tides 181–182, 182 dynamical friction 505–506, 506 moons of Jupiter 55–56 Jupiter’s force on Io 222–223 elliptical 449, 450, 495 phases of Venus 55 universal, Newton’s law 65–68, 76–77, 77B ESO 325-G004 450 Rings of Saturn 56 gravitational lens, MACHO 479–481, 480 formation 507, 508, 508, 509 sunspots 55 gravitational potential energy 518–519 encounters with other galaxies 504–505, The Starry Messenger (1610) 56 gravity-assist orbit 81, 81–82, 82 504–505B use of telescope 55–56, 56 MESSENGER space probe 185 collisions between stars 503–504, 504B gamma-ray astronomy 143–144 Voyager Missions 146 tides 505, 506 Compton Gamma Ray Observatory 144 grazing incidence reflection 143 energy source, theory creation 516–519 Fermi Gamma Ray Observatory 144 Great Dark Spot, Neptune 240–242, 241 black holes 518–521, 519, 521; testing Vela satellite system 144 Great Red Spot, Jupiter 215 theory 521–525 Ganymede Greece, ancient astronomy 40–47 expansion from each other 536–537, 537 meteoroids 225 disregard for data 57–59 formation 498–509 relative size 168, 169 greenhouse effect, Venus 188–189, 189 bottom-up theory 500, 500–509, 508, gas giants 170 “grindstone model” 458, 459 508–509, 509;evidence508–509; gas pressure gyroscope 23 warped disks 508 degeneracy pressure 427, 443 top-down theory 499; problems 500 stars 406, 415–416 habitable zone 575 gas content 496 variable stars 418–419 binary stars 575, 576 irregular 449, 450, 495, 496, 497 Gemini South telescope 149 Hale–Bopp comet 274 Barnard’s 497 Geminid meteor shower 250 half life, uranium 252–253 Magellanic Clouds 450, 497 geocentricism, Ptolemy 45–47 solidification ages 253–255, 254 NGC 1569 497 geometry Halley, Edmond (1656–1742) 276 star formation 497–498 Euclidian, expanding universe 541, 542, prediction of appearance of comet 276–277 mergers 501, 501 543, 544 Halley’s comet 275, 276–277 Milky Way 453–483, 454 saddle 541, 541, 542, 544 confirmation of Newton’s laws 277 architecture 461, 461–462 spherical 541, 541, 542, 542–544, meteor showers 250 black hole 524 543, 544 nucleus, spacecraft observation disk 461 Giotto space probe, Halley’s comet 280–281, 281 evolution 471–473 280–281, 281 halo see Milky Way Galaxy, halo halo 461 Gliese 229B 411 Hayabusa Mission 282 orbit of Solar System 462–463, 463 Global Oscillation Network Group HD 209458 star rotation 462–465 (GONG) 409–410 center of mass motion 304 see also Milky Way Galaxy global warming 196–197 transit 308, 309

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

642 Index

heavy elements, population I stars 470 Hubble Ultra Deep Field 450, 451 inverse square law 470–471, 472 Hubble’s Law 535–536, 536, 536B flux of energy from Jupiter to Io 222 Helene, synchronous rotation 182 Huygens, Christiaan (1629–1695), Rings of flux of sunlight on Jupiter 217–218 heliocentrism, Copernicus 47–51, 530 Saturn 228 light propagation, brightness 90–92, helium Huygens Probe 146, 147, 232–233 91, 125 electrical repulsion 415 Hydra 244, 290 Io 220, 221–223 Jupiter 216 hydrogen influence of Jupiter 221–223, 222B nuclear fusion 400, 400–401, 442 atomic size 107 orbital velocity 318 proton–proton chain 405 chemical reaction 397–398, 398B, tides 223, 227 nuclei, fusion 414–417 400, 400 volcanism 221, 221–223 protoplanetary disk 387, 388 energy level diagram 111, 111–112 theory creation 221–223 radioactive decay of Uranium 252 exhaustion 415–416 ionosphere, and solar flares 337 solidification ages 253–255, 254, 255 interstellar, radio telescopes 136 iridium, asteroid impact 266 Sun 216, 322 Jupiter 216 iron, 426, 426–427, 442, Uranus 238 metallic 216 442–443 Helix Nebula 420 nuclear reaction 400, 400–401, 442 irregular galaxies 449, 450, 495, 496, 497 Herschel, William (1738–1822) 233 electrical repulsion 403, 403–404 star formation 497–498 and Caroline Herschel energy release 400–402, 401B Island Universe Hypothesis 489, 490–491, star gauging 457, 458, 459; population proton–proton chain 404–405 493, 494 analogy 454–456 protoplanetary disk 387, 388 systematic observation 235–236 Sun 216, 322 James Webb Space Telescope 139 Uranus 233, 235, 236 chemical reaction 397–398, 398B, 400 funding 152 Hertzsprung–Russell diagram 345 Uranus 238 Jansky, Karl (1905–1950) car analogy 364 hypothesis testing 21, 50–51 Milky Way Galaxy radio emission stars 362–364, 363, 409 astrology 35–39 135–136 populations 468–469, 469 phases of Moon 13–14 radio telescope 132–133, 133 Sun 409 planetary motion 49–50 jets, bipolar 250B, 377–378, 378, 379 Hipparcos satellite, parallax 354 predictions 5–7 Joules 396 horoscopes 34, 34–35 Sun’s path 5–7 Jupiter 165, 214–220 testing the theory 35–36 average density 170 data 37, 37–39, 38 ice compounds, protoplanetary disk 388 comparison with Sun 219, 219–220 unconscious bias 36–37 Ida 257 composition 216 Horsehead nebula 371 ideal gases 186B diameter 166 Hubble Constant 535 inertia, Newton’s first law of motion 68, energy emission 216–217, Hubble Deep Field 149, 547 68–69 218–219, 219B Hubble, Edwin (1889–1953) inflation see cosmic inflation mathematics 217–218 Cepheid variable stars infrared astronomy 139–141 flux of sunlight 217–218, 218B, 218 in Andromeda 493 Infrared Astronomy Satellite IRAS 141 Galilean moons 55–56, 220–227 velocity–distance relation infrared radiation 140 Callisto 225–226, 226 534–535, 535B, 536 Inquisition, persecution of Galileo 56–57 Europa 223–225, 224 expansion of universe 451, 533–537, 536 interferometry, radio telescopes 134–135, 135 Ganymede 225 “tuning fork diagram” 495 interstellar clouds Io 220, 221, 221–223 Hubble Space Telescope 137–139, 138 atoms and gravitation 373–374, 374 meteoroid craters 226–227 Antennae Galaxy 507 Bok globules 377 Great Red Spot 215 Cartwheel Galaxy 507 Doppler effect 99 helium 216 comparison with ground-based heavy elements 471 hydrogen 216 astronomy 149 infrared astronomy 141 metallic 216 cost 152 rotation 382, 383 influence on Io 221–223, 222B Hubble Ultra Deep Field 450, 451 star formation 370–373 interior 216 light gathering 124 contraction 371–374, 381 life, possibility of 215, 574 mirror 137 Sun 372–373 mass calculation 75 Neptune 240 trigger 379–380 , and asteroid Kirkwood operation 139 see also nebulae Gaps 260–262, 261 resolving power 138 interstellar dust, dark matter hypothesis planet or star 220 and Space Shuttle 149 477, 478, 479 retrograde motion 46

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

Index 643

surface 214–215, 215 possibility of magnetic braking theory 384–385, 385, temperature 215 binary star planets 575–576, 576 386, 387 Voyager Missions 145–146 Enceladus 231–232 magnetic fields Jupiter 215, 574 lines 332, 332–333 Keck observatory requirements for 574–575 plasma 332, 332–333, 333, 384–385 active optics 130 energy 574 protoplanetary disk 384–385 adaptive optics 130 liquid water 569–570 106–107 comparison with Hubble Space temperature and habitable zone 575 sunspots 330–331 Telescope 149 light 89–112 magnetism, solar 331–333 cost 153 disk source 26–28, 27 magnification, telescopes 125–129 light gathering 124, 125 Doppler effect 95–96 main sequence stars 363, 363 Kepler, Johannes (1571–1630) 52–55, 53 electromagnetic waves 92 computer models 408 astrology 34 see also waves, electromagnetic lifetime 402–403 laws of planetary motion 52–55, Olbers’ Paradox 529–533, 533, 532B man, appearance on Earth 568 78–80 point source 26 mapping, universe 553–556 first 52–53, 53, 54, 78–79 propagation, inverse square law 90–92, 91 maria 174, 175, 179 second 53, 55, 79 quantum mechanics 110 Mariner 10 space probe, Mercury 185 third 54–55, 79–80 reflected from planets 168 Mars 165, 204–210 respect for data 58 visible spectrum 94, 95 Antarctica analogy 570 supernova 437, 439 spectrograph 132 atmosphere 205–207 Kepler Mission 309, 309–311, 310 light gathering, telescopes 124, 124–125 and past climate change 209–210 Kirkwood Gaps 260–262, 261 light pollution 130 temperature and pressure abstract concept 262–263, 263 theory 325, 325–327, 326 206–207; and liquid water Kuiper Airborne Observatory 141 confirmation 328 208–209 Kuiper Belt Objects 242, 289–290 “little ice age” 330 canyons 207 Lowell, Percival (1855–1916) carbon dioxide 205–207 lambda cold dark matter 556–557, 557 “canals” of Mars 205 channels Large Magellanic Cloud, Supernova 1987a Pluto 234 “canals” 204–205 437, 437–438, 438, 444 luck, in science 235–237 outflow 208 launch window 81 luminosity 89–90, 91 sinous 208 Laurasia 198 Sun 91–92, 92B work of Lowell 205 Le Verrier, Urbain Jean Joseph luminosity–temperature relation work of Schiaparelli 204–205 (1811–1877) 234 see Hertzsprung-Russell diagram climate change 209–210 Neptune 233–234 lunar eclipse 26–28, 27 closest approach to Earth 167 Leavitt, Henrietta Swan (1868–1921), partial 27 craters 207, 208, 209 Cepheid variable stars penumbral 27 effect of Earth’s atmospheric 459, 460 total 27–28 turbulence 204 lenses, refracting telescopes 121–122, 122 lunar month 9 flux of sunlight 167 Leonid meteor shower 249, 250 force of gravity 67–68 Libra, visibility 14–16, 15, 16 M13 globular cluster, CETI message 589, life life 589–590 fossil, meteorite 572–573, 573 on Earth 563–569 M87 galaxy, blackhole 523, 523–524 intelligent 204–205 evolution 568–569 Maanen, Adriaan van (1884–1946), search for 570–572, 571; Viking extremophiles 569 measurement of Missions 571–572 man 568 spiral nebulae 492, 493 mass 165 multicellular 568 MACHO (MAssive Compact Halo Object) navigational orbit towards 80–81, 81 extraterrestrial 451, 562–590 479–482 uncertainty 83–85 intelligent, communication with 577–579 gravitational lens 479–481, 480 Olympus Mons 207 space travel 576–577 need for data 481, 481–483, 482 Orson Welles War of the Worlds (1938) habitable zone 575 Magellan spacecraft, Venus 190, 205 on Mars 570–572 190–191, 191 seasons 206–207 fossil, meteorites 572–573, 573 Magellanic Clouds 450, 497 surface 207 Miller–Urey experiment 567, Cepheid variable stars 459, 460 Valles Marineris 207 567–568 galaxies 450 Viking Missions 206–207, 571, 571–572 origin of 562–568 see also Large Magellanic Cloud volcanoes 207

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

644 Index

Mars (cont.) iron 252 Miranda 239–240, 241 water mineralogy 251–252 mirrors evidence for 207–210, 208, 209; origin 256 telescopes outflow channels 208; sinuous stony 251–252 active optics 129–130 channels 208; sludge 208 meteoroids 170–171, 249B adaptive optics 130 liquid 208–210 craters Hubble Space Telescope 137 wind 206 Jupiter’s Galilean moons 225, 226–227, X-ray astronomy 143 Mars Observer space probe 149 227; Ganymede 225 Mizar, visual binary star 348 Mars Pathfinder probe 147 orbit 256 molecules, organic, Miller-Urey experiment Mars Science Laboratory 147–148, 148 origin 256 567, 567–568 mass meteors 250B, 171 Montreal Protocol 196 atomic 108 craters 251 Moon 174–182, 175 conversion to energy (E¼MC2) 404 early Earth 563–565 age dating 369 Mars 165 showers 248–250, 249, 250 Apollo Missions 144–145 mass extinction, dinosaurs 266 and comets 249–250, 250, 250 atmosphere, absence of 176, 177, 186 mass formula 73, 165, 474–475 Eta Aquarid 250 craters 174, 175, 177, 177–178, 179 circular orbit 73 Geminid 250 Mooney analogy 177, 178 mass of Jupiter 75 Leonid 249, 250 diameter 164 mass of Sun 75B, 165 Orionid 250 distance from Earth 25 mass–luminosity relation 362, Perseid 171, 249, 250 Aristarcus 41–43 402–403 Quadrantid 250 eclipses 26–28, 27 mass–radius relation 362, 363 travel time 250B, 250 far side 174, 175 matter, ultimate nature of, black holes methane force of gravity 68B 435–436 liquid 570 gravitational force on Earth 179–180, matter waves 109, 109–110 outer solar system 388 180, 181 Mauna Kea observatories 131 Uranus 238 illumination by Sun 10, 11 infrared telescopes 141 Miami, day length, and rotational axis 22 maria 174, 175, 179 Maunder Minimum 330, 335 mid-latitude mountains 174, 175, 176 Maya, ancient astronomy 40 apparent rotation of sky 8 orbit around Earth 11–12, 12 megaparsec 534B apparent rotation of Sun 5 phases 9–14, 12 Mercury 165, 182–187 midocean ridges 198–199, 199 Aristarcus 40–41, 41 absence of atmosphere 186–187 Milky Way Galaxy 136, 453–483, 454 crescent 9, 10, 10 Caloris impact basin 185–186 architecture 461, 461–462 full 9, 10 distance from Sun 164 black hole 524 half 9, 10, 10 Copernicus 48 disk 461 hypothesis testing 13–14 Ptolemy 45, 46–47 low-velocity stars 468, 469, 470, 472 relative size 168 MESSENGER space probe 185, 186 evolution 471–473 rising 9–10, 11 orbit, radius 164 Frisbee analogy 463–464, 464 South Pole/Aitken Basin 563 phases 49, 49–50, 50 halo 461 surface history 178–179 rotation 183–185 high-velocity stars 468, 469, synchronous rotation 181, radar astronomy 184 470, 472 181–182, 182 work of Schiaparelli 183–184 MACHOs 479–482, 480 tides 181–182 spacecraft observation 185–186 luminosity 474B on Earth 179–181 Mariner 10 185 mass 474–475, 475, 475B topography 174–175, 176 temperature 186 dark matter 475–476 Mooney analogy 177, 178 MESSENGER space probe visible matter 473–474 moons gravity-assist deceleration 185 nuclear evolution 470–471 difference from planets 168, 169 observation of Mercury 185, 186 orbit of Solar System 462–463, shepherd 231 meteorites 249B, 250 463, 465 motion age dating radio emission 135–136 circular 72 cosmic ray exposure ages 255, 255–256 rotation 462–465, 465, 472 Newton’s laws of 68–70 radioactive 252–255, 369; Miller, Stanley Lloyd (1930–2007), orbital 71–72 solidification ages 253–256, 254, Miller–Urey and falling 71, 72 255, 255, experiment 567, 567–568 see also center of mass motion from Mars, ALH 84001 572–573, 573 minerals, inner solar system 388 Mount Wilson observatory 130, 153

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

Index 645

multiplication, exponential arithmetic Nereid 241, 242 observational selection 357–360, 359, 361 600–601 neutrinos 399, 405 observations, design of 303 multiplication of probabilities rule 580, supernovae 438, 443 redshift survey 554–555 581 neutron stars 428 observatories size and density 428 National Solar Observatory 325 NASA and Type II supernovae 442, Solar Dynamics Observatory 325 funding 151 442–444, 443 Solar and Heliospheric Observatory Great Observatories 137 neutrons 108, 399–400 (SOHO) 324–325 see also Chandra X-ray Observatory; New Horizons Mission, Pluto 290 vibration of Sun 410, 410 Compton Gamma Ray Newton, Sir Isaac (1642–1727) Occam’s razor 494 Observatory; Hubble Space 63–64, 64 Island Universe Hypothesis 494 Telescope; Spitzer Space Telescope constant of gravitation (G) 65, 73B occultation 176, 177 Terrestrial Planet Finder 311–312 law of universal gravitation 3.7, 65–68, Uranus 238–239, 239 National Science Foundation 151 67, 76–77, 77B oceans, Europa 223–225, 224 National Solar Observatory 325 confirmation by Halley’s comet 277 Olbers’ Paradox 18.6, 529–533B navigation, interplanetary 80–82 laws of motion 68–70 Olympus Mons, Mars 207 gravity-assist orbit 81, 81–82, 82 first law: inertia 68, 68–69 Omega nebula 371 launch window 81 mathematics of orbits 72–73, 73 Oort Cloud 286, 286–288 orbits 80–81 second law: force 69–70, 72–73 Optical SETI Project 585 near infrared radiation 140 third law: reaction 70, 71 optics, telescopes nebulae 370–373, 371 mass formula 73, 165, 474–475 active 129–130 Eagle 379 Philosophiae Naturalis Principia adaptive 130 Horsehead 371 Mathematica (1687) 64 orbits Omega 371 Newtonian reflecting telescope 121, 121 circular 73–74, 74B, 78, 79–80, 229 Orion 370, 371, 383 NGC 1569 497 Rings of Saturn 229, 229B, 230 planetary NGC 2841 455 elliptical 78–79, 79, 80 theory creation 419–422, 420, 421, 422; NGC 6384 455 geosynchronous 74 confirmation 422 Nix 244, 290 gravity-assist 81, 81–82, 82 spiral 454, 455, 488–493 North Pole interplanetary navigation 80–81 Andromeda 116, 117, 489–495 apparent rotation of sky 7, 7 mass formula 73 see also Andromeda Galaxy apparent rotation of Sun 4, 5 mass of Jupiter 75 Island Universe Hypothesis 489, Earth’s velocity 8 mass of Sun 75, 75B 490–491, 493, 494 notation, exponential 19.68A motion 71–72 Nebular Hypothesis 489, 490, nova explosions 422 and falling 71, 72 491–492 Andromeda Nebula 489–491 Newton’s laws of motion, mathematics NGC 2841 455 causes 422–423 72–73, 73 NGC 6384 455 see also supernovae planets 166–169, 167 Sombrero Galaxy 455 nuclear energy Rings of Saturn 228–230 theory creation 489–495 Cassini Mission, uncertainty 85 organic compounds Whirlpool Galaxy 455 quasars energy source, theory creation Miller–Urey experiment 567–568 see also galaxies 516–518 Titan 574 Triangulum 371 in stars 399–405 Orion nebula 370, 371, 383 see also interstellar clouds models 399 Orionid meteor shower 250 Nebular Hypothesis 489, 490, 491–492 nuclear reactions oxygen, early Earth 568 Neptune 165, 240–242, 241 energy release 398B, 400–402 ozone closest approach to Earth 169 fission 400, 401, 426 and chlorofluorocarbons (CFCs) 195 discovery 233–234 fusion 400, 400–405, 426 depletion 195–196, 196 energy emission 219 electrical repulsion: helium 415 Earth’s atmosphere 194–195 flux of sunlight 169, 217 hydrogen 403, 403–404 and ultraviolet radiation 194 Great Dark Spot 240, 241 proton–proton chain 404–405 Hubble Space Telescope 240 red giants 416 P waves 201, 201 moons 240–242 role of temperature 403–404 Pangaea 198 Nereid 241, 242 nucleus 107–108 parallax 346, 352, 352 Triton 240–241, 242 structure 399–400 Hipparcos satellite 354 Voyager Missions 145–146, 240 numbers, powers of ten 599–600 measuring distance to stars 352–354

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

646 Index

parallax (cont.) gas giants 170 prominences, solar 336 353–354 inner solar system at solar eclipse 25 Proxima Centauri 354 composition 388 proton–proton chain 404–405 theory creation 349–351, 350 observation 183, 184 protons 108, 399–400 confirmation 351, 352 motion 44–45 hydrogen, electrical repulsion 403, parsec 353–354 hypothesis testing 49–50 403–404 see also megaparsec Kepler’s laws 52–55 protoplanetary disk penumbra 26–28, 27 Ptolemy’s model 45–47 composition 387–388, 388 period retrograde 45, 46 condensation 386, 387 orbital, Kepler’s third law of planetary orbits, theory creation 381–383, 382, 384 cooling 386 motion 54–55, 79–80 outer solar system rotation 382–385, 383, 384, 385 waves 93–94 composition 388 magnetic braking theory 384–385, 385, Perseid meteor shower 171, 249, 250 observation 183 386, 387 Phoebe 181 relative size 168, 169–170 protoplanets photons 110 scale model 166–169 formation, theory creation 381, 381 and spectral lines 111–112 orbits 166–169, 167 orbits, theory creation 381–383, 382 photosphere 328–335 size 166 protostars photosynthesis, early Earth 566, 568 plasma, and magnetic fields 332, 332–333, bipolar jets 377–378, 378B, 378, 379 Piazzi, Giuseppe (1746–1826), Ceres 257 384–385 collapse 373–377, 376 pinhole telescope 117–120, 118, 119, 120 solar wind 341 evolutionary tracks 374–375, 375 Pioneer Interstellar Plaques 587–588, 588 plate tectonics 198–200, 199, 200 gas pressure 375–376 Pisces, visibility 15 Pleiades 14, 315 gravity 375–376, 376 pitch, sound waves 94 population I low-velocity stars 468 Proxima Centauri 361 pixels, CCD 125–126, 126, 132 heavy elements 470–471 distance 360 Planck formula 110 HR diagram 468, 468–469 parallax 354 Planck’s constant (h) 110 Pluto 165, 166, 241–244 Ptolemy, Claudius (c.AD90–c.AD168) 44–47 planetary nebulae discovery 234–235 Almagest 44 theory creation 419–422, 420, 421, 422 distance from Sun 242–243, 243B astrology 34 confirmation 422 Kuiper Belt Object 289–290 criticism by Copernicus 48 planetary rings 231 moons 244 disregard for data 57–59 planetesimals Charon 243, 244 hypothesis testing 49–50 and comets 290–291 Hydra 244, 290 planetary motion 45–47 formation 386–387 Nix 244, 290 solar system 45–47, 46 planets S/2011 P 1 244 pulsars 429–433 dark matter hypothesis 476–477, 477B, New Horizons Mission 290 Crab 431, 437 478, 479 orbit 167 orbital model 429, 430, 431, 431 densities 170 similarity to inner planets 243–244 Pioneer Interstellar Plaques 588 difference from stars 219–220, synchronous rotation 182, 243 rotational model 429, 430, 430, 432 410–411 Plutoids 242 theory creation 429–432 extra-solar 296–312, 305 polar mount 123 confirmation 433 detection 296–303, 301, 306; Polaris 18 vibrational model 429, 430, 430, 432 confirmation, transits 307–310; Cepheid variable star 418 direct 301; Fomalhaut 306 poles see celestial pole; North Pole Quadrantid meteor shower 250 indirect 298, 298–300, 299, 300, 303B, positron 404 quantitative calculation, importance of 78 304, 306–309, 307; Doppler effect powers of ten 599–600 quantum mechanics 302–303; vibrating star 307 predictions, testing hypotheses 5–7, 21 and the Big Bang 550 Terrestrial Planet Finder 311–312 phases of Moon 13–14 electrons 109–110 mass 304–305, 305 prime focus reflecting telescope 121, 121 light 110 parent stars 296–303, 297 radio 133–134 quarks, black holes 436 motion 298–300, 301, 302–303, 302B, prism 132 quartz 303B probabilities inner solar system 388 extraterrestrial, Doppler effect 98 Drake equation 579–584, 580, 581 shocked, asteroid impact 266 formation 386–387 multiplication of 580B, 580, 581 quasars (Quasi-Stellar Radio Sources) ongoing 369–370 Project Ozma, SETI 585 511–525 theory creation 381 Project Phoenix, SETI 585 3C273 radio source 511, 511–516

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

Index 647

brightness and size 514, 514–515, 515B; redshift 95 Round Earth theory 5, 7 light bulb analogy 514 survey 553–556, 555, 556 position of Sun at noon 43 consumption of matter 522, 522B reflecting telescope 120–121, 121 predictions 6 distance 512–513 Cassegrain 121, 121 energy source 517 Coude 121, 121 S waves 201, 201 luminosity 513, 513B, 514 light gathering 124–125 zone of avoidance 201, 202 occultation 511, 511, 512 Newtonian 121, 121 satellites spectrum 512, 512 prime focus 121, 121 geosynchronous orbit 74 energy source, theory creation 516–519 radio 133–134 natural see moons black holes 518–521, 519, 521 refracting telescope 121–122, 122 Saturn 165, 227, 227–231 testing theory 521–525 chromatic aberration 122, 122 average density 170 gravitational potential energy light gathering 124–125 Cassini mission 146, 146–147 518–519 relativity gravity-assist orbit 81–82, 82 nuclear energy 516–518 and the expanding universe 537–544 plutonium, uncertainty 85 in nuclei of galaxies 515–516 density 538, 538, 539–541; critical 538 distance from Sun 81 QSO 1229þ204 516 geometry 541, 541, 542, 544 moons 231–233 gravitation 537–538, 538, 538 Enceladus 231–232 radar, Magellan spacecraft, Venus 190, general theory, black holes 434–437 Titan 232–233 190–191, 191 religion, and science 58–59 navigational gravity assist orbit radar astronomy Galileo 56–57 81–82 Doppler effect 98–99 representative samples 354–357 orbit 167 rotation of Mercury 184 resolving power, telescopes 125, 125–129 Rings 228–231, 229 radiation see blackbody radiation; Hubble Space Telescope 138 Galileo 56 electromagnetic radiation; optical 128–129, 128B, 129B orbits 228–230, 229B infrared radiation; stars, radiation radio 134 origin 230–231 radio astronomy 132–136 interferometry 134–135, 135 theory creation 228–229; confirmation radio galaxies 509–511 retrograde motion 229–230 radio sources see quasars (Quasi-Stellar Copernicus 48 Roche Limit 230–231 Radio Sources) Ptolemy 45, 46 Voyager Missions 145–146 radio telescopes 132–136 Ring Nebula 420 Schiaparelli, Giovanni (1835–1910) CETI 577–579 rings, planetary 231 channels of Mars 204–205 interferometry 134–135, 135 Rings of Saturn 228–231, 229 rotation of Mercury 183–184 Atacama Large Millimeter Array 135, Cassini division 228 Schmidt, Maarten, 3C273 radio source 512 135 orbits 228–230, 229B Schwarzschild radius Very Large Array 135, 135 origin 230–231 black holes 433, 434 Very Long Baseline Array 135 Rings of Uranus 238–239, 239 quasars 517–518 interstellar hydrogen 136 Roche Limit, Saturn 230–231 Sun 434, 434B resolving power 134 rotation science radio waves 133 asteroids 259–260 nature of xii, xiii radioactive age dating Earth 4, 4–5 abstract concepts: energy 263, 263–264; Earth 369 velocity 9B, 8 Kirkwood Gaps 262–263; meteorites 252–255, 369 interstellar clouds 382, 383 magnetic field lines and plasma Mars 369 Mercury 183–185 334–335 Moon 369 Milky Way Galaxy 462–465, 472 big science 150–153 radioactive decay, uranium 252–255, 253 protoplanetary disk 382–385, 383, 384, 385 certainty and uncertainty 82–85; rainbows 103 magnetic braking theory 384–385, 385 asteroid impact 271–273; reaction, Newton’s third law of motion sky 7, 7–8 density of universe 539–541 70, 71 Sun 9, 321, 321–322, 383–384 changing our minds 339–341 Reber, Grote (1911–2002) differential 322, 323 design of experiments 36–39 radio telescope 133, 133 synchronous discovery process: design of Sun radio signals 136 Helene 182 observations 554B, 555B, 303; red giant stars 363, 363, 416, 416–417, 417 Moon 181, 181–182, 182 redshift survey 554–555 luminosity 416 Pluto and Charon 182, 243 evidence 493–495; nature of spiral nuclear fusion 416 Uranus 237–238, 238 nebulae 493–495;Occam’sRazor size 416 Venus 187 494; psychological factors 494

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

648 Index

science (cont.) sky, apparent rotation 7, 7–8 gravity-assist orbit 185 evidence: bottom-up theory of galaxy Slipher, Vesto Melvin (1875–1969), observation of Mercury 185, 186 formation 433, 508–509; Doppler shifts of galaxies 533 New Horizons Mission, Pluto 290 indirect 306–309 Sloan Great Wall 556 Pioneer Interstellar Plaques hypothesis testing: planetary motion small angle formula 8.105A, 301B, 347B, 587–588, 588 49–50; Sun’s path 5–7 242–243, 297–298, 301, 346 Rings of Saturn 230, 231 importance of accuracy 274, 306 Solar Dynamics Observatory 325 Stardust Mission lessons from history 57–59; importance solar eclipses 24–26, 26 retrieval of cometary material 282 of data 57–58; physical reality 58; Solar and Heliospheric Observatory 282–284, 283 skepticism 58 (SOHO) 324–325 Tempel-1 284 nature of scientific theories 473 First Lagrangian Point 324–325, 325 Viking Missions need for data, MACHOs 481, vibration of Sun 410, 410 life on Mars 571, 571–572 481–483, 482 solar seismology 399, 409, 409–410, 410 Mars atmosphere 206–207 observational selection 357–360 solar system 159–171 Voyager Missions 145–146, 239, 240 representative samples 354–357 age 368–369 WMAP (Wilkinson Microwave role of luck 235–237 ecliptic 45, 46 Anistotropy Probe), early science and public policy, asteroid formation, theory creation 380–389 universe 553 impact 270–271 inner planets 174–210 Space Shuttle, Hubble Space Telescope 149 skepticism: astrology 35–36; Moon’s mass 165 space telescopes 137–144 phases 13 outer planets 214–244 Hubble Space Telescope 137–139, 138 theory and observation 389–392 Ptolemy’s model 45–47, 46 Infrared Astronomy Satellite understanding, properties of sunspots criticism by Copernicus 48 (IRAS) 141 334–335 regularities 380 James Webb Space Telescope 139 and public policy 270–271 scale model 166–169 Kuiper Airborne Observatory 141 and religion 58–59 shapes of orbits 169 Spitzer Space Telescope 141, 142 scientific revolution 47–57 size 161–164, 165, 165 temperature variation 138–139 seasons 23 Sun and planets 164, 165, 165 space travel 80–82 theory creation 19–21 smaller bodies 248–291 search for life 576–577, 577B Uranus 237–238, 238 solar wind 279, 341 spectra 103, 104 “seeing” see atmospheric turbulence and coronal holes 341 blackbody radiation 103–105, 105 seismic waves 201, 201–203, 203 solidification ages 253–255, 254, 255 elements 106, 106 seismology, solar 399, 409, 409–410, 410 meteorites 253–255, 254, 255, 255, infrared radiation 140 serendipity 236–237 255–256 Sun 103, 104 SETI (Searching for ExtraTerrestrial solstices see summer solstice; winter solstice spectral lines 105–107, 111, 111–112 Intelligence) 579–584, 580, 581 Sombrero Galaxy 455 absorption 105, 111, 111–112 Allen Telescope Array 585 space probes 144–148 astronomical uses 106–107 Optical SETI Project 585 Apollo Missions to the Moon 144–145, 145 electrons 108–109 Project Ozma 585 Cassini mission 146, 146–147 emission 105–106, 106, 111, 112 Project Phoenix 585 gravity-assist orbit 81–82, 82 Sun 104, 105 Shapley, Harlow (1885–1972) plutonium, uncertainty 85 spectrograph 132 globular clusters 458–461 Deep Impact Mission, Tempel- 281 diffraction gratings 132 map 461, 461 difficulty of travel to outer planets 168 spectroscopy 106–107 Nebular Hypothesis 491–492, 494 Discovery Program 147 spiral arms 465–467, 466, 496 Shelton, Ian, supernova 1987a 437–438 Doppler effect 98 density waves 466, 467 shepherd moons 231 Giotto, Halley’s comet nucleus high-mass star formation 466–467 shooting stars see comets; meteors 280–281, 281 spiral galaxies 449, 450, 495 sidereal drive 123 Hayabusa Mission 282 barred 449, 450, 495 singularity, black holes 435, 436 Huygens Probe 146, 147, 232–233 star formation 497–498 Sirius A 356, 361 Kepler Mission 309, 309–311, 310 spiral nebulae see nebulae, spiral Sirius B, white dwarf star 424B, 423–425 Magellan, Venus 190, 190–191, 191 Spitzer Space Telescope 141, 142 density 425, 426B Mariner 10, Mercury 185 Stanley Miller experiment 567, 567–568 orbit with Sirius A 424–425, 425 Mars Observer 149 star drive see sidereal drive skepticism 13, 21, 58 Mars Pathfinder probe 147 star gauging astrology 35–36 Mars Science Laboratory 147–148, 148 Herschels 454, 458, 459 life on Mars 571–572 MESSENGER population analogy 454–456, 457, 458

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

Index 649

Stardust Mission formation 371–374 radiation 407 retrieval of cometary material 282, computer models 374–375, 375 red giant see red giant stars 282–284, 283 in galaxies 497–498 representative samples 354–357 Tempel-19.119 high-mass, spiral galaxies 466–467, rotation, Doppler effect 347, 348 stars 315, 316 497–498 size 346–347, 347B angular diameter 346–347, 347B interstellar clouds 370–373 structure 405–410 atmosphere, spectroscopy 107 observation 376–377 T Tauri 377 atmospheric turbulence 127 ongoing 369–370 temperature 346 balancing energy rates 406–407 trigger 379–380 spectroscopy 106 balancing forces 405–406 gas pressure 406 typical 360 and hydrogen exhaustion 415–416 and hydrogen exhaustion 415–416 velocity 467–468 binary 347–349, 349 globular clusters see globular clusters and population type 468–473, 469, astrometric 348 gravitation 405–406, 406 470, 470; theory creation center of mass 348–349, 349 and hydrogen exhaustion 415–416 469–472 eclipsing 348 heat flow 407 vibrating, Doppler effect 307 planets, possibility of life 575–576, 576 helium fusion 414–417, 415 white dwarf see white dwarf stars spectroscopic 348 Hertzsprung–Russell diagram see also black holes, globular clusters, spectrum 348 362–364, 363 protostars visual 348, 349 high-mass, spiral arms 466–467 Stefan–Boltzmann law 100–102, 101B, brightness, greatest apparent 355–356, high-velocity 467–468, 469 102B, 218–219 356, 357 population II 468, 469, 470, 470 Stonehenge 39, 40 brown dwarfs 410–411 hydrogen exhaustion 415–416 stromatolites 566 census 345, 354–357, 360 lifetime 402–403 subduction zones 199, 200 center of mass motion 298, 298–300, 299, travel 370, 370B summer solstice 19 300, 301, 302B low-velocity 467 Sun 317–341 binary stars 348–349, 349 population I 468, 469, 470, 470 age 368–369 Doppler effect 302–303, 303B, 304 luminosity 346, 357 angle of rays 22–23, 23 Cepheid variable see Cepheid variable luminosity–temperature relation apparent motion 3–4 stars see Hertzsprung–Russell diagram relative to constellations 16–18, 17; circumpolar 7–8 main sequence 363, 363 see also ecliptic closest to Earth 355–356, 356, 357, 361 computer models 408; confirmation chemical reactions 397–398, 398B, 400 mass function 361, 362 408–410 chromosphere 335 mass–luminosity relation 362 lifetime 402–403 temperature 338 mass–radius relation 362, 363 maps 17, 17, 611A composition 322 observational selection 361 mass 347 corona 338 properties 361, 361–362 binary stars 347–349, 349 at solar eclipse 25 composition, spectroscopy 106, 346 measurement 345–354 holes 341 conduction 407 motion temperature 338, 338–340 contraction 427 Doppler effect 99 diameter 164, 166, 318, 322 convection 407, 410 in galaxy 467–468, 469–470 distance to Earth 6, 19–20, 20, 161–162, definition 220 parallax 346, 349–351, 350 162B, 165, 318, 322 differences names 355, 356, 356 Aristarcus 41–43 from other stars 360 neutron 428, 428B distance to Mercury 164, 165 from planets 219–220, 410–411 and type II supernovae 442, 442–443, Copernicus 48 distance 360 443 Ptolemy 45, 46–47 parallax 346, 349–351, 352–354, 353 nuclear reactions 399–405 distance to Pluto 165, 242–243, 243B distances between 11.10 helium 414–417 distance to Saturn 81, 165 energy 316, 395 observational selection 357–360, 359, 361 distance to Venus 163, 163–164, 165 balance 406–407 orbit, binary stars 348–349, 349 Copernicus 48 computer models 399 parallax 346, 349–351, 352–354 Ptolemy 45, 46–47 theory creation 395–398; confirmation population type eclipses 24–26, 26 398–399 and age 468, 468–469, 469 energy 166, 323, 396B evolution 414–444, 442 and heavy elements 470, 470–471, 472 theory creation 395–398 iron end-point 426, 426–427 and velocity 468–473, 469, 470, 470; see also Sun, nuclear reactions fixed 45, 48 theory creation 469–472 flares 336, 336–338

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

650 Index

Sun (cont.) Galileo 55 optical telescope 128–129, 128B, 129B auroras 337; effect on Earth’s magnetic fields 330–331 radio 134 ionosphere 337 Maunder Minimum 330, 335 site selection 130–131 formation, interstellar cloud 372–373 properties 331, 333–334 light pollution 130 gravitational force on Earth 72–73 and rotation of Sun 321–322 in space 137–144 helium 216 spectroscopy 106–107 X-ray 141–143 hydrogen 216 Superconducting Super Collider, Tempel-1 lifetime 402 cost 151, 153 Deep Impact mission 281 limb darkening theory 325, 325–327, 326 supergranulation 329 Stardust Mission 284 testing 328 supernovae 438–444 Tempel–Tuttle comet, meteor showers luminosity 92B, 91–92, 319, 320, 1987a 437, 437–438, 438, 444 250 323, 396 causes 439–440 temperature, requirement for life 575 red giant stage 417 collapse 443 Terrestrial Planet Finder 311–312 magnetism 331–333 effect on Earth 438–439 theory creation xi, 19, 21, 473 magnetic field 332; and plasma 333 energy emission 438 formation of solar system 380–389 mass 75, 75B, 165, 319, 322–323 measurement of accelerating universe Io’s volcanism 221–223 measurement 317–323 544–545, 545 Jupiter, Galilean moon craters 226–227 neutrinos 399 nuclear reactions 441 parallax 349–351 noon position, and seasons 20, 20–21 number per century 477–478, 478B confirmation 351, 352 nuclear reactions 398–399, 402, 404 remnants 438, 439 physical nature of comets 278–279 models 399 Crab Nebula 437, 438, 439 confirmation 280 proton-proton chain 404–405 Type I 439 planetary nebulae 419–422, 420, 421, 422 observation of 323–325, 324–325 model 440–441; confirmation 441–442 confirmation 422 photosphere 328–335 Type II 439 planetary orbits 381–383, 382, 384 granulation 329 model 442, 442–443, 443; power source of quasars and radio supergranulation 329 confirmation 443–444 galaxies 516–519 position at noon 3–4, 4 white dwarf stars, in orbit with red giant pulsars 429–432 Eratosthenes (276-196BC) 43 440–441, 441 confirmation 433 prominences 336 Swift–Tuttle comet, meteor showers 250 Saturn’s Rings 228–229 at solar eclipse 25 confirmation 229–230 radio signals 136 T Tauri stars 377 seasons 19–21 red giant stage 417 telescopes 116 solar energy 395–398 rising 3, 4 active optics 129–130 confirmation 398–399 rotation 9, 321, 321–322, 383–384 focal length 126, 126–127, 127 spiral nebulae 489–495 differential 322, 323, 332–333; and future cost 153 stellar velocity and population type magnetic field lines 333 Galileo 55–56, 56 469–472 Doppler effect 98, 99 light gathering 124, 124–125 Sun’s limb darkening 325, 325–327, 326 Schwarzschild radius 434, 434B magnification 125–129 confirmation 328 seismology 399, 409, 409–410, 410 mountings 123 tides 179–181, 180 setting 4 altitude–azimuth mount 123 weightlessness 75–78, 76B, 77B, 77 solar wind 279, 341 polar mount 123 thermonuclear reactions coronal holes 341 sidereal drive 123 helium 415 spectral lines 104, 105 pinhole 117–120, 118, 119, 120 role of temperature 403–404 spectrum 103, 104 radio 132–136 tides structure reflecting 120–121, 121 galaxies 505, 506 computer models 408 Cassegrain 121, 121 Io 223, 227 confirmation 408–410 Coude 121, 121 on Moon 181–182 “surface” see Sun, photosphere Newtonian 121, 121 Moon’s influence on Earth 179–181 temperature 102B, 320–321, 323 prime focus 121, 121; radio theory creation 179–181, 180 a typical star 360 133–134 time, near black holes 436, 436–437 vibration 399, 409, 409–410, 410 refracting 121–122, 122 time zones 28, 29 white dwarf stage 427 chromatic aberration 122, 122 Titan 232, 232–233 sunspots 329, 329–335 resolving power 125, 125–129 atmosphere 169, 232–233 butterfly diagram 330, 331 atmospheric turbulence 126–127, 127 Huygens Probe 147, 232, 232–233 cycles 330, 330 diffraction 126–128, 127 organic compounds 574

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

Index 651

Titania 239 mapping 553–556 phases 49–50 Tombaugh, Clyde (1906–1997) 236 redshift survey 553–556, 555, 556 Galileo 55 Pluto 235, 290 observable 449 rotation 187 transits 307–310, 308, 310, 311 size of 1.2 spacecraft observation 187 HD 209458 308, 309 structure, large-scale 553–557 surface 190, 190–191, 191 Kepler Mission 309, 309–311, 310 origin of 556–557, 557 temperature 188 Venus 308 Uraniborg observatory, Tycho Brahe transit 308 Triangulum nebula 371 51–52, 52 Very Large Array interferometer Triton 240–241, 242 uranium 135, 135 turbulence half life 252–253 Very Long Baseline Array interferometer atmospheric 126–127, 127 radioactive decay 252–255, 253 135 and site selection 130–131 Uranus 165, 233, 237, 237–240 Viking Missions atmosphere 238 life on Mars 571, 571–572 Uaxactun, astronomical monuments 40, 40 closest approach to Earth 167 Mars atmosphere 206–207 Uhuru X-ray satellite 142 discovery 233 volcanoes ultraviolet radiation, and ozone 194 flux of sunlight 167 Io 221, 221–223 umbra 26–28, 27 moons 239–240 Mars 207 uncertainty Ariel 239, 240 Voyager Missions 145, 145–146 Cassini mission, plutonium 85 Miranda 239–240, 241 gravity-assist orbit 146 Mars, navigational orbit towards 83–85, Titania 239 Neptune 240 83B, 84B occultation 238–239, 239 Rings of Uranus 239 see also certainty and uncertainty orbit 167 universe Rings 238–239, 239 water, liquid age of 1.3 rotation 31, 31, 237–238, 238 Earth 191–192, 192, 570 contents 546 seasons 237–238, 238 Enceladus 231–232 creation of, and Big Bang 550–551, 551 Voyager Missions 145–146 Europa 223–225, 574 epoch of decoupling 548, 552, 552, 553 Urban VIII, Pope, and Galileo 56 importance for life 569–570 expanding Urey, Harold Clayton (1893–1981), Mars 207–210 acceleration 544–546, 545, 546; dark Miller–Urey experiment watts 90, 357, 396 energy 545–546; supernovae 567–568 wave-particle duality measurement 544–545 electrons 109, 109–110 and relativity 537–544, 538, Valles Marineris, Mars 207 photons 110 539–541, 541, 542, 544;critical Van Allen Belts 341 wavelength 93–94 538; density 538;geometry541; variable stars see Cepheid variable stars refraction 122 gravitation 538 Vela satellite system 144 and resolving power 134 expansion of 451, 533 Velocity spectroscopy 106 Doppler effect 99 circular orbit formula 73–74, 74B, 78, waves work of Hubble 451, 533–537, 79–80 electromagnetic 92, 93 536 Earth’s rotation 9B, 8 Doppler effect 95–96 future 546–547 elliptical orbit 78–79, 79, 80 spectrum 4.30I, 94–95, 95; “grindstone model” 458, 459 escape 79 visible 94 history of 547, 547–551, 549 Newton’s second law of motion velocity 94 Big Bang 550 69–70 measurement 93–94 cosmic inflation 549, 553 Venus 165, 187–191 radio 133 Cosmic Background Radiation atmosphere 188 sound 551–553, 552 carbon dioxide 189 Doppler effect 95 Dark Ages 548 greenhouse effect 188–189, 189 velocity 94 opaque 548, 552, 552 clouds 188 wavelength and frequency 94 transparent 548, 552, 552 distance from Sun 163, 163–164 wavelength and pitch 94 WMAP 553, 553 Copernicus 48, 48 water infinite 542–544 Ptolemy 45, 46–47 frequency and period 94 Olbers’ Paradox 18.6B, 529–533 Magellan spacecraft 190, 190–191, 191 motion 92, 92–93, 93 paradox of the edge 542 orbit velocity 94 spherical geometry 542–544, radius 163, 163–164 wavelength 94 543, 544 velocity 162–163 weightlessness 75–78, 76B, 77B, 77

© in this web service Cambridge University Press www.cambridge.org Cambridge University Press 978-0-521-19259-0 - The Universe: An Inquiry Approach to Astronomy and the Nature of Scientific Research George Greenstein Index More information

652 Index

Welles, Orson (1915–1985), War of the Wild 2 comet, Stardust Mission 282–284 X-ray astronomy 141–143 Worlds (1938) 205 WIMPs (Weakly Interacting Massive blackbody radiation, Wien law 143 Whirlpool Galaxy 455 Particles) 483 Chandra X-ray Observatory 143 white dwarf stars 363, 363 wind grazing incidence reflection 143 collapse 441 Mars 206 Uhuru satellite 142 degeneracy pressure 427 solar 279, 341 X-ray telescopes 141–143, 142 in orbit with red giant 440–441, 441 and coronal holes 341 Sirius B 423–425, 424B winter solstice 19 zodiac 18, 34, 34–35 density 425, 426B WMAP (Wilkinson Microwave Anistotropy cusps 34 orbit with Sirius A 15.28I, 424–425 Probe), early universe 553 houses 34 Wien law 102, 140 world view 529, 530 signs 55

© in this web service Cambridge University Press www.cambridge.org