WO 2016/057705 Al 14 April 2016 (14.04.2016) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2016/057705 Al 14 April 2016 (14.04.2016) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/057705 Al 14 April 2016 (14.04.2016) P O P C T (51) International Patent Classification: ical Research, Inc., 250 Massachusetts Avenue, Cam- G01N 33/574 (2006.01) C12N 5/0783 (2010.01) bridge, MA 021 39 (US). (21) International Application Number: (72) Inventor; and PCT/US20 15/054542 (71) Applicant : WILCOX, Nicholas [US/US]; 1904 Country Moss Way, Southlake, TX 76092 (US). (22) International Filing Date: 7 October 2015 (07. 10.2015) (74) Agent: KOYFMAN, Hannah, R.; Lando & Anastasi LLP, Riverfront Office Park, One Main Street, Suite 1100, Cam (25) Filing Language: English bridge, MA 02142 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection available): AE, AG, AL, AM, 62/061,553 8 October 2014 (08. 10.2014) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, 62/144,682 8 April 2015 (08.04.2015) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicants: NOVARTIS AG [CH/CH]; Lichtstrasse 35, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, CH-4056 Basel (CH). THE TRUSTEES OF THE UNI¬ KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, VERSITY OF PENNSYLVANIA [US/US]; 3160 Chest MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, nut Street, Suite 200, Philadelphia, PA 19104 (US). PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (72) Inventors; and SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (71) Applicants (for US only): BEDOYA, Felipe [CO/US]; TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. 3202 Hayes Road, East Norristown, PA 19403 (US). BIT¬ (84) Designated States (unless otherwise indicated, for every TER, Hans [US/US]; Novartis Institutes For Biomedical kind of regional protection available): ARIPO (BW, GH, Research, Inc., 250 Massachusetts Avenue, Cambridge, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, MA 02139 (US). BROGDON, Jennifer [US/US]; N o TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, vartis Institutes For Biomedical Research, Inc., 250 Mas TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, sachusetts Avenue, Cambridge, MA 02139 (US). DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventor; and LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, (71) Applicant : DORFMEIER, Corin [US/US]; 2701 Elroy GW, KM, ML, MR, NE, SN, TD, TG). Road Apt 116, Hayfield, PA 19440 (US). (72) Inventors; and Declarations under Rule 4.17 : (71) Applicants (for US only): GARG, Abhishnek [—/US]; — as to applicant's entitlement to apply for and be granted a Novartis Institutes For Biomedical Research, Inc., 250 patent (Rule 4.1 7(H)) Massachusetts Avenue, Cambridge, MA 02139 (US). — as to the applicant's entitlement to claim the priority of the GLASS, David [US/US]; Novartis Institutes For Biomed earlier application (Rule 4.1 7(in)) ical Research, Inc., 100 Technology Square, Cambridge, MA 02139 (US). MANNICK, Joan [US/US]; Novartis In Published: stitutes For Biomedical Research, Inc., 220 Massachusetts — with international search report (Art. 21(3)) Avenue, Cambridge, MA 02139 (US). MELENHORST, Jan, J. [US/US]; 11 Exton Circle, Cherry Hill, MA 08003 — before the expiration of the time limit for amending the (US). MILONE, Michael, C. [US/US]; 314 Surrey Road, claims and to be republished in the event of receipt of Cherry Hill, NJ 08002 (US). MURPHY, Leon [US/US]; amendments (Rule 48.2(h)) Novartis Institutes For Biomedical Research, Inc., 250 — with sequence listing part of description (Rule 5.2(a)) Massachusetts Avenue, Cambridge, MA 02139 (US). OR¬ LANDO, Elena [US/US]; Novartis Institutes For Biomed- © © v o (54) Title: BIOMARKERS PREDICTIVE OF THERAPEUTIC RESPONSIVENESS TO CHIMERIC ANTIGEN RECEPTOR THERAPY AND USES THEREOF (57) Abstract: Cancer biomarkers and methods of using them are disclosed. BIOMARKERS PREDICTIVE OF THERAPEUTIC RESPONSIVENESS TO CHIMERIC ANTIGEN RECEPTOR THERAPY AND USES THEREOF This application claims priority to U.S. Serial No. 62/061,553 filed October 8, 2014 and U.S. Serial No. 62/144,682 filed April 8, 2015, the contents of which are incorporated herein by reference in their entireties. SEQUENCE LISTING The instant application contains a Sequence Listing which has been submitted electronically in ASCII format and is hereby incorporated by reference in its entirety. Said ASCII copy, created on October 7, 2015, is named N2067-7057WO_SL.txt and is 219,221 bytes in size. FIELD OF THE INVENTION The invention relates to cancer biomarkers and uses thereof. BACKGROUND OF THE INVENTION Many patients with B cell malignancies are incurable with standard therapy. In addition, traditional treatment options often have serious side effects. Attempts have been made in cancer immunotherapy, however, several obstacles render the goal of clinical effectiveness difficult to achieve. Although hundreds of so-called tumor antigens have been identified, these are generally derived from self and thus are poorly immunogenic. Furthermore, tumors use several mechanisms to render themselves hostile to the initiation and propagation of immune attack. Recent developments using chimeric antigen receptor (CAR) modified autologous T cell (CART) therapy, which relies on redirecting T cells to a suitable cell-surface molecule on cancer cells such as B cell malignancies, show promising results in harnessing the power of the immune system to treat B cell malignancies and other cancers (see, e.g., Sadelain et al., CANCER DISCOVERY 3:388-398 (2013)). For example, the clinical results of a CART that binds to CD19 (i.e., "CTL019") have shown promise in establishing complete remissions in patients suffering with chronic lymphocytic leukemia (CLL), as well as in childhood acute lymphocytic leukemia (ALL) (see, e.g., Kalos et al., Sci TRANSL MED 3:95ra73 (2011), Porter et al., NEJM 365:725- 733 (2011), Grupp et al., NEJM 368:1509-1518 (2013)). Besides the ability for the chimeric antigen receptor on the genetically modified T cells to recognize and destroy the targeted cells, a successful therapeutic T cell therapy needs to have the ability to proliferate, to persist over time, and to further monitor for leukemic cell escapees. The variable phenotypic state of T cells, whether it is in a state of anergy, suppression or exhaustion, will have effects on CAR-transformed T cells' efficacy. To be effective, CAR transformed patient T cells need to persist and maintain the ability to proliferate in response to the CAR' s antigen. A need, therefore, exists for a method of using biomarkers for use in connection with the differential diagnosis and treatment of cancer with CAR-expressing cell (e.g., T cell, NK cell) therapy. In particular, there is an unmet need for effective predictors of therapeutic response in subjects having a hematological cancer, such as CLL and ALL, to a CAR-expressing cell therapy, e.g., with CTL019 or other CD19 CAR-expressing cells. SUMMARY OF THE INVENTION The present disclosure relates to the identification and use of analytes, analyte profiles, or markers (e.g., gene expression, flow cytometry and/or protein expression profiles) with clinical relevance to cancer (e.g., a hematological cancer such as chronic lymphocytic leukemia (CLL) and acute lymphocytic leukemia (ALL)). In some embodiments, the disclosure provides the identity of genes, whose expression, at the transcriptional and protein levels, are correlated with CLL and ALL progression, e.g., as a way of predicting a response to a Chimeric Antigen Receptor (CAR)-expressing cell therapy (e.g., a therapy comprising a cell (e.g., an immune effector cell or population of cells) that expresses a CAR that binds to CD19 (also referred to herein as a "CAR19" or "CD19 CAR" -expressing cell). In certain embodiments, one or more of a CD19 CAR-expressing cell gene set signature, a biomarker listed in Table 1A, Table IB, Table 7A, Table 7B, Table 8, Table 9, Table 10, Table 14, Table 15, Table 16 (e.g., CCL20, IL-17a and/or IL-6), Table 17, Table 18, Table 20, a CD27 biomarker, a CD45RO biomarker, a PD-1 biomarker, a LAG-3 biomarker, a TIM-3 biomarker, an IL2RA biomarker, an IL21 biomarker, a CD4 biomarker, a CD8 biomarker, a TH1+ helper T cell gene set signature, a TH2+ helper T cell gene set signature, a memory T cell (e.g., a CD8+ memory T cell, e.g., a naive T cell (TN), e.g. a memory stem cell (TSCM), e.g. a central memory T cell (TCM), e.g. an effector memory T cell (TEM)) gene set signature, and combinations thereof) are evaluated. These gene expression profiles may be applied to the diagnosis and/or prognosis of a cancer, e.g., a hematological cancer such as CLL and ALL, and are particularly useful in predicting whether a subject will respond favorably to a CAR therapy (e.g., a CD19 CAR therapy as described here, e.g., a CTL019 therapy) in a subject diagnosed with a cancer, e.g., a hematological cancer such as CLL or ALL. Compared to clinical parameters or biochemical markers used in existing prognosis methods, the expression profiles of the genes disclosed herein constitute a more robust signature of hematological cancer progression (e.g., CLL and ALL progression) and provide a more reliable, non-subjective basis for the selection of appropriate therapeutic regimens.
Recommended publications
  • Analysis of the Indacaterol-Regulated Transcriptome in Human Airway
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/04/13/jpet.118.249292.DC1 1521-0103/366/1/220–236$35.00 https://doi.org/10.1124/jpet.118.249292 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 366:220–236, July 2018 Copyright ª 2018 by The American Society for Pharmacology and Experimental Therapeutics Analysis of the Indacaterol-Regulated Transcriptome in Human Airway Epithelial Cells Implicates Gene Expression Changes in the s Adverse and Therapeutic Effects of b2-Adrenoceptor Agonists Dong Yan, Omar Hamed, Taruna Joshi,1 Mahmoud M. Mostafa, Kyla C. Jamieson, Radhika Joshi, Robert Newton, and Mark A. Giembycz Departments of Physiology and Pharmacology (D.Y., O.H., T.J., K.C.J., R.J., M.A.G.) and Cell Biology and Anatomy (M.M.M., R.N.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada Received March 22, 2018; accepted April 11, 2018 Downloaded from ABSTRACT The contribution of gene expression changes to the adverse and activity, and positive regulation of neutrophil chemotaxis. The therapeutic effects of b2-adrenoceptor agonists in asthma was general enriched GO term extracellular space was also associ- investigated using human airway epithelial cells as a therapeu- ated with indacaterol-induced genes, and many of those, in- tically relevant target. Operational model-fitting established that cluding CRISPLD2, DMBT1, GAS1, and SOCS3, have putative jpet.aspetjournals.org the long-acting b2-adrenoceptor agonists (LABA) indacaterol, anti-inflammatory, antibacterial, and/or antiviral activity. Numer- salmeterol, formoterol, and picumeterol were full agonists on ous indacaterol-regulated genes were also induced or repressed BEAS-2B cells transfected with a cAMP-response element in BEAS-2B cells and human primary bronchial epithelial cells by reporter but differed in efficacy (indacaterol $ formoterol .
    [Show full text]
  • Gene Regulatory Factors in the Evolutionary History of Humans
    Gene regulatory factors in the evolutionary history of humans Von der Fakultät für Mathematik und Informatik der Universität Leipzig angenommene Dissertation zur Erlangung des akademischen Grades DOCTOR RERUM NATURALIUM (Dr. rer. nat.) im Fachgebiet Informatik vorgelegt von MSc. Alvaro Perdomo-Sabogal geboren am 08. Januar 1979 in Armenia, Quindio (Kolumbien) Die Annahme der Dissertation wurde empfohlen von: 1. Prof. Dr. Peter F. Stadler, Institut für Informatik, Leipzig 2. Prof. Dr. Andrew Torda, Zentrum für Bioinformatik, Hamburg Die Verleihung des akademischen Grades erfolgt mit Bestehen der Verteidigung am 24. August 2016 mit dem Gesamtprädikat “magna cum laude" Abstract Changes in cis‐ and trans‐regulatory elements are among the prime sources of genetic and phenotypical variation at species level. The introduction of cis‐ and trans regulatory variation, as evolutionary processes, has played important roles in driving evolution, diversity and phenotypical differentiation in humans. Therefore, exploring and identifying variation that occurs on cis‐ and trans‐ regulatory elements becomes imperative to better understanding of human evolution and its genetic diversity. In this research, around 3360 gene regulatory factors in the human genome were catalogued. This catalog includes genes that code for proteins that perform gene regulatory activities such DNA‐depending transcription, RNA polymerase II transcription cofactor and co‐repressor activity, chromatin binding, and remodeling, among other 218 gene ontology terms. Using the classification of DNA‐ binding GRFs (Wingender et al. 2015), we were able to group 1521 GRF genes (~46%) into 41 different GRF classes. This GRF catalog allowed us to initially explore and discuss how some GRF genes have evolved in humans, archaic humans (Neandertal and Denisovan) and non‐human primates species.
    [Show full text]
  • WO 2015/048577 A2 April 2015 (02.04.2015) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2015/048577 A2 April 2015 (02.04.2015) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 48/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/US20 14/057905 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 26 September 2014 (26.09.2014) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/883,925 27 September 2013 (27.09.2013) US (84) Designated States (unless otherwise indicated, for every 61/898,043 31 October 2013 (3 1. 10.2013) US kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: EDITAS MEDICINE, INC.
    [Show full text]
  • The Effect of Compound L19 on Human Colorectal Cells (DLD-1)
    Stephen F. Austin State University SFA ScholarWorks Electronic Theses and Dissertations Spring 5-16-2018 The Effect of Compound L19 on Human Colorectal Cells (DLD-1) Sepideh Mohammadhosseinpour [email protected] Follow this and additional works at: https://scholarworks.sfasu.edu/etds Part of the Biotechnology Commons Tell us how this article helped you. Repository Citation Mohammadhosseinpour, Sepideh, "The Effect of Compound L19 on Human Colorectal Cells (DLD-1)" (2018). Electronic Theses and Dissertations. 188. https://scholarworks.sfasu.edu/etds/188 This Thesis is brought to you for free and open access by SFA ScholarWorks. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of SFA ScholarWorks. For more information, please contact [email protected]. The Effect of Compound L19 on Human Colorectal Cells (DLD-1) Creative Commons License This work is licensed under a Creative Commons Attribution-Noncommercial-No Derivative Works 4.0 License. This thesis is available at SFA ScholarWorks: https://scholarworks.sfasu.edu/etds/188 The Effect of Compound L19 on Human Colorectal Cells (DLD-1) By Sepideh Mohammadhosseinpour, Master of Science Presented to the Faculty of the Graduate School of Stephen F. Austin State University In Partial Fulfillment Of the Requirements For the Degree of Master of Science in Biotechnology STEPHEN F. AUSTIN STATE UNIVERSITY May, 2018 The Effect of Compound L19 on Human Colorectal Cells (DLD-1) By Sepideh Mohammadhosseinpour, Master of Science APPROVED: Dr. Beatrice A. Clack, Thesis Director Dr. Josephine Taylor, Committee Member Dr. Rebecca Parr, Committee Member Dr. Stephen Mullin, Committee Member Pauline Sampson, Ph.D.
    [Show full text]
  • UC San Diego Electronic Theses and Dissertations
    UC San Diego UC San Diego Electronic Theses and Dissertations Title Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent Permalink https://escholarship.org/uc/item/7m04f0b0 Author Buchholz, Kyle Stephen Publication Date 2016 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, SAN DIEGO Cardiac Stretch-Induced Transcriptomic Changes are Axis-Dependent A dissertation submitted in partial satisfaction of the requirements for the degree Doctor of Philosophy in Bioengineering by Kyle Stephen Buchholz Committee in Charge: Professor Jeffrey Omens, Chair Professor Andrew McCulloch, Co-Chair Professor Ju Chen Professor Karen Christman Professor Robert Ross Professor Alexander Zambon 2016 Copyright Kyle Stephen Buchholz, 2016 All rights reserved Signature Page The Dissertation of Kyle Stephen Buchholz is approved and it is acceptable in quality and form for publication on microfilm and electronically: Co-Chair Chair University of California, San Diego 2016 iii Dedication To my beautiful wife, Rhia. iv Table of Contents Signature Page ................................................................................................................... iii Dedication .......................................................................................................................... iv Table of Contents ................................................................................................................ v List of Figures ...................................................................................................................
    [Show full text]
  • A Scalable Random Walk with Restart on Heterogeneous Networks with Apache Spark for Ranking Disease-Causing Genes Using Type-2 Fuzzy Data Fusion
    bioRxiv preprint doi: https://doi.org/10.1101/844159; this version posted November 16, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A scalable random walk with restart on heterogeneous networks with Apache Spark for ranking disease-causing genes using type-2 fuzzy data fusion Mehdi Joodaki, Nasser Ghadiri, Zeinab Maleki, Maryam Lotfi Shahreza Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran [email protected], [email protected], [email protected], [email protected] Abstract Prediction and discovery of disease-causing genes are among the main missions of biology and medicine. In recent years, researchers have developed several methods based on gene/protein networks for the detection of causative genes. However, because of the presence of false positives in these networks, the results of these methods often lack accuracy and reliability. This problem can be solved by using multiple genomic sources to reduce noise in data. However, network integration can also affect the quality of the integrated network. In this paper, we present a method named RWRHN (random walk with restart on a heterogeneous network) with fuzzy fusion or RWRHN-FF. In this method, first, four gene-gene similarity networks are constructed based on different genomic sources and then integrated using the type-II fuzzy voter scheme. The resulting gene-gene network is then linked to a disease-disease similarity network, which itself is constructed by the integration of four sources, through a two-part disease-gene network.
    [Show full text]
  • Vast Human-Specific Delay in Cortical Ontogenesis Associated With
    Supplementary information Extension of cortical synaptic development distinguishes humans from chimpanzees and macaques Supplementary Methods Sample collection We used prefrontal cortex (PFC) and cerebellar cortex (CBC) samples from postmortem brains of 33 human (aged 0-98 years), 14 chimpanzee (aged 0-44 years) and 44 rhesus macaque individuals (aged 0-28 years) (Table S1). Human samples were obtained from the NICHD Brain and Tissue Bank for Developmental Disorders at the University of Maryland, USA, the Netherlands Brain Bank, Amsterdam, Netherlands and the Chinese Brain Bank Center, Wuhan, China. Informed consent for use of human tissues for research was obtained in writing from all donors or their next of kin. All subjects were defined as normal by forensic pathologists at the corresponding brain bank. All subjects suffered sudden death with no prolonged agonal state. Chimpanzee samples were obtained from the Yerkes Primate Center, GA, USA, the Anthropological Institute & Museum of the University of Zürich-Irchel, Switzerland and the Biomedical Primate Research Centre, Netherlands (eight Western chimpanzees, one Central/Eastern and five of unknown origin). Rhesus macaque samples were obtained from the Suzhou Experimental Animal Center, China. All non-human primates used in this study suffered sudden deaths for reasons other than their participation in this study and without any relation to the tissue used. CBC dissections were made from the cerebellar cortex. PFC dissections were made from the frontal part of the superior frontal gyrus. All samples contained an approximately 2:1 grey matter to white matter volume ratio. RNA microarray hybridization RNA isolation, hybridization to microarrays, and data preprocessing were performed as described previously (Khaitovich et al.
    [Show full text]
  • Gene Expression Profiling of Peripheral Blood in Patients With
    FLORE Repository istituzionale dell'Università degli Studi di Firenze Gene expression profiling of peripheral blood in patients with abdominal aortic aneurysm Questa è la Versione finale referata (Post print/Accepted manuscript) della seguente pubblicazione: Original Citation: Gene expression profiling of peripheral blood in patients with abdominal aortic aneurysm / Giusti B; Rossi L; Lapini I; Magi A; Pratesi G; Lavitrano M; Blasi GM; Pulli R; Pratesi C; Abbate R. - In: EUROPEAN JOURNAL OF VASCULAR AND ENDOVASCULAR SURGERY. - ISSN 1078-5884. - STAMPA. - 38(2009), pp. 104-112. [10.1016/j.ejvs.2009.01.020] Availability: This version is available at: 2158/369023 since: 2018-03-01T22:38:47Z Published version: DOI: 10.1016/j.ejvs.2009.01.020 Terms of use: Open Access La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze (https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf) Publisher copyright claim: (Article begins on next page) 24 September 2021 Eur J Vasc Endovasc Surg (2009) 38, 104e112 Gene Expression Profiling of Peripheral Blood in Patients with Abdominal Aortic Aneurysm B. Giusti a,*, L. Rossi a, I. Lapini a, A. Magi a, G. Pratesi b, M. Lavitrano c, G.M. Biasi c, R. Pulli d, C. Pratesi d, R. Abbate a a Department of Medical and Surgical Critical Care and DENOTHE Center, University of Florence, Viale Morgagni 85, 50134 Florence, Italy b Vascular Surgery Unit, Department of Surgery, University of Rome ‘‘Tor Vergata’’, Rome, Italy c Department of Surgical Sciences, University of Milano-Bicocca, Italy d Department of Vascular Surgery, University of Florence, Italy Submitted 17 September 2008; accepted 15 January 2009 Available online 23 February 2009 KEYWORDS Abstract Object: Abdominal aortic aneurysm (AAA) pathogenesis remains poorly understood.
    [Show full text]
  • Identification of the NF-Κb Activating Protein-Like Locus As a Risk Locus For
    Ann Rheum Dis: first published as 10.1136/annrheumdis-2012-202076 on 6 December 2012. Downloaded from Basic and translational research EXTENDED REPORT Identification of the NF-κB activating protein-like locus as a risk locus for rheumatoid arthritis Gang Xie,1,3 Yue Lu,2 Ye Sun,1,3 Steven Shiyang Zhang,1 Edward Clark Keystone,3 Peter K Gregersen,4 Robert M Plenge,5 Christopher I Amos,2 Katherine A Siminovitch1,3,6 ▸ Additional data are ABSTRACT RA with the REL NF-κB transcription factor locus published online only. To view Objective To fine-map the NF-κB activating protein-like and also confirmed already identified disease associa- these files please visit the fi PTPN22, CTLA4, TNFAIP3, BLK journal online (http://dx.doi.org/ (NKAPL) locus identi ed in a prior genome-wide study as tions with the and 9 10.1136/annrheumdis-2012- a possible rheumatoid arthritis (RA) risk locus and TRAF1/C5 genes. Our data also showed strongly −7 202076). thereby delineate additional variants with stronger and/or suggestive signals (PGWAS values between 8.2×10 −8 1Mount Sinai Hospital Samuel independent disease association. and 5.28×10 ) emanating from a cluster of Single Lunenfeld Research Institute Methods Genotypes for 101 SNPs across the NKAPL nucleotide polymorphisms (SNP) across a 70 kb and Toronto General Research locus on chromosome 6p22.1 were obtained on 1368 region on chromosome 6p22.1 encompassing the Institute, Toronto, Ontario, Canadian RA cases and 1471 controls. Single marker NF-κB activating protein-like gene (NKAPL) as well Canada fi 2Department of Epidemiology, associations were examined using logistic regression and as three Zinc nger protein transcription factors University of Texas M.D.
    [Show full text]
  • Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress
    University of Pennsylvania ScholarlyCommons Publicly Accessible Penn Dissertations Fall 2010 Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Renuka Nayak University of Pennsylvania, [email protected] Follow this and additional works at: https://repository.upenn.edu/edissertations Part of the Computational Biology Commons, and the Genomics Commons Recommended Citation Nayak, Renuka, "Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress" (2010). Publicly Accessible Penn Dissertations. 1559. https://repository.upenn.edu/edissertations/1559 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/edissertations/1559 For more information, please contact [email protected]. Coexpression Networks Based on Natural Variation in Human Gene Expression at Baseline and Under Stress Abstract Genes interact in networks to orchestrate cellular processes. Here, we used coexpression networks based on natural variation in gene expression to study the functions and interactions of human genes. We asked how these networks change in response to stress. First, we studied human coexpression networks at baseline. We constructed networks by identifying correlations in expression levels of 8.9 million gene pairs in immortalized B cells from 295 individuals comprising three independent samples. The resulting networks allowed us to infer interactions between biological processes. We used the network to predict the functions of poorly-characterized human genes, and provided some experimental support. Examining genes implicated in disease, we found that IFIH1, a diabetes susceptibility gene, interacts with YES1, which affects glucose transport. Genes predisposing to the same diseases are clustered non-randomly in the network, suggesting that the network may be used to identify candidate genes that influence disease susceptibility.
    [Show full text]
  • STAT3 Targets Suggest Mechanisms of Aggressive Tumorigenesis in Diffuse Large B Cell Lymphoma
    STAT3 Targets Suggest Mechanisms of Aggressive Tumorigenesis in Diffuse Large B Cell Lymphoma Jennifer Hardee*,§, Zhengqing Ouyang*,1,2,3, Yuping Zhang*,4 , Anshul Kundaje*,†, Philippe Lacroute*, Michael Snyder*,5 *Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305; §Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520; and †Department of Computer Science, Stanford University School of Engineering, Stanford, CA 94305 1The Jackson Laboratory for Genomic Medicine, Farmington, CT 06030 2Department of Biomedical Engineering, University of Connecticut, Storrs, CT 06269 3Department of Genetics and Developmental Biology, University of Connecticut Health Center, Farmington, CT 06030 4Department of Biostatistics, Yale School of Public Health, Yale University, New Haven, CT 06520 5Corresponding author: Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305. Email: [email protected] DOI: 10.1534/g3.113.007674 Figure S1 STAT3 immunoblotting and immunoprecipitation with sc-482. Western blot and IPs show a band consistent with expected size (88 kDa) of STAT3. (A) Western blot using antibody sc-482 versus nuclear lysates. Lanes contain (from left to right) lysate from K562 cells, GM12878 cells, HeLa S3 cells, and HepG2 cells. (B) IP of STAT3 using sc-482 in HeLa S3 cells. Lane 1: input nuclear lysate; lane 2: unbound material from IP with sc-482; lane 3: material IP’d with sc-482; lane 4: material IP’d using control rabbit IgG. Arrow indicates the band of interest. (C) IP of STAT3 using sc-482 in K562 cells. Lane 1: input nuclear lysate; lane 2: material IP’d using control rabbit IgG; lane 3: material IP’d with sc-482.
    [Show full text]
  • An Integrative Genomic Analysis of the Longshanks Selection Experiment for Longer Limbs in Mice
    bioRxiv preprint doi: https://doi.org/10.1101/378711; this version posted August 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Title: 2 An integrative genomic analysis of the Longshanks selection experiment for longer limbs in mice 3 Short Title: 4 Genomic response to selection for longer limbs 5 One-sentence summary: 6 Genome sequencing of mice selected for longer limbs reveals that rapid selection response is 7 due to both discrete loci and polygenic adaptation 8 Authors: 9 João P. L. Castro 1,*, Michelle N. Yancoskie 1,*, Marta Marchini 2, Stefanie Belohlavy 3, Marek 10 Kučka 1, William H. Beluch 1, Ronald Naumann 4, Isabella Skuplik 2, John Cobb 2, Nick H. 11 Barton 3, Campbell Rolian2,†, Yingguang Frank Chan 1,† 12 Affiliations: 13 1. Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany 14 2. University of Calgary, Calgary AB, Canada 15 3. IST Austria, Klosterneuburg, Austria 16 4. Max Planck Institute for Cell Biology and Genetics, Dresden, Germany 17 Corresponding author: 18 Campbell Rolian 19 Yingguang Frank Chan 20 * indicates equal contribution 21 † indicates equal contribution 22 Abstract: 23 Evolutionary studies are often limited by missing data that are critical to understanding the 24 history of selection. Selection experiments, which reproduce rapid evolution under controlled 25 conditions, are excellent tools to study how genomes evolve under strong selection. Here we 1 bioRxiv preprint doi: https://doi.org/10.1101/378711; this version posted August 19, 2018.
    [Show full text]