Supersymmetry for Mathematicians: an Introduction

Total Page:16

File Type:pdf, Size:1020Kb

Supersymmetry for Mathematicians: an Introduction COU R A N T V. S . V A R A D A R A J A N LECTURE NOTES Supersymmetry for Mathematicians: An Introduction American Mathematical Society AMS Courant Institute of Mathematical Sciences A...,. A i N., I I. I M A. 1.11.... 11 11 Supersymmetry for Mathematicians: An Introduction Courant Lecture Notes in Mathematics Executive Editor Jalal Shatah Managing Editor Paul D. Monsour Assistant Editor Reeva Goldsmith Copy Editor Will Klump V. S. Varadarajan University of California, Los Angeles 11 Supersymmetry for Mathematicians: An Introduction Courant Institute of Mathematical Sciences New York University New York, New York American Mathematical Society Providence, Rhode Island 2000 Mathematics Subject Classification. Primary 58A50, 58C50, 17B70, 22E99; Secondary 14A22, 14M30, 32C11. For additional information and updates on this book, visit www.ams.org/bookpages/cln-11 Library of Congress Cataloging-in-Publication Data Varadarajan, V. S. Supersymmetry for mathematicians: an introduction/V. S. Varadarajan. p. cm. (Courant lecture notes; 11) Includes bibliographical references. ISBN 0-8218-3574-2 (alk. paper) 1. Supersymmetry.I. Title.II. Series. QA174.17.S9V372004 539.7'25-dc22 2004052349 Copying and reprinting.Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to reprint -permission®ams.org. © 2004 by the author. All rights reserved. Printed in the United States of America. The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 090807060504 Contents Preface vii Chapter 1.Introduction 1 1.1.Introductory Remarks on Supersymmetry 1 1.2.Classical Mechanics and the Electromagnetic and Gravitational Fields 2 1.3.Principles of Quantum Mechanics 9 1.4.Symmetries and Projective Unitary Representations 17 1.5.Poincare Symmetry and Particle Classification 23 1.6.Vector Bundles and Wave Equations: The Maxwell, Dirac, and Weyl Equations 37 1.7.Bosons and Fermions 48 1.8.Suipersymmetry as the Symmetry of a Z2-Graded Geometry 51 1.9.References 52 Chapter 2.The Concept of a Supermanifold 59 2.1.Geometry of Physical Space 59 2.2.Riemann's Inaugural Talk 63 2.3.Einstein and the Geometry of Spacetime 66 2.4.Mathematical Evolution of the Concept of Space and Its Symmetries 67 2.5.Geometry and Algebra 72 2.6.A Brief Look Ahead 76 2.7.References 79 Chapter 3.Super Linear Algebra 83 3.1.The Category of Super Vector Spaces 83 3.2.The Super Poincare Algebra of Gol'fand-Likhtman and Volkov- Akulov 90 3.3.Conformal Spacetime 95 3.4.The Superconformal Algebra of Wess and Zumino 108 3.5.Modules over a Supercommutative Superalgebra 113 3.6.The Berezinian (Superdeterminant) 116 3.7.The Categorical Point of View 119 3.8.References 124 Chapter 4.Elementary Theory of Supermanifolds 127 4.1.The Category of Ringed Spaces 127 V Vi CONTENTS 4.2.Supermanifolds 130 4.3.Morphisms 138 4.4.Differential Calculus 143 4.5.Functor of Points 150 4.6.Integration on Supermanifolds 152 4.7.Submanifolds: Theorem of Frobenius 157 4.8.References 167 Chapter 5.Clifford Algebras, Spin Groups, and Spin Representations 169 5.1.Prologue 169 5.2.Cartan's Theorem on Reflections in Orthogonal Groups 174 5.3.Clifford Algebras and Their Representations 178 5.4.Spin Groups and Spin Representations 192 5.5.Spin Representations as Clifford Modules 203 5.6.References 208 Chapter 6.Fine Structure of Spin Modules 211 6.1.Introduction 211 6.2.The Central Simple Superalgebras 212 6.3.The Super Brauer Group of a Field 222 6.4.Real Clifford Modules 227 6.5.Invariant Forms 236 6.6.Morphisms from Spin Modules to Vectors and Exterior Tensors 250 6.7.The Minkowski Signature and Extended Supersymmetry 256 6.8.Image of the Real Spin Group in the Complex Spin Module 262 6.9.References 272 Chapter 7.Superspacetimes and Super Poincare Groups 273 7.1.Super Lie Groups and Their Super Lie Algebras 273 7.2.The Poincare-Birkhoff-Wilt Theorem 279 7.3.The Classical Series of Super Lie Algebras and Groups 289 7.4.Superspacetimes 294 7.5.Super Poincare Groups 299 7.6.References 299 Preface These notes are essentially the contents of a minicourse I gave at the Courant Institute in the fall of 2002. I have expanded the lectures by discussing spinors at greater length and by including treatments of integration theory and the local Frobenius theorem, but otherwise have not altered the plan of the course. My aim was and is to give an introduction to some of the mathematical aspects of supersymmetry with occasional physical motivation. I do not discuss supergravity. Not much is original in these notes. I have drawn freely and heavily from the beautiful exposition of P. Deligne and J. Morgan, which is part of the AMS volumes on quantum field theory and strings for mathematicians, and from the books and articles of D. S. Freed and D. A. Leites, all of which and more are referred to in the introduction. I have profited greatly from the lectures that Professor S. Ferrara gave at UCLA as well as from many extended conversations with him, both at UCLA and at CERN, where I spent a month in 2001. He introduced me to this part of math- ematical physics and was a guide and participant on a semintr on supersymmetry that I ran in UCLA in 2000 with Rita Fioresi. I am deeply grateful to him for his unfailing patience and courtesy. I also gave a course in UCLA and a miniwork- shop on supersymmetry in 2000 in Genoa, Italy, in the Istituto Nazionale di Fisica Nucleare. I am very grateful to Professors E. Beltrametti and G. Cassinelli, who ar- ranged that visit; to Paolo Aniello, who made notes of my UCLA course; to Ernesto De Vito and Alberto Levrero, whose enthusiasm and energy made the Genoa work- shop so memorable; and finally to Lauren Caston, who participated in the Courant course with great energy and enthusiasm. I also wish to thank Alessandro Toigo and Claudio Carmeli of INFN, Genoa, who worked through the entire manuscript and furnished me with a list of errors and misprints in the original version of the notes, and whose infectious enthusiasm lifted my spirits in the last stages of this work. I am very grateful to Julie Honig for her help during all stages of this work. Last, but not least, I wish to record my special thanks to Paul Monsour and Reeva Goldsmith whose tremendous effort in preparing and editing the manuscript has made this book enormously better than what it was when I sent it to them. The coursein the Courant Institute was givenatthe suggestion of Professor S. R. S. Varadhan. My visit came at a time of mourning and tragedy for him in the aftermath of the 9/11 catastrophe, and I do not know how he found the time and energy to take care of all of us. It was a very special time for us and for him, and in my mind this course and these notes will always appear as a small effort on my part to alleviate the pain and grief by thinking about some beautiful things that are far bigger than ourselves. V. S. Varadarajan Pacific Palisades March 2004 vii CHAPTER 1 Introduction 1.1. Introductory Remarks on Supersymmetry The subject of supersymmetry (SUSY) is a part of the theory of elementary particles and their interactions and the still unfinished quest of obtaining a unified view of all the elementary forces in a manner compatible with quantum theory and general relativity. Supersymmetry was discovered in the early 1970s and in the intervening years has become a major component of theoretical physics. Its novel mathematical features have led to a deeper understanding of the geometrical structure of spacetime, a theme to which great thinkers like Riemann, Poincare, Einstein, Weyl, and many others have contributed. Symmetry has always played a fundamental role in quantum theory: rotational symmetry in the theory of spin, Poincare symmetry in the classification of ele- mentary particles, and permutation symmetry in the treatment of systems of iden- tical particles. Supersymmetry is a new kind of symmetry that was discovered by physicists in the early 1970s. However, it is different from all other discoveries in physics in the sense that there has been no experimental evidence supporting it so far. Nevertheless, an enormous effort has been expended by many physicists in developing it because of its many unique features and also because of its beauty and coherence.' Here are some of its salient features:2 It gives rise to symmetries between bosons and fermions at a fundamental level. Supersymmetric quantum field theories have "softer" divergences. Supersymmetric string theory (superstrings) offers the best context known so far for constructing unified field theories. The development of supersymmetry has led to a number of remarkable pre- dictions. One of the most striking of these is that every elementary particle has a SUSY partner of opposite spin parity, i.e., if the particle is a boson (resp., fermion), its partner is a fermion (resp., boson).
Recommended publications
  • Research Statement
    D. A. Williams II June 2021 Research Statement I am an algebraist with expertise in the areas of representation theory of Lie superalgebras, associative superalgebras, and algebraic objects related to mathematical physics. As a post- doctoral fellow, I have extended my research to include topics in enumerative and algebraic combinatorics. My research is collaborative, and I welcome collaboration in familiar areas and in newer undertakings. The referenced open problems here, their subproblems, and other ideas in mind are suitable for undergraduate projects and theses, doctoral proposals, or scholarly contributions to academic journals. In what follows, I provide a technical description of the motivation and history of my work in Lie superalgebras and super representation theory. This is then followed by a description of the work I am currently supervising and mentoring, in combinatorics, as I serve as the Postdoctoral Research Advisor for the Mathematical Sciences Research Institute's Undergraduate Program 2021. 1 Super Representation Theory 1.1 History 1.1.1 Superalgebras In 1941, Whitehead dened a product on the graded homotopy groups of a pointed topological space, the rst non-trivial example of a Lie superalgebra. Whitehead's work in algebraic topol- ogy [Whi41] was known to mathematicians who dened new graded geo-algebraic structures, such as -graded algebras, or superalgebras to physicists, and their modules. A Lie superalge- Z2 bra would come to be a -graded vector space, even (respectively, odd) elements g = g0 ⊕ g1 Z2 found in (respectively, ), with a parity-respecting bilinear multiplication termed the Lie g0 g1 superbracket inducing1 a symmetric intertwining map of -modules.
    [Show full text]
  • Mathematical Methods of Classical Mechanics-Arnold V.I..Djvu
    V.I. Arnold Mathematical Methods of Classical Mechanics Second Edition Translated by K. Vogtmann and A. Weinstein With 269 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo Hong Kong Barcelona Budapest V. I. Arnold K. Vogtmann A. Weinstein Department of Department of Department of Mathematics Mathematics Mathematics Steklov Mathematical Cornell University University of California Institute Ithaca, NY 14853 at Berkeley Russian Academy of U.S.A. Berkeley, CA 94720 Sciences U.S.A. Moscow 117966 GSP-1 Russia Editorial Board J. H. Ewing F. W. Gehring P.R. Halmos Department of Department of Department of Mathematics Mathematics Mathematics Indiana University University of Michigan Santa Clara University Bloomington, IN 47405 Ann Arbor, MI 48109 Santa Clara, CA 95053 U.S.A. U.S.A. U.S.A. Mathematics Subject Classifications (1991): 70HXX, 70005, 58-XX Library of Congress Cataloging-in-Publication Data Amol 'd, V.I. (Vladimir Igorevich), 1937- [Matematicheskie melody klassicheskoi mekhaniki. English] Mathematical methods of classical mechanics I V.I. Amol 'd; translated by K. Vogtmann and A. Weinstein.-2nd ed. p. cm.-(Graduate texts in mathematics ; 60) Translation of: Mathematicheskie metody klassicheskoi mekhaniki. Bibliography: p. Includes index. ISBN 0-387-96890-3 I. Mechanics, Analytic. I. Title. II. Series. QA805.A6813 1989 531 '.01 '515-dcl9 88-39823 Title of the Russian Original Edition: M atematicheskie metody klassicheskoi mekhaniki. Nauka, Moscow, 1974. Printed on acid-free paper © 1978, 1989 by Springer-Verlag New York Inc. All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY 10010, U.S.A.), except for brief excerpts in connection with reviews or scholarly analysis.
    [Show full text]
  • Social Choice Theory Christian List
    1 Social Choice Theory Christian List Social choice theory is the study of collective decision procedures. It is not a single theory, but a cluster of models and results concerning the aggregation of individual inputs (e.g., votes, preferences, judgments, welfare) into collective outputs (e.g., collective decisions, preferences, judgments, welfare). Central questions are: How can a group of individuals choose a winning outcome (e.g., policy, electoral candidate) from a given set of options? What are the properties of different voting systems? When is a voting system democratic? How can a collective (e.g., electorate, legislature, collegial court, expert panel, or committee) arrive at coherent collective preferences or judgments on some issues, on the basis of its members’ individual preferences or judgments? How can we rank different social alternatives in an order of social welfare? Social choice theorists study these questions not just by looking at examples, but by developing general models and proving theorems. Pioneered in the 18th century by Nicolas de Condorcet and Jean-Charles de Borda and in the 19th century by Charles Dodgson (also known as Lewis Carroll), social choice theory took off in the 20th century with the works of Kenneth Arrow, Amartya Sen, and Duncan Black. Its influence extends across economics, political science, philosophy, mathematics, and recently computer science and biology. Apart from contributing to our understanding of collective decision procedures, social choice theory has applications in the areas of institutional design, welfare economics, and social epistemology. 1. History of social choice theory 1.1 Condorcet The two scholars most often associated with the development of social choice theory are the Frenchman Nicolas de Condorcet (1743-1794) and the American Kenneth Arrow (born 1921).
    [Show full text]
  • Arxiv:1801.00045V1 [Math.RT] 29 Dec 2017 Eetto Hoyof Theory Resentation finite-Dimensional Olw Rmwr Frmr Elr N El[T] for [RTW]
    WEBS OF TYPE Q GORDON C. BROWN AND JONATHAN R. KUJAWA Abstract. We introduce web supercategories of type Q. We describe the structure of these categories and show they have a symmetric braiding. The main result of the paper shows these diagrammatically defined monoidal supercategories provide combinatorial models for the monoidal supercategories generated by the supersymmetric tensor powers of the natural supermodule for the Lie superalgebra of type Q. 1. Introduction 1.1. Background. The enveloping algebra of a complex Lie algebra, U(g), is a Hopf algebra. Conse- quently one can consider the tensor product and duals of U(g)-modules. In particular, the category of finite-dimensional U(g)-modules is naturally a monoidal C-linear category. In trying to understand the rep- resentation theory of U(g) it is natural to ask if one can describe this category (or well-chosen subcategories) as a monoidal category. Kuperberg did this for the rank two Lie algebras by giving a diagrammatic presen- tation for the monoidal subcategory generated by the fundamental representations [Ku]. The rank one case follows from work of Rumer, Teller, and Weyl [RTW]. For g = sl(n) a diagrammatic presentation for the monoidal category generated by the fundamental representations was conjectured for n = 4 by Kim in [Ki] and for general n by Morrison [Mo]. Recently, Cautis-Kamnitzer-Morrison gave a complete combinatorial description of the monoidal category generated by the fundamental representations of U(sl(n)) [CKM]; that is, the full subcategory of all modules k1 kt of the form Λ (Vn) Λ (Vn) for t, k1,...,kt Z≥0, where Vn is the natural module for sl(n).
    [Show full text]
  • Mathematics and Materials
    IAS/PARK CITY MATHEMATICS SERIES Volume 23 Mathematics and Materials Mark J. Bowick David Kinderlehrer Govind Menon Charles Radin Editors American Mathematical Society Institute for Advanced Study Society for Industrial and Applied Mathematics 10.1090/pcms/023 Mathematics and Materials IAS/PARK CITY MATHEMATICS SERIES Volume 23 Mathematics and Materials Mark J. Bowick David Kinderlehrer Govind Menon Charles Radin Editors American Mathematical Society Institute for Advanced Study Society for Industrial and Applied Mathematics Rafe Mazzeo, Series Editor Mark J. Bowick, David Kinderlehrer, Govind Menon, and Charles Radin, Volume Editors. IAS/Park City Mathematics Institute runs mathematics education programs that bring together high school mathematics teachers, researchers in mathematics and mathematics education, undergraduate mathematics faculty, graduate students, and undergraduates to participate in distinct but overlapping programs of research and education. This volume contains the lecture notes from the Graduate Summer School program 2010 Mathematics Subject Classification. Primary 82B05, 35Q70, 82B26, 74N05, 51P05, 52C17, 52C23. Library of Congress Cataloging-in-Publication Data Names: Bowick, Mark J., editor. | Kinderlehrer, David, editor. | Menon, Govind, 1973– editor. | Radin, Charles, 1945– editor. | Institute for Advanced Study (Princeton, N.J.) | Society for Industrial and Applied Mathematics. Title: Mathematics and materials / Mark J. Bowick, David Kinderlehrer, Govind Menon, Charles Radin, editors. Description: [Providence] : American Mathematical Society, [2017] | Series: IAS/Park City math- ematics series ; volume 23 | “Institute for Advanced Study.” | “Society for Industrial and Applied Mathematics.” | “This volume contains lectures presented at the Park City summer school on Mathematics and Materials in July 2014.” – Introduction. | Includes bibliographical references. Identifiers: LCCN 2016030010 | ISBN 9781470429195 (alk. paper) Subjects: LCSH: Statistical mechanics–Congresses.
    [Show full text]
  • Msc in Applied Mathematics
    MSc in Applied Mathematics Title: Past, Present and Challenges in Yang-Mills Theory Author: José Luis Tejedor Advisor: Sebastià Xambó Descamps Department: Departament de Matemàtica Aplicada II Academic year: 2011-2012 PAST, PRESENT AND CHALLENGES IN YANG-MILLS THEORY Jos´eLuis Tejedor June 11, 2012 Abstract In electrodynamics the potentials are not uniquely defined. The electromagnetic field is un- changed by gauge transformations of the potential. The electromagnestism is a gauge theory with U(1) as gauge group. C. N. Yang and R. Mills extended in 1954 the concept of gauge theory for abelian groups to non-abelian groups to provide an explanation for strong interactions. The idea of Yang-Mills was criticized by Pauli, as the quanta of the Yang-Mills field must be massless in order to maintain gauge invariance. The idea was set aside until 1960, when the concept of particles acquiring mass through symmetry breaking in massless theories was put forward. This prompted a significant restart of Yang-Mills theory studies that proved succesful in the formula- tion of both electroweak unification and quantum electrodynamics (QCD). The Standard Model combines the strong interaction with the unified electroweak interaction through the symmetry group SU(3) ⊗ SU(2) ⊗ U(1). Modern gauge theory includes lattice gauge theory, supersymme- try, magnetic monopoles, supergravity, instantons, etc. Concerning the mathematics, the field of Yang-Mills theories was included in the Clay Mathematics Institute's list of \Millenium Prize Problems". This prize-problem focuses, especially, on a proof of the conjecture that the lowest excitations of a pure four-dimensional Yang-Mills theory (i.e.
    [Show full text]
  • Mathematical Foundations of Supersymmetry
    MATHEMATICAL FOUNDATIONS OF SUPERSYMMETRY Lauren Caston and Rita Fioresi 1 Dipartimento di Matematica, Universit`adi Bologna Piazza di Porta S. Donato, 5 40126 Bologna, Italia e-mail: [email protected], fi[email protected] 1Investigation supported by the University of Bologna 1 Introduction Supersymmetry (SUSY) is the machinery mathematicians and physicists have developed to treat two types of elementary particles, bosons and fermions, on the same footing. Supergeometry is the geometric basis for supersymmetry; it was first discovered and studied by physicists Wess, Zumino [25], Salam and Strathde [20] (among others) in the early 1970’s. Today supergeometry plays an important role in high energy physics. The objects in super geometry generalize the concept of smooth manifolds and algebraic schemes to include anticommuting coordinates. As a result, we employ the techniques from algebraic geometry to study such objects, namely A. Grothendiek’s theory of schemes. Fermions include all of the material world; they are the building blocks of atoms. Fermions do not like each other. This is in essence the Pauli exclusion principle which states that two electrons cannot occupy the same quantum me- chanical state at the same time. Bosons, on the other hand, can occupy the same state at the same time. Instead of looking at equations which just describe either bosons or fermions separately, supersymmetry seeks out a description of both simultaneously. Tran- sitions between fermions and bosons require that we allow transformations be- tween the commuting and anticommuting coordinates. Such transitions are called supersymmetries. In classical Minkowski space, physicists classify elementary particles by their mass and spin.
    [Show full text]
  • Cohomological Approach to the Graded Berezinian
    J. Noncommut. Geom. 9 (2015), 543–565 Journal of Noncommutative Geometry DOI 10.4171/JNCG/200 © European Mathematical Society Cohomological approach to the graded Berezinian Tiffany Covolo n Abstract. We develop the theory of linear algebra over a .Z2/ -commutative algebra (n N), which includes the well-known super linear algebra as a special case (n 1). Examples of2 such graded-commutative algebras are the Clifford algebras, in particularD the quaternion algebra H. Following a cohomological approach, we introduce analogues of the notions of trace and determinant. Our construction reduces in the classical commutative case to the coordinate-free description of the determinant by means of the action of invertible matrices on the top exterior power, and in the supercommutative case it coincides with the well-known cohomological interpretation of the Berezinian. Mathematics Subject Classification (2010). 16W50, 17A70, 11R52, 15A15, 15A66, 16E40. Keywords. Graded linear algebra, graded trace and Berezinian, quaternions, Clifford algebra. 1. Introduction Remarkable series of algebras, such as the algebra of quaternions and, more generally, Clifford algebras turn out to be graded-commutative. Originated in [1] and [2], this idea was developed in [10] and [11]. The grading group in this case is n 1 .Z2/ C , where n is the number of generators, and the graded-commutativity reads as a;b ab . 1/hQ Qiba (1.1) D n 1 where a; b .Z2/ C denote the degrees of the respective homogeneous elements Q Q 2 n 1 n 1 a and b, and ; .Z2/ C .Z2/ C Z2 is the standard scalar product of binary .n 1/h-vectorsi W (see Section 2).
    [Show full text]
  • Renormalization and Effective Field Theory
    Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society surv-170-costello-cov.indd 1 1/28/11 8:15 AM http://dx.doi.org/10.1090/surv/170 Renormalization and Effective Field Theory Mathematical Surveys and Monographs Volume 170 Renormalization and Effective Field Theory Kevin Costello American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair MichaelA.Singer Eric M. Friedlander Benjamin Sudakov MichaelI.Weinstein 2010 Mathematics Subject Classification. Primary 81T13, 81T15, 81T17, 81T18, 81T20, 81T70. The author was partially supported by NSF grant 0706954 and an Alfred P. Sloan Fellowship. For additional information and updates on this book, visit www.ams.org/bookpages/surv-170 Library of Congress Cataloging-in-Publication Data Costello, Kevin. Renormalization and effective fieldtheory/KevinCostello. p. cm. — (Mathematical surveys and monographs ; v. 170) Includes bibliographical references. ISBN 978-0-8218-5288-0 (alk. paper) 1. Renormalization (Physics) 2. Quantum field theory. I. Title. QC174.17.R46C67 2011 530.143—dc22 2010047463 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA.
    [Show full text]
  • MONOIDAL SUPERCATEGORIES 1. Introduction 1.1. in Representation
    MONOIDAL SUPERCATEGORIES JONATHAN BRUNDAN AND ALEXANDER P. ELLIS Abstract. This work is a companion to our article \Super Kac-Moody 2- categories," which introduces super analogs of the Kac-Moody 2-categories of Khovanov-Lauda and Rouquier. In the case of sl2, the super Kac-Moody 2-category was constructed already in [A. Ellis and A. Lauda, \An odd cate- gorification of Uq(sl2)"], but we found that the formalism adopted there be- came too cumbersome in the general case. Instead, it is better to work with 2-supercategories (roughly, 2-categories enriched in vector superspaces). Then the Ellis-Lauda 2-category, which we call here a Π-2-category (roughly, a 2- category equipped with a distinguished involution in its Drinfeld center), can be recovered by taking the superadditive envelope then passing to the under- lying 2-category. The main goal of this article is to develop this language and the related formal constructions, in the hope that these foundations may prove useful in other contexts. 1. Introduction 1.1. In representation theory, one finds many monoidal categories and 2-categories playing an increasingly prominent role. Examples include the Brauer category B(δ), the oriented Brauer category OB(δ), the Temperley-Lieb category TL(δ), the web category Web(Uq(sln)), the category of Soergel bimodules S(W ) associated to a Coxeter group W , and the Kac-Moody 2-category U(g) associated to a Kac-Moody algebra g. Each of these categories, or perhaps its additive Karoubi envelope, has a definition \in nature," as well as a diagrammatic description by generators and relations.
    [Show full text]
  • Simple Weight Q2(ℂ)-Supermodules
    U.U.D.M. Project Report 2009:12 Simple weight q2( )-supermodules Ekaterina Orekhova ℂ Examensarbete i matematik, 30 hp Handledare och examinator: Volodymyr Mazorchuk Juni 2009 Department of Mathematics Uppsala University Simple weight q2(C)-supermodules Ekaterina Orekhova June 6, 2009 1 Abstract The first part of this paper gives the definition and basic properties of the queer Lie superalgebra q2(C). This is followed by a complete classification of simple h-supermodules, which leads to a classification of all simple high- est and lowest weight q2(C)-supermodules. The paper also describes the structure of all Verma supermodules for q2(C) and gives a classification of finite-dimensional q2(C)-supermodules. 2 Contents 1 Introduction 4 1.1 General definitions . 4 1.2 The queer Lie superalgebra q2(C)................ 5 2 Classification of simple h-supermodules 6 3 Properties of weight q-supermodules 11 4 Universal enveloping algebra U(q) 13 5 Simple highest weight q-supermodules 15 5.1 Definition and properties of Verma supermodules . 15 5.2 Structure of typical Verma supermodules . 27 5.3 Structure of atypical Verma supermodules . 28 6 Finite-Dimensional simple weight q-supermodules 31 7 Simple lowest weight q-supermodules 31 3 1 Introduction Significant study of the characters and blocks of the category O of the queer Lie superalgebra qn(C) has been done by Brundan [Br], Frisk [Fr], Penkov [Pe], Penkov and Serganova [PS1], and Sergeev [Se1]. This paper focuses on the case n = 2 and gives explicit formulas, diagrams, and classification results for simple lowest and highest weight q2(C) supermodules.
    [Show full text]
  • Applied Analysis & Scientific Computing Discrete Mathematics
    CENTER FOR NONLINEAR ANALYSIS The CNA provides an environment to enhance and coordinate research and training in applied analysis, including partial differential equations, calculus of Applied Analysis & variations, numerical analysis and scientific computation. It advances research and educational opportunities at the broad interface between mathematics and Scientific Computing physical sciences and engineering. The CNA fosters networks and collaborations within CMU and with US and international institutions. Discrete Mathematics & Operations Research RANKINGS DOCTOR OF PHILOSOPHY IN ALGORITHMS, COMBINATORICS, U.S. News & World Report AND OPTIMIZATION #16 | Applied Mathematics Carnegie Mellon University offers an interdisciplinary Ph.D program in Algorithms, Combinatorics, and #7 | Discrete Mathematics and Combinatorics Optimization. This program is the first of its kind in the United States. It is administered jointly #6 | Best Graduate Schools for Logic by the Tepper School of Business (Operations Research group), the Computer Science Department (Algorithms and Complexity group), and the Quantnet Department of Mathematical Sciences (Discrete Mathematics group). #4 | Best Financial Engineering Programs Carnegie Mellon University does not CONTACT discriminate in admission, employment, or Logic administration of its programs or activities on Department of Mathematical Sciences the basis of race, color, national origin, sex, handicap or disability, age, sexual orientation, 5000 Forbes Avenue gender identity, religion, creed, ancestry,
    [Show full text]