Paleontlogy 5: Speciation

Total Page:16

File Type:pdf, Size:1020Kb

Paleontlogy 5: Speciation PALEONTLOGY 5: SPECIATION VOLUME 9, ISSUE 5, January 2020 THIS MONTH DESCENT WITH MODIFICATION • Hierarchy page 2 • Trilobites page 3 • Eyes page 4 The Paleozoic Era lasted from • Size page 7 541 to 252 million years divided • Characteristics page 10 into six Periods: • DNA page 16 • Cambrian • Speciation page 19 • Ordovician • Fun Facts page 23 • Silurian • Devonian POWER WORDS • Carboniferous • BYA: billion years ago • Permian • eukaryote: organism consisting of a cell or At the end of the Precambrian, cells in which the there is evidence of soft-bodied, as an example of how all genetic material is in multicellular organisms (mostly organisms speciate. Trilobites chromosomes frond-like and tubular forms) are incredibly awesome! contained within a found in locations around the distinct nucleus world. This is called the The Ute Tribes are now located • phylum: (plural phyla) a Ediacaran biota. These animals in SW Colorado and Utah. They major division of life were composed of individual roamed throughout the Western after Kingdom and cells organized into colonies, Rocky Mountains, venturing before Class (see pg. 2 like sponges. onto the Eastern Plains. They for more information) found Cambrian trilobites and • prokaryote: a The Cambrian Explosion refers carried them as protective microscopic single- to a burst of fossils. The reason charms, “Timpe-Konitza- celled organism with no is simple; animals developed Pachuee.” or “little water bug internal membrane hard parts, like shells. We find living in a house of stone.” bound organelles, DNA fossils representing almost all of is in a circle the 35 animal phyla! The only Samuel Turvey found new modern animal phylum missing Chinese trilobites. He gave one CAREER CONNECTION is Bryozoa, moss animals. of them the genus name of Han • Interview with Dr. Smith, after the biggest ethnic group in paleontologist page 24 This issue focuses on trilobites, China. The species name is both their natural history but also Han solo! COLORADO STATE UNIVERSITY EXTENSION 4-H PROGRAMS ARE AVAILABLE TO ALL WITHOUT DISCRIMINATION HIERARCHY — Organizing Life 2 A mnemonic is a trick to help like the Order Proetida. POWER WORDS remember something. Here is a ○ Within Order Proetida are • Archaea: microorganisms mnemonic for planets: 13 Families, like Family similar to bacteria in size and My — Mercury Proetidae. simplicity but different in Very — Venus ○ Within Family Proetidae, molecular organization Educated — Earth there are 288 Genera • chromosome: threadlike Mother — Mars including Genus Proetus. structure of DNA found in the Just — Jupiter ○ Within Genus Proetus are Served — Saturn two species, P. concinnus nucleus of eukaryote cells Us — Uranus and P. latifrons. carrying genetic information Nachos—Neptune in the form of genes Directions: • hierarchy: taxonomic Before advanced technology in • Develop a mnemonic to classification of successive molecular techniques, Dr. Carl help you remember the levels of complexity of life Woese and Dr. George Fox hierarchy of life: • mnemonic: a device such painstakingly analyzed a very as a pattern of letters, ideas, stable section of DNA of Domain— or associations that assists hundreds of organisms. They in remembering something Kingdom— found a hidden group of single- • molecular techniques: celled prokaryote organisms, Phylum— manipulation and analysis of distinct from bacteria, and called Class— DNA, RNA, and/or proteins them archaebacteria (now called Order— • organelle: organized or Archaea). Domain Eukaryota specialized structures bound organisms can be single-celled Family— by a membrane within a or multicellular. They are Genus— living cell distinct from both Domain Bacteria and Domain Archaea: Species— DNA is formed into chromosomes residing in the cell’s nucleus, and the cell contains organelles. Domain is the highest hierarchy, and all known life falls into one of these three Domains. Within the Domain Eukaryota are 10 Kingdoms, seven of which are mostly single-celled organisms, and three contain multicellular organisms: • Kingdom Plantae (plants) • Kingdom Fungi (fungus) MATERIALS • Kingdom Animalia (animals) ○ Within Kingdom Animalia • Paper are 35 phyla, including • Pencil Phylum Arthropoda. ○ Within Phylum Arthropoda is the Class Trilobita (also known as Trilobitomorpha) ○ Within Class Trilobita are 10 Orders of trilobites, TRILOBITES — A Paleozoic Success Story 3 The Cambrian Explosion of the Burgess Shale fauna in POWER WORDS occurred 541 MYA and lasted the 1980s. These three men • e.g.: Latin for exempli 20 million years. During this were instrumental in bringing to gratia meaning for the time, almost all major animal light the amazing and wonderful sake of example, or for phyla appeared in the fossil life that had lived in there half a example record. Not only that, but there billion years ago! • fauna: animals from a were some weird and wonderful particular region, experiments in life, like Opabinia The Burgess Shale is not the habitat, or geological regalis. with 5 eyes and a long only location from this time in period proboscis, and Marrella Earth’s history with well • MYA: million years ago splendens. (the lace crab—but preserved fossils. There are • proboscis: elongated not a crab), the most common three other places in the world appendage from the animal in the Burgess Shale. that remarkable preservation of head of an animal (e.g. fossils from this time: elephant trunk) The Burgess Shale is a location Chengjiang and Doushantuo, • stratum (plural strata): in British Columbia that is a both in China, and Sirius Passet layer, or series of treasure trove of these amazing in Greenland. There are fossil layers, of rock in the Cambrian fossils. It was found sites throughout the world, just ground in August 1909 by Charles not with the detail of the Doolittle Walcott, paleontologist ecosystem preserved, like it is in from the Smithsonian. It was these four site. almost at the end of the season, so the following year, Walcott The earliest known trilobites are and his family returned and from 521 MYA found in Siberia, began extracting these Morocco, Spain, and North incredibly well preserved fossils, America. At this time, the both hard and soft bodied evidence indicates that trilobites organisms, from this site dated originated in Siberia, and then 508 MYA. migrated throughout the world. They survived 250 million years. Walcott and his family continued During this time, they speciated collecting at this site until 1924, into over 20,000 species! and had collected over 65,000 specimens for the Smithsonian. Directions: They were considered only a • Explore the links in the green curiosity, and were not studied box below, A Guide to the again until 1962, when Alberto Orders of Trilobites and Order Redlichiida, Paradoxides sp. Simonetta recognized that many American Museum of Natural may represent the ancestral of these fossils did not fit in History Trilobite Website. trilobite. modern groups. MATERIALS The quarry was reopened by the • Computer with internet Geological Survey of Canada • https://www.trilobites.info/ under a trilobite expert Harry • https://www.amnh.org/researcHpaleontology/ Blackmore Whittington. Dr. collections/fossil-invertebrate-collection/trilobite- Whittington had two graduate website students, Derek Briggs (now • Optional: Gould, Stephen Jay (1989) Wonderful with Yale University) and Simon Life: The Burgess Shale and the Natural Conway Morris (now with History, W.W. Norton & Co. Your county library University of Cambridge), who has a copy, or can find one for you. Wonderful began a thorough assessment story! A must read! TRILOBITES — Eyes 4 Prior to the Cambrian, there is In this activity, you will make an POWER WORDS no fossil record of organisms eye model of a single facet of a • accommodate: the with eyes. Cambrian fossils, trilobite eye. ability of the eye to however, show many different change focus from forms of eyes. Eyes can be Directions: distant to near objects simple light sensing cells • Do this by a window during • analogous: structures differentiating between shade the day. performing similar and full sun or extremely • Stand on one side. Hold function but having a complex, like human and bee your paper vertically in the different origin; eyes. Of the 10 Orders of hand farthest from the example insect wings Trilobites, nine Orders had window. and bat wings compound eyes, similar to • Hold the • biconvex: surface insect eyes. Trilobites came up biconvex lens curved like the exterior with a unique solution for a lens vertically in the of a circle on both sides —they used calcite. other hand. Be • birefringent: light will sure that the travel in two different Calcite is a mineral composed of light from the directions when calcium, oxygen, and carbon window through passing through a (CaCO3). It is found throughout the lens to the material like calcite the world. Some forms of calcite paper is not • circumference: the have a unique property: they are blocked. distance around clear and birefringent (cool • Move the lens slowly back something science word!) See the image and forth until the image • compound eye: an eye below how light splits. comes into sharp focus on consisting of an array of • bi means two the paper. Measure and numerous small visual • refringent means split record the distance between units, as found in the paper and the lens. This crustaceans or insects is called the focal length. Definitions continue page 5 Different lenses have different focal lengths. If you have more than one lens, do the same with each lens. Record each measurement. • TP tubes are 4” long, and paper towel tube is 11” long. If your focal length is longer than 7”, you need to also use the paper towel tube. Order Agnostida trilobites lost their eyes. Only the very MATERIALS earliest agnostids had eyes. • magnifying lens (hand lens or biconvex lens) Agnostic means someone who • 2 TP (toilet paper) tubes and 1 paper towel tube believes that nothing can be • wax paper known about the existence or • scissors nature of God; they neither have • 1 rubber band faith nor disbelief in God.
Recommended publications
  • Morphology and Developmental Traits of the Trilobite Changaspis Elongata from the Cambrian Series 2 of Guizhou, South China
    Morphology and developmental traits of the trilobite Changaspis elongata from the Cambrian Series 2 of Guizhou, South China GUANG-YING DU, JIN PENG, DE-ZHI WANG, QIU-JUN WANG, YI-FAN WANG, and HUI ZHANG Du, G.-Y., Peng, J., Wang, D.-Z., Wang, Q.-J., Wang, Y.-F., and Zhang, H. 2019. Morphology and developmental traits of the trilobite Changaspis elongata from the Cambrian Series 2 of Guizhou, South China. Acta Palaeontologica Polonica 64 (4): 797–813. The morphology and ontogeny of the trilobite Changaspis elongata based on 216 specimens collected from the Lazizhai section of the Balang Formation (Stage 4, Series 2 of the Cambrian) in Guizhou Province, South China are described. The relatively continuous ontogenetic series reveals morphological changes, and shows that the species has seventeen thoracic segments in the holaspid period, instead of the sixteen as previously suggested. The development of the pygid- ial segments shows that their number gradually decreases during ontogeny. A new dataset of well-preserved specimens offers a unique opportunity to investigate developmental traits after segment addition is completed. The ontogenetic size progressions for the lengths of cephalon and trunk show overall compliance with Dyar’s rule. As a result of different average growth rates for the lengths of cephalon, trunk and pygidium, the length of the thorax relative to the body shows a gradually increasing trend; however, the cephalon and pygidium follow the opposite trend. Morphometric analysis across fourteen post-embryonic stages reveals growth gradients with increasing values for each thoracic segment from anterior to posterior. The reconstruction of the development traits shows visualization of the changes in relative growth and segmentation for the different body parts.
    [Show full text]
  • Articulo Agnostida (Trilobita)
    Dies, M.E. y Gozalo, R. 2004. Agnostida (Trilobita) de la Formación Valdemiedes (Leoniense: Cámbrico Medio basal) de las Cadenas Ibéricas (NE de España). Boletín Geológico y Minero, 115 (4): 683-698 ISSN: 0366-0176 Agnostida (Trilobita) de la Formación Valdemiedes (Leoniense: Cámbrico Medio basal) de las Cadenas Ibéricas (NE de España) M.E. Dies(1) y R. Gozalo(2) (1) Área y Museo de Paleontología. Facultad de Ciencias. Universidad de Zaragoza. E-50009 Zaragoza, España. E-mail: [email protected] (2) Departamento de Geología. Universitat de València. Dr. Moliner, 50. E-46100 Burjassot, España. E-mail: [email protected] RESUMEN El hallazgo de trilobites del Orden Agnostida del Leoniense Medio en las Cadenas Ibéricas (NE de España), así como material nuevo pro- cedente del Leoniense Inferior, han permitido completar el estudio taxonómico de este grupo en el Cámbrico Medio basal de este área. La presencia de dos poblaciones de la especie Condylopyge cruzensis Liñán y Gozalo, 1986 ha posibilitado realizar un estudio morfomé- trico y poblacional de la misma. Por otro lado, se ha identificado por primera vez el taxón Peronopsis aff. longinqua Öpik, 1979, lo que puede ser considerado como una herramienta más que apoye la correlación propuesta para el piso Leoniense y el Ordian/early Templentonian de Australia. Palabras clave: Agnostida, Cadenas Ibéricas, Cámbrico Medio, Formación Valdemiedes, Leoniense, trilobites Agnostida (Trilobita) from the Valdemiedes Formation (Leonian: low Middle Cambrian) of the Iberian Chains (NE Spain) ABSTRACT The discovery of Middle Leonian trilobites of the Agnostida Order in the Iberian Chains (NE Spain) together with new Lower Leonian mate- rial make possible to complete the taxonomic study of this group in the low Middle Cambrian of this area.
    [Show full text]
  • Trilobites of the Hagastrand Member (Tøyen Formation, Lowermost Arenig) from the Oslo Region, Norway. Part Il: Remaining Non-Asaphid Groups
    Trilobites of the Hagastrand Member (Tøyen Formation, lowermost Arenig) from the Oslo Region, Norway. Part Il: Remaining non-asaphid groups OLE A. HOEL Hoel, O. A.: Trilobites of the Hagastrand Member (Tøyen Formation, lowermost Arenig) from the Oslo Region, Norway. Part Il: remaining non-asaphid groups. Norsk Geologisk Tidsskrift, Vol. 79, pp. 259-280. Oslo 1999. ISSN 0029-196X. This is Part Il of a two-part description of the trilobite fauna of the Hagastrand Member (Tøyen Formation) in the Oslo, Eiker­ Sandsvær, Modum and Mjøsa areas. In this part, the non-asaphid trilobites are described, while the asaphid species have been described previously. The history and status of the Tremadoc-Arenig Boundary problem is also reviewed, and I have found no reason to insert a Hunnebergian Series between the Tremadoc and the Arenig series, as has been suggested by some workers. Descriptions of the localities yielding this special trilobite fauna are provided. Most of the 22 trilobite species found in the Hagastrand Member also occur in Sweden. The 12 non-asaphid trilobites described herein belong to the families Metagnostidae, Shumardiidae, Remopleurididae, Nileidae, Cyclopygidae, Raphiophoridae, Alsataspididae and Pliomeridae. One new species is described; Robergiella tjemviki n. sp. Ole A. Hoel, Paleontologisk Museum, Sars gate l, N-0562 Oslo, Norway. Introduction contemporaneous platform deposits in Sweden are domi­ nated by a condensed limestone succession. In Norway, the The Tremadoc-Arenig Boundary interval is a crucial point Tøyen Formation is divided into two members: the lower in the evolution of several invertebrate groups, especially among the graptolites and the trilobites. In the graptolites, this change consisted most significantly in the loss of bithekae and a strong increase in diversity.
    [Show full text]
  • SILURIAN TIMES NEWSLETTER of the INTERNATIONAL SUBCOMMISSION on SILURIAN STRATIGRAPHY (ISSS) (INTERNATIONAL COMMISSION on STRATIGRAPHY, ICS) No
    SILURIAN TIMES NEWSLETTER OF THE INTERNATIONAL SUBCOMMISSION ON SILURIAN STRATIGRAPHY (ISSS) (INTERNATIONAL COMMISSION ON STRATIGRAPHY, ICS) No. 27 (for 2019) Edited by ZHAN Renbin INTERNATIONAL UNION OF GEOLOGICAL SCIENCES President: CHENG Qiuming (Canada) Vice-Presidents: Kristine ASCH (Germany) William CAVAZZA (Italy) Secretary General: Stanley C. FINNEY (USA) Treasurer: Hiroshi KITAZATO (Japan) INTERNATIONAL COMMISSION ON STRATIGRAPHY Chairman: David A.T. HARPER (UK) Vice-Chairman: Brian T. HUBER (USA) Secretary General: Philip GIBBARD (UK) SUBCOMMISSION ON SILURIAN STRATIGRAPHY Chairman: Petr ŠTORCH (Czech Republic) Vice-Chairman: Carlo CORRADINI (Italy) Secretary: ZHAN Renbin (China) Other titular members: Anna ANTOSHKINA (Russia) Carlton E. BRETT (USA) Bradley CRAMER (USA) David HOLLOWAY (Australia) Jisuo JIN (Canada) Anna KOZŁOWSKA (Poland) Jiří KŘÍŽ (Czech Republic) David K. LOYDELL (UK) Peep MÄNNIK (Estonia) Michael J. MELCHIN (Canada) Axel MUNNECKE (Germany) Silvio PERALTA (Argentina) Thijs VANDENBROUCKE (Belgium) WANG Yi (China) Živilė ŽIGAITĖ (Lithuania) Silurian Subcommission website: http://silurian.stratigraphy.org 1 CONTENTS CHAIRMAN’S CORNER 3 ANNUAL REPORT OF SILURIAN SUBCOMMISSION FOR 2019 7 INTERNATIONAL COMMISSION ON STRATGRAPHY STATUTES 15 REPORTS OF ACTIVITIES IN 2019 25 1. Report on the ISSS business meeting 2019 25 2. Report on the 15th International Symposium on Early/Lower Vertebrates 28 3. Report on the 13th International Symposium on the Ordovician System in conjunction with the 3rd Annual Meeting of IGCP 653 32 GUIDELINES FOR THE ISSS AWARD: KOREN' AWARD 33 ANNOUNCEMENTS OF MEETINGS and ACTIVITIES 34 1. Lithological Meeting: GEOLOGY OF REEFS 34 SILURIAN RESEARCH 2019: NEWS FROM THE MEMBERS 36 RECENT PUBLICATIONS ON THE SILURIAN RESEARCH 67 MEMBERSHIP NEWS 77 1. List of all Silurian workers and interested colleagues 77 2.
    [Show full text]
  • 1414 Hughes.Vp
    The depositional environment and taphonomy of the Homerian Aulacopleura shales fossil assemblage near Lodìnice, Czech Republic (Prague Basin, Perunican microcontinent) NIGEL C. HUGHES, JIØÍ KØÍ, JOSEPH H.S. MACQUAKER & WARREN D. HUFF Excavation of Joachim Barrande’s classic fossil locality of the “Aulacopleura shales” exposed on Na Černidlech Hill, near Loděnice reveals that most specimens were recovered from a 1.4 m interval exposed in “Barrande’s pits”. These are located at the eastern end of a 0.4 km trench dug in the mid 1800’s to expose the interval along strike. Over an hundred bedding planes occur within the 1.4 m interval, and thousands of articulated trilobites have been collected at the site. In- dividual bed surfaces vary in the density, size, and taxonomic composition of the fossils contained. Some preserve a di- verse benthic shelly fauna, others are almost exclusively dominated by the trilobite Aulacopleura koninckii, and a third variety is apparently barren of all shelly fossils. Isolated sclerites of A. koninckii are rare, and on almost all bedding sur- faces exoskeletons are predominantly partially articulated and lack both alignment and sclerite fragmentation. The oc- currence of A. koninckii conforms in many ways to the characteristics of a Type I trilobite lagerstätte of Brett et al. (2012). The presence of enrolled A. koninckii suggests that final burial may have resulted from relatively rapid obrution, although the condition of partial articulation indicates that many carcasses or exuviae partially disaggregated before burial. The mean size and density of A. koninckii specimens varies markedly among bedding planes, with some assem- blages entirely comprised of juveniles, suggesting that notably dense trilobite clustering was not restricted only to repro- ductively mature individuals.
    [Show full text]
  • Available Generic Names for Trilobites
    AVAILABLE GENERIC NAMES FOR TRILOBITES P.A. JELL AND J.M. ADRAIN Jell, P.A. & Adrain, J.M. 30 8 2002: Available generic names for trilobites. Memoirs of the Queensland Museum 48(2): 331-553. Brisbane. ISSN0079-8835. Aconsolidated list of available generic names introduced since the beginning of the binomial nomenclature system for trilobites is presented for the first time. Each entry is accompanied by the author and date of availability, by the name of the type species, by a lithostratigraphic or biostratigraphic and geographic reference for the type species, by a family assignment and by an age indication of the type species at the Period level (e.g. MCAM, LDEV). A second listing of these names is taxonomically arranged in families with the families listed alphabetically, higher level classification being outside the scope of this work. We also provide a list of names that have apparently been applied to trilobites but which remain nomina nuda within the ICZN definition. Peter A. Jell, Queensland Museum, PO Box 3300, South Brisbane, Queensland 4101, Australia; Jonathan M. Adrain, Department of Geoscience, 121 Trowbridge Hall, Univ- ersity of Iowa, Iowa City, Iowa 52242, USA; 1 August 2002. p Trilobites, generic names, checklist. Trilobite fossils attracted the attention of could find. This list was copied on an early spirit humans in different parts of the world from the stencil machine to some 20 or more trilobite very beginning, probably even prehistoric times. workers around the world, principally those who In the 1700s various European natural historians would author the 1959 Treatise edition. Weller began systematic study of living and fossil also drew on this compilation for his Presidential organisms including trilobites.
    [Show full text]
  • Western North Greenland (Laurentia)
    BULLETIN OF THE GEOLOGICAL SOCIETY OF DENMARK · VOL. 69 · 2021 Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Miaolingian Series), western North Greenland (Laurentia) JOHN S. PEEL Peel, J.S. 2021. Trilobite fauna of the Telt Bugt Formation (Cambrian Series 2–Mi- aolingian Series), western North Greenland (Laurentia). Bulletin of the Geological Society of Denmark, Vol. 69, pp. 1–33. ISSN 2245-7070. https://doi.org/10.37570/bgsd-2021-69-01 Trilobites dominantly of middle Cambrian (Miaolingian Series, Wuliuan Stage) Geological Society of Denmark age are described from the Telt Bugt Formation of Daugaard-Jensen Land, western https://2dgf.dk North Greenland (Laurentia), which is a correlative of the Cape Wood Formation of Inglefield Land and Ellesmere Island, Nunavut. Four biozones are recognised in Received 6 July 2020 Daugaard-Jensen Land, representing the Delamaran and Topazan regional stages Accepted in revised form of the western USA. The basal Plagiura–Poliella Biozone, with Mexicella cf. robusta, 16 December 2020 Kochiella, Fieldaspis? and Plagiura?, straddles the Cambrian Series 2–Miaolingian Series Published online 20 January 2021 boundary. It is overlain by the Mexicella mexicana Biozone, recognised for the first time in Greenland, with rare specimens of Caborcella arrojosensis. The Glossopleura walcotti © 2021 the authors. Re-use of material is Biozone, with Glossopleura, Clavaspidella and Polypleuraspis, dominates the succes- permitted, provided this work is cited. sion in eastern Daugaard-Jensen Land but is seemingly not represented in the type Creative Commons License CC BY: section in western outcrops, likely reflecting the drastic thinning of the formation https://creativecommons.org/licenses/by/4.0/ towards the north-west.
    [Show full text]
  • Malformed Agnostids from the Middle Cambrian Jince Formation of the Pøíbram-Jince Basin, Czech Republic
    Malformed agnostids from the Middle Cambrian Jince Formation of the Pøíbram-Jince Basin, Czech Republic OLDØICH FATKA, MICHAL SZABAD & PETR BUDIL Two agnostids from Cambrian of the Barrandian area bear different types of skeletal malformations. The tiny pathologi- cal exoskeleton of Hypagnostus parvifrons (Linnarsson, 1869) has asymmetrically developed pygidial axis, while the posterior pygidial rim in the larger Phalagnostus prantli Šnajdr, 1957 has an irregular outline. • Key words: agnostids, Middle Cambrian, Jince Formation, Příbram-Jince Basin, Barrandian area, Czech Republic. FATKA, O., SZABAD,M.&BUDIL, P. 2009. Malformed agnostids from the Middle Cambrian Jince Formation of the Příbram-Jince Basin, Czech Republic. Bulletin of Geosciences 84(1), 121–126 (2 figures). Czech Geological Survey, Prague. ISSN 1214-1119. Manuscript received November 11, 2008; accepted in revised form January 9, 2009; published online January 23, 2009; issued March 31, 2009. Oldřich Fatka, Department of Geology and Palaeontology, Faculty of Science, Charles University, Albertov 6, Praha 2, CZ -128 43, Czech Republic; [email protected] • Michal Szabad, Obránců míru 75, 261 02 Příbram VII, Czech Re- public • Petr Budil, Czech Geological Survey, Klárov 3, Praha 1, CZ -118 21, Czech Republic; [email protected] Numerous examples of exoskeletal abnormalities have discussed by Babcock and Peng (2001). Öpik (1967) de- been described in various polymerid trilobites (e.g., Owen scribed and figured one pathological pygidium of Glyp- 1985, Babcock 1993, Whittington 1997), including para- tagnostus stolidotus Öpik, 1961 with hypertrophic devel- doxidid trilobites from the Cambrian Příbram-Jince Basin opment of the left side of the pygidium. of the Barrandian area (Šnajdr 1978).
    [Show full text]
  • A Case Study of Eyeless, Dimorphic Devonian Trilobites from Poland
    [Palaeontology, Vol. 59, Part 5, 2016, pp. 743–751] ANCIENT ANIMAL MIGRATION: A CASE STUDY OF EYELESS, DIMORPHIC DEVONIAN TRILOBITES FROM POLAND † by BŁAZEJ_ BŁAZEJOWSKI_ 1, CARLTON E. BRETT2,ADRIANKIN3, , † † ANDRZEJ RADWANSKI 4, and MICHAŁ GRUSZCZYNSKI 3, 1Institute of Palaeobiology, Polish Academy of Sciences, Twarda 51/55, 00-818, Warszawa, Poland; [email protected] 2Department of Geology, University of Cincinnati, Cincinnati, OH 45221-0013, USA; [email protected] 3‘Phacops’ – Association of Friends of Geosciences, Grajewska 13/40, Warszawa, 02-766, Poland 4Institute of Geology, University of Warsaw, Zwirki_ i Wigury 93, 02-089, Warszawa, Poland Typescript received 15 February 2016; accepted in revised form 8 July 2016 Abstract: We report evidence of one of the oldest known have migrated periodically to shallow marine areas for mass animal migratory episodes in the form of queues of the eye- mating and spawning. The sudden death of the trilobites in less trilobite Trimerocephalus chopini Kin & Błazejowski,_ the queues may have been caused by excess carbon dioxide from the Late Devonian (Famennian) of central Poland. In and hydrogen sulphide introduced into the bottom water by addition, there is evidence for two morphs in this popula- distal storm disturbance of anoxic sediments. This study tion, one with nine segments and the other with ten. We demonstrates the potential for further research on the evolu- infer that these queues represent mass migratory chains tion and ecology of aggregative behaviour in marine arthro- coordinated by chemotaxis, comparable to those observed in pods. modern crustaceans such as spiny lobsters, and further sug- gest that the two forms, which occur in an approximately Key words: animal migration, eyeless trilobite, Phacopinae, 1:1 ratio, may be dimorphs.
    [Show full text]
  • 1500 Peng.Vp
    Intraspecific variation and taphonomic alteration in the Cambrian (Furongian) agnostoid Lotagnostus americanus: new information from China SHANCHI PENG, LOREN E. BABCOCK, XUEJIAN ZHU, PER AHLBERG, FREDRIK TERFELT & TAO DAI The concept of the agnostoid arthropod species Lotagnostus americanus (Billings, 1860), which has been reported from numerous localities in the upper Furongian Series (Cambrian) of Laurentia, Gondwana, Baltica, Avalonia, and Siberia, is reviewed with emphasis on morphologic and taphonomic information afforded by large collections from Hunan in South China, Xinjiang in Northwest China, and Zhejiang in Southeast China. Comparisons are made with type and topotype material from Quebec, Canada, as well as material from elsewhere in Canada, the USA, the United Kingdom, Sweden, Russia, and Kazakhstan. The new information clarifies the limits of morphologic variability in L. americanus owing to ontogenetic changes and variation within holaspides, including inferred microevolution. It also provides details on apparent variation of taphonomic origin. The Chinese collections demonstrate a moderately wide variation in L. americanus, indicating that arguments favoring restriction of Lotagnostus species to narrowly defined, geographi- cally restricted forms are unwarranted. Species described as L. trisectus (Salter, 1864), L. asiaticus Troedsson, 1937, and L. punctatus Lu, 1964, for example, fall within the range of variation observed in L. americanus, and are regarded as ju- nior synonyms. The effaced form Lotagnostus obscurus Palmer, 1955 is removed from synonymy with L. americanus.A review of the stratigraphic distribution of L. americanus as construed here shows that the earliest occurrences of the spe- cies in all regions of the world are nearly synchronous. • Key words: Cambrian, Furongian, agnostoid, Lotagnostus americanus, China, Quebec.
    [Show full text]
  • 001-012 Primeras Páginas
    PUBLICACIONES DEL INSTITUTO GEOLÓGICO Y MINERO DE ESPAÑA Serie: CUADERNOS DEL MUSEO GEOMINERO. Nº 9 ADVANCES IN TRILOBITE RESEARCH ADVANCES IN TRILOBITE RESEARCH IN ADVANCES ADVANCES IN TRILOBITE RESEARCH IN ADVANCES planeta tierra Editors: I. Rábano, R. Gozalo and Ciencias de la Tierra para la Sociedad D. García-Bellido 9 788478 407590 MINISTERIO MINISTERIO DE CIENCIA DE CIENCIA E INNOVACIÓN E INNOVACIÓN ADVANCES IN TRILOBITE RESEARCH Editors: I. Rábano, R. Gozalo and D. García-Bellido Instituto Geológico y Minero de España Madrid, 2008 Serie: CUADERNOS DEL MUSEO GEOMINERO, Nº 9 INTERNATIONAL TRILOBITE CONFERENCE (4. 2008. Toledo) Advances in trilobite research: Fourth International Trilobite Conference, Toledo, June,16-24, 2008 / I. Rábano, R. Gozalo and D. García-Bellido, eds.- Madrid: Instituto Geológico y Minero de España, 2008. 448 pgs; ils; 24 cm .- (Cuadernos del Museo Geominero; 9) ISBN 978-84-7840-759-0 1. Fauna trilobites. 2. Congreso. I. Instituto Geológico y Minero de España, ed. II. Rábano,I., ed. III Gozalo, R., ed. IV. García-Bellido, D., ed. 562 All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopy, recording, or any information storage and retrieval system now known or to be invented, without permission in writing from the publisher. References to this volume: It is suggested that either of the following alternatives should be used for future bibliographic references to the whole or part of this volume: Rábano, I., Gozalo, R. and García-Bellido, D. (eds.) 2008. Advances in trilobite research. Cuadernos del Museo Geominero, 9.
    [Show full text]
  • Phylogenetic Analysis of the Olenellina Walcott, 1890 (Trilobita, Cambrian) Bruce S
    2 j&o I J. Paleont., 75(1), 2001, pp. 96-115 Copyright © 2001, The Paleontological Society 0022-3360/01 /0075-96$03.00 PHYLOGENETIC ANALYSIS OF THE OLENELLINA WALCOTT, 1890 (TRILOBITA, CAMBRIAN) BRUCE S. LIEBERMAN Departments of Geology and Ecology and Evolutionary Biology, University of Kansas, Lindley Hall, Lawrence 66045, <[email protected]> ABSTRACT—Phylogenetic analysis was used to evaluate evolutionary relationships within the Cambrian suborder Olenellina Walcott, 1890; special emphasis was placed on those taxa outside of the Olenelloidea. Fifty-seven exoskeletal characters were coded for 24 taxa within the Olenellina and two outgroups referable to the "fallotaspidoid" grade. The Olenelloidea, along with the genus Gabriellus Fritz, 1992, are the sister group of the Judomioidea Repina, 1979. The "Nevadioidea" Hupe, 1953 are a paraphyletic grade group. Four new genera are recognized, Plesionevadia, Cambroinyoella, Callavalonia, and Sdzuyomia, and three new species are described, Nevadia fritzi, Cirquella nelsoni, and Cambroinyoella wallacei. Phylogenetic parsimony analysis is also used to make predictions about the ancestral morphology of the Olenellina. This morphology most resembles the morphology found in Plesionevadia and Pseudoju- domia Egorova in Goryanskii and Egorova, 1964. INTRODUCTION group including the "fallotaspidoids" plus the Redlichiina, and HE ANALYSIS of evolutionary patterns during the Early Cam- potentially all other trilobites. Where the Agnostida fit within this T brian has relevance to paleontologists and evolutionary bi- evolutionary topology depends on whether or not one accepts the ologists for several reasons. Chief among these are expanding our arguments of either Fortey and Whittington (1989), Fortey (1990), knowledge of evolutionary mechanisms and topologies. Regard- and Fortey and Theron (1994) or Ramskold and Edgecombe ing evolutionary mechanisms, because the Cambrian radiation (1991).
    [Show full text]