Genetics, Epigenetics and Public Health: a Primer

Total Page:16

File Type:pdf, Size:1020Kb

Genetics, Epigenetics and Public Health: a Primer Genetics, Epigenetics and Public Health: A Primer Muin J. Khoury MD, PhD CDC Office of Public Health Genomics Outline Public health in the genomics era Genetics and epigenetics 101 Using epigenetics in public health: opportunities and challenges What is the Role of Public Health in Translating Genomics into Health Impact? Assessment- Policy- Assurance CDC Office of Public Health Genomics Mission Provides timely and credible information for the effective and responsible translation of genome-based discoveries into public health & health care 1. Identify evidence-based applications 2. Inform & communicate 3. Integrate into practice & programs Public Health Genomics Has Come of Age CDC Home Page September 3, 2014 CDC Horizon Scanning for Genomics and Health Impact Public Health Genomics Priorities 2012-2017 2012 Public Health Genomics 2012 3-Tiered Classification of Evidence for Action Genetics 101 All Diseases Result from Gene-Environment Interaction Genetic variation Environmental risk factors Human Disease 3 billion base pairs, Potentially modifiable millions of mutations & hence public health variants, Non- Modifiable interest Genetic Diseases: (Mendelian disorders-PKU Example, 5000+ conditions, 5%-10% of human disease “Complex” Diseases (heart disease, cancer, diabetes, environmental & infectious agents – 90%-95% of human disease ) Genetics 101 Interactions Getting More Complex What Genomes? What Genome? Environmental Genetic variation Inherited (germ) risk factors Acquired (somatic) Human What Environments? (e.g. cancer) Disease Infection Symbiotic (microbiome) Chemicals Vectors Physical agents Diet Behavioral Social Genetics 101 Interaction Getting Even More Complex Epigenetics!! What Genome? Environmental Genetic variation Inherited risk factors Acquired Human What Environments? (e.g. cancer) Disease Infection Symbiotic (microbiome) Chemicals Vectors Physical agents Epigenetic and post-genomic Diet Potentially modifiable modification hence public health Behavioral interest Social “Epigenetics” in the Scientific Literature A Tale of Two Mice (Agouti gene & Epigenetics) Identical twins: In yellow mouse, Agouti gene is unmethylated and turned on all the time, while in the brown mouse, the gene is completely methylated and shut down Effect of BPA exposure Effect of Folic acid http://www.pbs.org/wgbh/nova/body/epigenetic-mice.html Two Biological Codes Genetic code: sequence of DNA (nucleotide sequences) that tells a cell how to build one protein. Set for life. Epigenetic code: chemical modifications in the structure of the chromosomes that influence which genes can be expressed and in which tissues. Potentially altered in response to environments (especially early environments). From C. Kuzawa EPIGENETICS 3 Types of Epigenetic alterations –transcriptional, translational, or post-translational levels without change in DNA sequence Methylation of DNA Modifications of RNA-mediated histones modifications DNMT1 P U • RNA-directed DNA methylation DNMT3a Me • RNA-interference mediated chromatin DNMT3b remodeling • RNAi, siRNA, miRNA … -3.0 0 3.0 SAM SAH Control Treated A A - acetylation Me - methylation Genomic Imprinting P - phosphorylation U - ubiquitination Epigenetics, Environment and Development ART, Assisted Reproductive Technology CVS, Cerebrovascular System. Foley et al. Am J Epid 169:389. Maternal Transgenerational Epigenetic Inheritance Also applies to fathers! Drake & Liu (2009), Trends Endocrinology Metab 21(4) Developmental Origins of Adult Health Barker, DP (1997) Nutrition: 13(9) 807-13 Stress hormones or Fetal Stress or nutrient restriction Undernutrition Developmental response Inflammation Insulin resistance Visceral fat Hypertension Cardiovascular Disease From C. Kuzawa Early Environments Can Influence Development & Adult Health • Developmental biology is sensitive to prenatal and early postnatal conditions. • Parental psychosocial and nutritional stressors lead to durable biological changes in offspring that elevate future risk for cardiovascular and other common diseases. • Allows environmental experiences of one generation to have lingering impacts on adult health disparities in future generations. • Epigenetics is a biological mechanism mediating such effects – From C. Kuzawa Exposures Genetic Epigenetic Inherited Acquired Inherited Acquired genetic DNA damage/ epigenetic epigenetic make-up mutation make-up changes Adverse Effects P. Schulte Using Epigenetics in Public Health Methylation Epidemiology studies have measured both methylation of specific genes and global methylation (e.g. benzene, pollutants, lead, arsenic) Both hypo and hypermethylation results found Perhaps most intriguing are studies that explore associations between social or behavioral factors and epigenetic regulation (e.g. economic deprivation, work stress, and inflammation) To date, studies that incorporate epigenetic measurements have rarely validated biological effects of epigenetic changes via RNA or protein expression Impact of perinatal exposures on long term outcomes (BPA) Using Epigenetics in Public Health Histones: a few studies have investigated the influence of environmental exposures on global levels of specific histone modifications. These studies require availability of intact protein fractions, and quantification is currently not cost-effective for large studies For example, higher inhalational exposure to iron, arsenic, and nickel, as quantified by personal air monitors Cancer: Epigenetic Disease Remains the most actively studied field. A heterogeneous set of diseases, displaying both genetic and epigenetic etiologies. In general the epigenome is widely hypomethylated compared to normal tissue- inactivated tumor suppression genes (some exceptions) Animal and cell line models of specific pathways serve as critical tools Need integration of laboratory and epidemiological approaches Methodologic Issues How to make sense out of epigenetic data . Pattern and level may vary across tissues and cells . Impact of confounders . Selecting appropriate statistical models . Can DNA from specimen banks be used? . Need to link epigenetic changes and apical endpoints P. Schulte Methodologic Issues No Consensus How to Model Methylation Appropriate statistical model will depend on the scientific question of interest and knowledge about biological pathways Since methylation CpG sites often exist in clusters and may show correlated methylation changes, analytical methods for summarizing correlated are needed Since most epigenetic data summarizes methylation at individual CpG sites as proportions specific models for proportional data will be required Disentangling genetic and epigenetic effects could be a challenge. P. Schulte Summary Public health in the genomics era We are paying more attention to how we can use pathogen and human to improve health & prevent disease Genetics and epigenetics 101 Epigenetics as a link between genes & environment and possible biological mediator for health disparities Using epigenetics in public health Numerous opportunities and challenges, stay tuned In the meantime, increasing number of genomic applications can be used to save lives today.
Recommended publications
  • Intelligent Design, Abiogenesis, and Learning from History: Dennis R
    Author Exchange Intelligent Design, Abiogenesis, and Learning from History: Dennis R. Venema A Reply to Meyer Dennis R. Venema Weizsäcker’s book The World View of Physics is still keeping me very busy. It has again brought home to me quite clearly how wrong it is to use God as a stop-gap for the incompleteness of our knowledge. If in fact the frontiers of knowledge are being pushed back (and that is bound to be the case), then God is being pushed back with them, and is therefore continually in retreat. We are to find God in what we know, not in what we don’t know; God wants us to realize his presence, not in unsolved problems but in those that are solved. Dietrich Bonhoeffer1 am thankful for this opportunity to nature, is the result of intelligence. More- reply to Stephen Meyer’s criticisms over, this assertion is proffered as the I 2 of my review of his book Signature logical basis for inferring design for the in the Cell (hereafter Signature). Meyer’s origin of biological information: if infor- critiques of my review fall into two gen- mation only ever arises from intelli- eral categories. First, he claims I mistook gence, then the mere presence of Signature for an argument against bio- information demonstrates design. A few logical evolution, rendering several of examples from Signature make the point my arguments superfluous. Secondly, easily: Meyer asserts that I have failed to refute … historical scientists can show that his thesis by not providing a “causally a presently acting cause must have adequate alternative explanation” for the been present in the past because the origin of life in that the few relevant cri- proposed candidate is the only known tiques I do provide are “deeply flawed.” cause of the effect in question.
    [Show full text]
  • An Introduction to the CDC Public Health Genomics Knowledge Base
    Division of Public Health Information Dissemination Center for Surveillance, Epidemiology, and Laboratory Services An Introduction to the CDC Public Health Genomics Knowledge Base Marta Gwinn, Dave Dotson, Wei Yu & Ridgely Fisk Green Office of Public Health Genomics Division of Public Health Information Dissemination CDC Office of Public Health Genomics (OPHG) Effective and responsible translation of genome-based discoveries into disease prevention and population health https://www.cdc.gov/genomics 1. Identify 2. Inform 3. Integrate evidence-based applications and communicate into practice & programs OPHG, DPHID, CSELS CDC Information Database Why did we build it? . Challenge: Finding information about genomics- and family health history-related activities at CDC . Opportunity: Provide a centralized, searchable, publicly available database for CDC resources related to genomics and family health history CDC-Authored Genomics Publications Database Why did we build it? . Challenge: Finding CDC-authored publications on genomics and family health history . Opportunity: Provide a centralized, searchable, publicly available database for these CDC publications . Challenge: CDC’s work in genomics and family health history is not well known . Opportunity: Showcase CDC publications to highlight work related to genomics and family health history CDC-Authored Genomic Publications Database continued . Scientific articles and reports with at least one CDC author . CDC Science Clips: https://www.cdc.gov/library/sciclips/ . PubMed . Scopus affiliation search . Author notifications Genomics and Health Impact Scan Database Why did we build it? . Challenge: Keeping up with the latest developments in genomics and family health history relevant to public health . Opportunity: Identify the latest publications and other resources on population-based applications of genomic discoveries .
    [Show full text]
  • 13 Genomics and Bioinformatics
    Enderle / Introduction to Biomedical Engineering 2nd ed. Final Proof 5.2.2005 11:58am page 799 13 GENOMICS AND BIOINFORMATICS Spencer Muse, PhD Chapter Contents 13.1 Introduction 13.1.1 The Central Dogma: DNA to RNA to Protein 13.2 Core Laboratory Technologies 13.2.1 Gene Sequencing 13.2.2 Whole Genome Sequencing 13.2.3 Gene Expression 13.2.4 Polymorphisms 13.3 Core Bioinformatics Technologies 13.3.1 Genomics Databases 13.3.2 Sequence Alignment 13.3.3 Database Searching 13.3.4 Hidden Markov Models 13.3.5 Gene Prediction 13.3.6 Functional Annotation 13.3.7 Identifying Differentially Expressed Genes 13.3.8 Clustering Genes with Shared Expression Patterns 13.4 Conclusion Exercises Suggested Reading At the conclusion of this chapter, the reader will be able to: & Discuss the basic principles of molecular biology regarding genome science. & Describe the major types of data involved in genome projects, including technologies for collecting them. 799 Enderle / Introduction to Biomedical Engineering 2nd ed. Final Proof 5.2.2005 11:58am page 800 800 CHAPTER 13 GENOMICS AND BIOINFORMATICS & Describe practical applications and uses of genomic data. & Understand the major topics in the field of bioinformatics and DNA sequence analysis. & Use key bioinformatics databases and web resources. 13.1 INTRODUCTION In April 2003, sequencing of all three billion nucleotides in the human genome was declared complete. This landmark of modern science brought with it high hopes for the understanding and treatment of human genetic disorders. There is plenty of evidence to suggest that the hopes will become reality—1631 human genetic diseases are now associated with known DNA sequences, compared to the less than 100 that were known at the initiation of the Human Genome Project (HGP) in 1990.
    [Show full text]
  • Genomics and Its Impact on Science and Society: the Human Genome Project and Beyond
    DOE/SC-0083 Genomics and Its Impact on Science and Society The Human Genome Project and Beyond U.S. Department of Energy Genome Research Programs: genomics.energy.gov A Primer ells are the fundamental working units of every living system. All the instructions Cneeded to direct their activities are contained within the chemical DNA (deoxyribonucleic acid). DNA from all organisms is made up of the same chemical and physical components. The DNA sequence is the particular side-by-side arrangement of bases along the DNA strand (e.g., ATTCCGGA). This order spells out the exact instruc- tions required to create a particular organism with protein complex its own unique traits. The genome is an organism’s complete set of DNA. Genomes vary widely in size: The smallest known genome for a free-living organism (a bac- terium) contains about 600,000 DNA base pairs, while human and mouse genomes have some From Genes to Proteins 3 billion (see p. 3). Except for mature red blood cells, all human cells contain a complete genome. Although genes get a lot of attention, the proteins DNA in each human cell is packaged into 46 chro- perform most life functions and even comprise the mosomes arranged into 23 pairs. Each chromosome is majority of cellular structures. Proteins are large, complex a physically separate molecule of DNA that ranges in molecules made up of chains of small chemical com- length from about 50 million to 250 million base pairs. pounds called amino acids. Chemical properties that A few types of major chromosomal abnormalities, distinguish the 20 different amino acids cause the including missing or extra copies or gross breaks and protein chains to fold up into specific three-dimensional rejoinings (translocations), can be detected by micro- structures that define their particular functions in the cell.
    [Show full text]
  • Genetic Effects on Microsatellite Diversity in Wild Emmer Wheat (Triticum Dicoccoides) at the Yehudiyya Microsite, Israel
    Heredity (2003) 90, 150–156 & 2003 Nature Publishing Group All rights reserved 0018-067X/03 $25.00 www.nature.com/hdy Genetic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel Y-C Li1,3, T Fahima1,MSRo¨der2, VM Kirzhner1, A Beiles1, AB Korol1 and E Nevo1 1Institute of Evolution, University of Haifa, Mount Carmel, Haifa 31905, Israel; 2Institute for Plant Genetics and Crop Plant Research, Corrensstrasse 3, 06466 Gatersleben, Germany This study investigated allele size constraints and clustering, diversity. Genome B appeared to have a larger average and genetic effects on microsatellite (simple sequence repeat number (ARN), but lower variance in repeat number 2 repeat, SSR) diversity at 28 loci comprising seven types of (sARN), and smaller number of alleles per locus than genome tandem repeated dinucleotide motifs in a natural population A. SSRs with compound motifs showed larger ARN than of wild emmer wheat, Triticum dicoccoides, from a shade vs those with perfect motifs. The effects of replication slippage sun microsite in Yehudiyya, northeast of the Sea of Galilee, and recombinational effects (eg, unequal crossing over) on Israel. It was found that allele distribution at SSR loci is SSR diversity varied with SSR motifs. Ecological stresses clustered and constrained with lower or higher boundary. (sun vs shade) may affect mutational mechanisms, influen- This may imply that SSR have functional significance and cing the level of SSR diversity by both processes. natural constraints.
    [Show full text]
  • Gene Prediction and Genome Annotation
    A Crash Course in Gene and Genome Annotation Lieven Sterck, Bioinformatics & Systems Biology VIB-UGent [email protected] ProCoGen Dissemination Workshop, Riga, 5 nov 2013 “Conifer sequencing: basic concepts in conifer genomics” “This Project is financially supported by the European Commission under the 7th Framework Programme” Genome annotation: finding the biological relevant features on a raw genomic sequence (in a high throughput manner) ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Thx to: BSB - annotation team • Lieven Sterck (Ectocarpus, higher plants, conifers, … ) • Yao-cheng Lin (Fungi, conifers, …) • Stephane Rombauts (green alga, mites, …) • Bram Verhelst (green algae) • Pierre Rouzé • Yves Van de Peer ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Annotation experience • Plant genomes : A.thaliana & relatives (e.g. A.lyrata), Poplar, Physcomitrella patens, Medicago, Tomato, Vitis, Apple, Eucalyptus, Zostera, Spruce, Oak, Orchids … • Fungal genomes: Laccaria bicolor, Melampsora laricis- populina, Heterobasidion, other basidiomycetes, Glomus intraradices, Pichia pastoris, Geotrichum Candidum, Candida ... • Algal genomes: Ostreococcus spp, Micromonas, Bathycoccus, Phaeodactylum (and other diatoms), E.hux, Ectocarpus, Amoebophrya … • Animal genomes: Tetranychus urticae, Brevipalpus spp (mites), ... ProCoGen Dissemination Workshop, Riga, 5 nov 2013 Why genome annotation? • Raw sequence data is not useful for most biologists • To be meaningful to them it has to be converted into biological significant knowledge
    [Show full text]
  • Genetic Code
    AccessScience from McGraw-Hill Education Page 1 of 9 www.accessscience.com Genetic code Contributed by: P. Schimmel, K. Ewalt Publication year: 2014 The rules by which the base sequences of deoxyribonucleic acid (DNA) are translated into the amino acid sequences of proteins. Each sequence of DNA that codes for a protein is transcribed or copied ( Fig. 1 ) into messenger ribonucleic acid (mRNA). Following the rules of the code, discrete elements in the mRNA, known as codons, specify each of the 20 different amino acids that are the constituents of proteins. In a process called translation, the cell decodes the message in mRNA. During translation ( Fig. 2 ), another class of RNAs, called transfer RNAs (tRNAs), are coupled to amino acids, bind to the mRNA, and in a step-by-step fashion provide the amino acids that are linked together in the order called for by the mRNA sequence. The specific attachment of each amino acid to the appropriate tRNA, and the precise pairing of tRNAs via their anticodons to the correct codons in the mRNA, form the basis of the genetic code. See also: DEOXYRIBONUCLEIC ACID (DNA) ; PROTEIN ; RIBONUCLEIC ACID (RNA) . Universal genetic code The genetic information in DNA is found in the sequence or order of four bases that are linked together to form each strand of the two-stranded DNA molecule. The bases of DNA are adenine, guanine, thymine, and cytosine, which are abbreviated A, G, T, and C. Chemically, A and G are purines, and C and T are pyrimidines. The two strands of DNA are wound about each other in a double helix that looks like a twisted ladder (Fig.
    [Show full text]
  • Dna the Code of Life Worksheet
    Dna The Code Of Life Worksheet blinds.Forrest Jowled titter well Giffy as misrepresentsrecapitulatory Hughvery nomadically rubberized herwhile isodomum Leonerd exhumedremains leftist forbiddenly. and sketchable. Everett clem invincibly if arithmetical Dawson reinterrogated or Rewriting the Code of Life holding for Genetics and Society. C A process look a genetic code found in DNA is copied and converted into value chain of. They may negatively impact of dna worksheet answers when published by other. Cracking the Code of saw The Biotechnology Institute. DNA lesson plans mRNA tRNA labs mutation activities protein synthesis worksheets and biotechnology experiments for open school property school biology. DNA the code for life FutureLearn. Cracked the genetic code to DNA cloning twins and Dolly the sheep. Dna are being turned into consideration the code life? DNA The Master Molecule of Life CDN. This window or use when he has been copied to a substantial role in a qualified healthcare professional journals as dna the pace that the class before scientists have learned. Explore the Human Genome Project within us Learn about DNA and genomics role in medicine and excellent at the Smithsonian National Museum of Natural. DNA The Double Helix. Most enzymes create a dna the code of life worksheet is getting the. Worksheet that describes the structure of DNA students color the model according to instructions Includes a. Biology Materials Handout MA-H2 Microarray Virtual Lab Activity Worksheet. This user has, worksheet the dna code of life, which proteins are carried on. Notes that scientists have worked 10 years to disappoint the manner human genome explains that DNA is a chemical message that began more data four billion years ago.
    [Show full text]
  • Ecological Developmental Biology and Disease States CHAPTER 5 Teratogenesis: Environmental Assaults on Development 167
    Integrating Epigenetics, Medicine, and Evolution Scott F. Gilbert David Epel Swarthmore College Hopkins Marine Station, Stanford University Sinauer Associates, Inc. • Publishers Sunderland, Massachusetts U.S.A. © Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher. Brief Contents PART 1 Environmental Signals and Normal Development CHAPTER 1 The Environment as a Normal Agent in Producing Phenotypes 3 CHAPTER 2 How Agents in the Environment Effect Molecular Changes in Development 37 CHAPTER 3 Developmental Symbiosis: Co-Development as a Strategy for Life 79 CHAPTER 4 Embryonic Defenses: Survival in a Hostile World 119 PART 2 Ecological Developmental Biology and Disease States CHAPTER 5 Teratogenesis: Environmental Assaults on Development 167 CHAPTER 6 Endocrine Disruptors 197 CHAPTER 7 The Epigenetic Origin of Adult Diseases 245 PART 3 Toward a Developmental Evolutionary Synthesis CHAPTER 8 The Modern Synthesis: Natural Selection of Allelic Variation 289 CHAPTER 9 Evolution through Developmental Regulatory Genes 323 CHAPTER 10 Environment, Development, and Evolution: Toward a New Synthesis 369 CODA Philosophical Concerns Raised by Ecological Developmental Biology 403 APPENDIX A Lysenko, Kammerer, and the Truncated Tradition of Ecological Developmental Biology 421 APPENDIX B The Molecular Mechanisms of Epigenetic Change 433 APPENDIX C Writing Development Out of the Modern Synthesis 441 APPENDIX D Epigenetic Inheritance Systems:
    [Show full text]
  • Genetic Code: a New Understanding of Codon – Amino Acid Assignment
    GENETIC CODE: A NEW UNDERSTANDING OF CODON – AMINO ACID ASSIGNMENT Zvonimir M. Damjanović* and Miloje M. Rakočević** *Montenegrin Academy of science and arts (CANU), Podgorica, Montenegro ** Department of Chemistry, Faculty of Science, University of Niš, Serbia (E-mail: [email protected]) Abstract. In this work it is shown that 20 canonical amino acids (AAs) within genetic code appear to be a whole system with strict AAs positions; more exactly, with AAs ordinal number in three variants; first variant 00-19, second 00-21 and third 00-20. The ordinal number follows from the positions of belonging codons, i.e. their digrams (or “doublets”). The reading itself is a reading in quaternary numbering system if four bases possess the values within a specific logical square: A = 0, C = 1, G = 2, U = 3. By this, all splittings, distinctions and classifications of AAs appear to be in accordance to atom and nucleon number balance as well as to the other physico-chemical properties, such as hydrophobicity and polarity. K e y w o r d s: Genetic code, Genetic code table, Translation, Numbering system, Spiral model of Genetic code, Canonical amino acids, Logical square, Hydrophobicity, Polarity, Hydropathy, Perfect numbers, Friendly numbers. 1 INTRODUCTION Gamow was the first who attempted to resolve the problem of codon – amino acid assignment, i.e. to answer the question how 64 codons can have the possible meanings for 20 canonical amino acids (AAs). His solution was the so called “diamond code” (Gamow, 1954) in which 64 codons were classified into 20 classes, corresponding to 20 AAs (Hayes, 1998: “Symmetries of the diamond code sort the 64 codons into 20 classes ..
    [Show full text]
  • Early-Life Experience, Epigenetics, and the Developing Brain
    Neuropsychopharmacology REVIEWS (2015) 40, 141–153 & 2015 American College of Neuropsychopharmacology. All rights reserved 0893-133X/15 REVIEW ............................................................................................................................................................... www.neuropsychopharmacologyreviews.org 141 Early-Life Experience, Epigenetics, and the Developing Brain 1 ,1 Marija Kundakovic and Frances A Champagne* 1Department of Psychology, Columbia University, New York, NY, USA Development is a dynamic process that involves interplay between genes and the environment. In mammals, the quality of the postnatal environment is shaped by parent–offspring interactions that promote growth and survival and can lead to divergent developmental trajectories with implications for later-life neurobiological and behavioral characteristics. Emerging evidence suggests that epigenetic factors (ie, DNA methylation, posttranslational histone modifications, and small non- coding RNAs) may have a critical role in these parental care effects. Although this evidence is drawn primarily from rodent studies, there is increasing support for these effects in humans. Through these molecular mechanisms, variation in risk of psychopathology may emerge, particularly as a consequence of early-life neglect and abuse. Here we will highlight evidence of dynamic epigenetic changes in the developing brain in response to variation in the quality of postnatal parent–offspring interactions. The recruitment of epigenetic pathways for the
    [Show full text]
  • Genetics, Epigenetics and Disease a Literature Review By: Anthony M
    Genetics, Epigenetics and Disease A Literature Review By: Anthony M. Pasek Faculty Advisor: Rodger Tepe, PhD A senior research project submitted in partial requirement for the degree Doctor of Chiropractic August 11, 2011 Abstract Objective – This article provides an overview of the scientific literature available on the subject of genetic mechanisms of disease etiology as compared to epigenetic mechanisms of disease etiology. The effects of environmental influences on genetic expression and transgenerational inheritance will also be examined. Methods – Searches of the keywords listed below in the databases PubMed and EBSCO Host yielded referenced articles from indexed journals, literature reviews, pilot studies, longitudinal studies, and conference meeting reports. Conclusion – Although current research trends indicate a relationship between the static genome and the dynamic environment and offer epigenetics as a mechanism, further research is necessary. Epigenetic processes have been implicated in many diseases including diabetes mellitus, obesity, cardiovascular disease, metabolic disease, cancer, autism, Alzheimer’s disease, depression, and addiction. Keywords – genetics, central dogma of biology, genotype, phenotype, genomic imprinting, epigenetics, histone modification, DNA methylation, agouti mice, epigenetic drift, Överkalix, Avon Longitudinal Study of Parents and Children (ALSPAC). 2 Introduction Genetics has long been the central field of biology and it’s central dogma states that DNA leads to RNA, which leads to protein and ultimately determines human health or sickness1. The Human Genome Project marked a great triumph for humanity and researchers expected to solve the riddle of many complex diseases with the knowledge gleamed from this project. However, many more questions were raised than answered. Several rare genetic disorders including hemophilia and cystic fibrosis were explained by alterations in the genetic code but true genetic diseases only affect about one percent of the human population2.
    [Show full text]