Chemical Approaches to Deciphering the Glycosaminoglycan Code Cristal I Gama and Linda C Hsieh-Wilson

Total Page:16

File Type:pdf, Size:1020Kb

Chemical Approaches to Deciphering the Glycosaminoglycan Code Cristal I Gama and Linda C Hsieh-Wilson Chemical approaches to deciphering the glycosaminoglycan code Cristal I Gama and Linda C Hsieh-Wilson Glycosaminoglycans are sulfated biopolymers with rich saminoglycans. We also discuss the potential for syn- chemical diversity and complex functions in vivo, contributing thetic, chemoenzymatic and technological approaches to processes ranging from cell growth and neuronal to advance a molecular-level understanding of this impor- development to viral invasion and neurodegenerative disease. tant class of biopolymers. Recent studies suggest that glycosaminoglycans may encode information in the form of a ‘sulfation code,’ whereby discrete The chemical diversity of glycosaminoglycans modifications to the polysaccharide backbone may direct the Glycosaminoglycans are composed of repeating disac- location or activities of proteins. charide subunits that are assembled into linear polysac- charide chains (Figure 1). These polysaccharides are Addresses often covalently attached to proteoglycan proteins at Howard Hughes Medical Institute, Division of Chemistry and Chemical the cell surface or in the extracellular matrix. There Engineering, California Institute of Technology, 1200 East California are several major classes of glycosaminoglycans, including Boulevard, Pasadena, CA 91125, USA heparan sulfate (HS) and heparin, chondroitin sulfate Corresponding author: Hsieh-Wilson, Linda C ([email protected]) (CS), dermatan sulfate and keratan sulfate, which differ in their core disaccharide subunit. HS and heparin contain D-glucosamine (GlcN) and either D-glucuronic acid Current Opinion in Chemical Biology 9 2005, :1–11 (GlcA) or L-iduronic acid (IdoA) subunits joined by This review comes from a themed issue on a(1,4) and b(1,4) linkages. CS has N-acetylgalactosamine Biopolymers (GalNAc) and GlcA subunits and alternating b(1,3) and Edited by Scott A Strobel and Tom W Muir b(1,4) linkages. Diverse sulfation patterns are generated in vivo through 1367-5931/$ – see front matter extensive modification of the carbohydrate backbone [3]. # 2005 Elsevier Ltd. All rights reserved. For example, sulfation of HS and heparin can occur at the C2 hydroxyl of IdoA and the C3 and C6 hydroxyls of DOI 10.1016/j.cbpa.2005.10.003 GlcN. The C2 amine can also be either sulfated, acety- lated or remain unmodified. Although HS and heparin are structurally related, HS has greater overall chemical com- Introduction plexity, exhibiting more varied sulfation patterns, lower Glycosaminoglycans are a family of sulfated polysacchar- IdoA content and longer polysaccharide chains. More- ides involved in diverse biological processes such as over, HS is ubiquitously expressed in vivo and has a neuronal development, tumor growth and metastasis, broader range of physiological targets than heparin, which viral invasion and spinal cord injury [1–3]. For example, is localized primarily to specialized granule cells. Diverse glycosaminoglycans modulate key signaling pathways sulfation motifs are also found on CS, with sulfation essential for proper cell growth and angiogenesis [1,2]. occurring at each of the free hydroxyls [7]. As a result, They are also important for axon pathfinding in the a simple tetrasaccharide of CS has the potential to encode developing brain and have been linked to the pathology 256 sulfation sequences, whereas an HS tetrasaccharide, of Alzheimer’s disease [4,5,6]. The remarkable ability of which has greater complexity due to the presence of IdoA glycosaminoglycans to regulate various processes is only and N-sulfation, can display over 2000 sulfation motifs. beginning to be understood at a molecular level. Increas- Although it remains to be seen whether all of these ing evidence suggests that glycosaminoglycans encode possible sulfation patterns occur in vivo, a large number information in the form of a ‘sulfation code.’ Namely, of distinct sulfated structures have been identified to date discrete sulfation motifs along the carbohydrate backbone [3,7]. carry instructions to direct proteins and regulate complex processes such as neuronal wiring. Deciphering this code On a macromolecular level, HS and CS polysaccharides and the mechanisms by which it coordinates biological exhibit various chain lengths (10 to 100 disaccharide events is crucial for understanding diverse aspects of units) and clustered regions of high or low sulfation [3]. biology and could reveal new therapeutic opportunities. Structural studies have shown that glycosaminoglycans adopt helical structures whose pitch can vary with the In this review, we describe evidence for the sulfation code associated counterion [8,9]. Moreover, the conformational in the context of heparan and chondroitin sulfate glyco- flexibility of the pyranose ring of IdoA, which exists in www.sciencedirect.com Current Opinion in Chemical Biology 2005, 9:1–11 COCHBI 293 2 Biopolymers Figure 1 proteins. One of the most studied examples is the binding of HS to the fibroblast growth factors (FGFs). The FGFs comprise a large family of growth factors (23 members to date) and have been shown to have crucial roles in morphogenesis, development, angiogenesis and wound healing [15]. They induce the dimerization of FGF receptor tyrosine kinases (FGFRs), thereby activating intracellular signaling pathways. Two distinct models have been proposed to explain the essential contribution of HS to FGF–FGFR signaling. A crystal structure of the HS–FGF2–FGFR1 complex obtained by Schlessinger et al.[8] suggests that two ternary complexes of HS– FGF–FGFR come together with the non-reducing ends of each sugar chain facing one another upon activation (Figure 2a). By contrast, the HS–FGF1–FGFR2 structure of Pellegrini et al.[16] suggests that a single HS chain initiates the assembly of two FGF–FGFR complexes Representative classes of glycosaminoglycans, with potential À À (Figure 2b). Although these models propose distinct roles sites of sulfation indicated. R = SO3 or H; R1 =SO3 , H or Ac; n=10–100. for HS in coordinating receptor dimerization, both agree on the formation of an activated FGF–FGFR–HS com- plex. equilibrium between different chair and skew-boat con- formations when sulfated at the C2 position, has been Importantly, the specific sulfation pattern of HS appears postulated to enhance the specificity of HS for its protein to be crucial for FGF binding and assembly of the targets [3]. Thus, the combination of sequence, charge complex. Structural analyses have shown that many of distribution, sugar conformation and three-dimensional the interactions between HS and the FGFs involve salt structure endows glycosaminoglycans with rich structural bridges and hydrogen-bonding contacts between the diversity. sulfate and carboxylate groups of the oligosaccharide with polar residues of the protein [17]. Optimal van der Waals The potential ‘sulfation code’: implications for contacts and the flexibility of HS chains further enhance growth factor signaling and neuronal wiring the interaction [18]. Interestingly, none of the residues in Evidence suggests that the fine structure of glycosami- the heparin-binding region, including the polar side noglycans is crucial for their functions in vivo. Genetic chains, are completely conserved throughout the FGF studies have established the importance of various sulfo- family [17]. This raises the intriguing possibility that transferase enzymes in the glycosaminoglycan biosyn- variations in HS sequence or sulfation pattern might thetic pathway. For example, deletion of an HS 2-O- specify the binding of particular FGFs, enabling the sulfotransferase gene in mice led to complete failure of selective activation of signaling pathways. Consistent kidney development, and mutation of the N-deacetylase– with this view, biochemical studies have shown that N-sulfotransferase gene in Drosophila inhibited growth FGF2 requires 2-O-sulfation but not 6-O-sulfation for factor signaling and disrupted embryonic development HS binding, whereas FGF10 has the reverse preference, [5,10]. Consistent with their essential roles, the sulfation and FGF1 requires both 2-O-sulfation and 6-O-sulfation patterns of glycosaminoglycans are tightly regulated in [19]. Distinct sulfation preferences are also exhibited by vivo. Distinct sulfated forms are associated with particular the FGFRs; for example, 6-O-sulfation was required for tissues: for example, differentially sulfated CS motifs are FGFR2 IIIb but not FGFR1 activation [20]. Unfortu- localized to specific brain regions and found along axonal nately, the heterogeneity of biochemical HS preparations growth tracts [11,12]. The sulfation patterns of HS and CS has made it difficult to examine specific sulfation are also altered during embryonic brain development, as sequences. As discussed below, it is anticipated that are specific sulfotransferase activities [13,14]. Further- homogeneous oligosaccharide libraries of defined more, distinct HS motifs have been linked to the devel- sequence will provide additional insights into the impor- opment of several diseases, including the pathology of tance of the sulfation code. Resolution of the code and Alzheimer’s disease and cancer metastasis [2,6]. precise activation mechanism will be crucial for under- standing growth factor signaling, and may reveal common The molecular mechanisms by which glycosaminogly- mechanistic themes utilized by both HS and CS glyco- cans contribute to these biological events are only begin- saminoglycans. ning to be understood. However, many studies suggest that glycosaminoglycans coordinate complex processes by Recent studies have
Recommended publications
  • Glycosaminoglycan Therapy for Long-Term Diabetic Complications?
    Diabetologia (1998) 41: 975±979 Ó Springer-Verlag 1998 For debate Glycosaminoglycan therapy for long-term diabetic complications? G.Gambaro1, J.Skrha2, A. Ceriello3 1 Institute of Internal Medicine, Division of Nephrology, University of Padua, Italy 2 3rd Department of Internal Medicine, Charles University, Prague, Czech Republic 3 Department of Internal Medicine, University of Udine, Italy Long-term complications are the most important and an aminosugar (glucosamine or galattosamine) cause of mortality of diabetic patiens in western [5]. These molecules are widely distributed in the countries and diabetic nephropathy has emerged as body and prominent in extracellular matrices [5]. a major determinant of end-stage renal failure [1]. Three major classes of GAGs have been de- Moreover, patients with diabetes mellitus have a scribed: a predominant large chondroitin sulphate, a high probability of developing acute cardiovascular small dermatan sulphate and a polydisperse heparan disease, in particular myocardial infarction and cere- sulphate (HS) [5]. GAGs are vital in maintaining the brovascular stroke which are the cause of death in structural integrity of the tissue and studies have nearly 80% of this population [2]. Although data shown that basement membranes contain HS in the from the Diabetes Control and Complications Trial form of a proteoglycan unique to that tissue [5]. HS establish that hyperglycaemia has a central role in di- forms anionic sites in this matrix and are thought to abetic complications, strict metabolic control can be restrict the passage of proteins through the basement difficult to achieve. The search for new and ancillary membrane [5]. approaches to diabetic complications is therefore warranted and understanding the distal pathway of glucose toxicity assumes clinical and therapeutical GAG metabolism and diabetes mellitus significance.
    [Show full text]
  • Matrix Protection Therapy in Diabetic Foot Ulcers: Pilot Study of CACIPLIQ20®
    Review INES SLIM (MD)1, HOUDA TAJOURI (MD)1, DENIS BARRITAULT (PHD)2,3, MAHA KACEM NJAH (MD)1, KOUSSAY ACH (MD)1, MOLKA CHADLI CHAIEB MD1, LARBI CHAIEB (MD)1 1. Endocrinology and Diabetology Department, Farhat Hached University Hospital, Ibn Jazzar Street, 4000, Sousse, Tunisia. 2. OTR3, 4 Rue Française, 75001 Paris, France. 3. Laboratoire CRRET , CNRS UMR 7149 Sciences Faculty, Paris Est Créteil University, 94000 Créteil, France. Matrix Protection Therapy in Diabetic Foot Ulcers: Pilot Study of CACIPLIQ20® Abstract We evaluated whether matrix protection therapy by CACIPLIQ20® promotes healing of chronic lower extremity wounds in diabetic patients. Ten diabetic patients with non-infected chronic skin wounds and with no evidence of healing were inclu- ded. CACIPLIQ20® was applied topically twice a week for 5 minutes for up to 10 weeks. Wound surface area was measured at baseline then weekly during treatment. Wound closure, defined as complete reepithelialization, was the primary end- point. Mean wound surface area decreased by 25% within the first week (p=0.021 vs. baseline) and by 47% after 4 weeks (p=0.001 vs. baseline). After 10 weeks, the wound was closed in 6 of the 10 patients and decreased over 80% in the other patients. Subsequently, the none healed patients returned to standard care. Six months later, complete wound healing was noted in one additional patient and no further change in the remaining 3 patients. Two patients were again treated with CACI- PLIQ20® for one month: one healed, the other improved again by 50%. Nine months later, closed ulcers did not re-open.
    [Show full text]
  • Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics
    International Journal of Molecular Sciences Article Constructing 3-Dimensional Atomic-Resolution Models of Nonsulfated Glycosaminoglycans with Arbitrary Lengths Using Conformations from Molecular Dynamics Elizabeth K. Whitmore 1,2 , Devon Martin 1,2 and Olgun Guvench 1,2,* 1 Department of Pharmaceutical Sciences and Administration, University of New England School of Pharmacy, 716 Stevens Avenue, Portland, ME 04103, USA; [email protected] (E.K.W.); [email protected] (D.M.) 2 Graduate School of Biomedical Science and Engineering, University of Maine, 5775 Stodder Hall, Orono, ME 04469, USA * Correspondence: [email protected]; Tel.: +1-207-221-4171 Received: 10 September 2020; Accepted: 15 October 2020; Published: 18 October 2020 Abstract: Glycosaminoglycans (GAGs) are the linear carbohydrate components of proteoglycans (PGs) and are key mediators in the bioactivity of PGs in animal tissue. GAGs are heterogeneous, conformationally complex, and polydisperse, containing up to 200 monosaccharide units. These complexities make studying GAG conformation a challenge for existing experimental and computational methods. We previously described an algorithm we developed that applies conformational parameters (i.e., all bond lengths, bond angles, and dihedral angles) from molecular dynamics (MD) simulations of nonsulfated chondroitin GAG 20-mers to construct 3-D atomic-resolution models of nonsulfated chondroitin GAGs of arbitrary length. In the current study, we applied our algorithm to other GAGs, including hyaluronan and nonsulfated forms of
    [Show full text]
  • Glycosaminoglycans As Active Signaling Components of the Extracellular Matrix
    1 Chapter 1 Glycosaminoglycans as Active Signaling Components of the Extracellular Matrix Portions of this chapter are published as: Griffin ME, Hsieh-Wilson LC. “Glycan engineering for cell and developmental biology.” Cell Chem. Biol. 2016, 23: 108-121. doi: 10.1016/j.chembiol.2015. 12.007. Review article. 2 1.1 Glycosaminoglycan Structures and Biosynthesis Carbohydrates are generally thought of as a fuel source for life. However, these molecules also function in many other roles necessary for survival including development, angiogenesis, and neuronal growth.1-5 In particular, carbohydrates at the cell surface can strongly regulate signal transduction and cellular activity. This feat is achieved in large part through their structural diversity, which allows them to selectively bind to a variety of different proteins and in turn modulate their functions. Unsurprisingly, the dysregulation of cell-surface carbohydrate production and presentation can contribute to a variety of diseases including inflammation and cancer progression.6, 7 Therefore, discovering relationships between the chemical structures of carbohydrates, the proteins to which they bind, and the resulting biological functions is critical both for the basic understanding of many physiological processes and for the prevention and treatment of various pathologies. Cell-surface carbohydrates exist in a variety of forms and are classified based on their overall size, membrane anchor, monosaccharide composition, glycosidic connections, and further modifications of the monosaccharide
    [Show full text]
  • Glycosaminoglycan Derived from Field Cricket and Its Inhibition Activity of Diabetes Based on Anti-Oxidative Action
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 March 2019 doi:10.20944/preprints201903.0136.v1 1 Glycosaminoglycan derived from field cricket and its inhibition 2 activity of diabetes based on anti-oxidative action 3 1 1 1 2 4 Mi Young Ahn , Ban Ji Kim , Ha Jeong Kim , Jang Mi Jin , Hyung Joo 1 1 3 5 Yoon , Jae Sam Hwang and Byung Mu Lee 1 6 Department of Agricultural Biology, National Academy of Agricultural Science, RDA, 7 Wanju-Gun 55365, South Korea; [email protected] (MYA); [email protected] (BJK.); 8 [email protected] (HJK); [email protected] (HJY); [email protected] (JSH) 2 9 Korean Basic Science Institute, Ochang 863-883, South Korea; [email protected] 3 10 Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Suwon, 440-746, 11 South Korea; [email protected] 12 Running title: Anti-oxidative effect of cricket glycan in db mice 13 14 Prepared for Nutrients 15 *Address correspondence to: Mi Young Ahn, 16 Department of Agricultural Biology, 17 National Academy of Agricultural Science, RDA, 166 18 Nongsaengmyung-Ro, Iseo-Myun, Wanju-Gun, 55365, South Korea, 19 Telephone: 82-63-238-2975. 20 Fax: 82-63-238-3833. 21 E-mail: [email protected] 22 1 © 2019 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 March 2019 doi:10.20944/preprints201903.0136.v1 1 Abstract: Field cricket (Gryllus bimaculatus) is newly emerged as an edible insect in 2 several countries. Anti-inflammatory effect of glycosaminoglycan derived this cricket was 3 not fully investigated on chronic disease animal model such as diabetic mouse.
    [Show full text]
  • Evaluation of the Xanthan-Based Film Incorporated with Silver Nanoparticles for Potential Application in the Nonhealing Infectious Wound
    Hindawi Journal of Nanomaterials Volume 2017, Article ID 6802397, 10 pages https://doi.org/10.1155/2017/6802397 Research Article Evaluation of the Xanthan-Based Film Incorporated with Silver Nanoparticles for Potential Application in the Nonhealing Infectious Wound Jinjian Huang,1,2 Jianan Ren,1 Guopu Chen,1,3 Youming Deng,1,3 Gefei Wang,1 and Xiuwen Wu1 1 Department of Surgery, Jinling Hospital, Nanjing, China 2Medical School of Southeast University, Nanjing, China 3Medical School of Nanjing University, Nanjing, China Correspondence should be addressed to Jianan Ren; [email protected] Received 29 April 2017; Accepted 18 July 2017; Published 27 August 2017 Academic Editor: Piersandro Pallavicini Copyright © 2017 Jinjian Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Xanthan gum is a high molecular weight polysaccharide biocompatible to biological systems, so its products promise high potential in medicine. In this study, we crosslinked xanthan gum with citric acid to develop a transparent film for protecting the wound. Silver nanoparticles (AgNPs) are incorporated into the film to enhance the antimicrobial property of our biomaterial. This paper discussed the characteristics and manufacturing of this nanocomposite dressing. The safety of the dressing was studied using fibroblasts (L929) by the method of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and staining of ethidium homodimer (PI) and calcein AM. The bacterial inhibition test and application of the dressing to nonhealing wounds infected with methicillin-resistant S.
    [Show full text]
  • Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy
    pharmaceuticals Article Glycosaminoglycan Binding and Non-Endocytic Membrane Translocation of Cell-Permeable Octaarginine Monitored by Real-Time In-Cell NMR Spectroscopy Yuki Takechi-Haraya 1,†, Kenzo Aki 1, Yumi Tohyama 1, Yuichi Harano 1, Toru Kawakami 2, Hiroyuki Saito 3 and Emiko Okamura 1,* 1 Faculty of Pharmaceutical Sciences, Himeji Dokkyo University, 7-2-1 Kamiohno, Himeji 670-8524, Japan; [email protected] (Y.T.-H.); [email protected] (K.A.); [email protected] (Y.T.); [email protected] (Y.H.) 2 Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan; [email protected] 3 Department of Biophysical Chemistry, Kyoto Pharmaceutical University, 5 Nakauchi-cho, Misasagi, Yamashina-ku, Kyoto 607-8414, Japan; [email protected] * Correspondence: [email protected]; Tel.: +81-79-223-6847 † Present address: Division of Drugs, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan. Academic Editor: Barbara Mulloy Received: 16 February 2017; Accepted: 12 April 2017; Published: 15 April 2017 Abstract: Glycosaminoglycans (GAGs), which are covalently-linked membrane proteins at the cell surface have recently been suggested to involve in not only endocytic cellular uptake but also non-endocytic direct cell membrane translocation of arginine-rich cell-penetrating peptides (CPPs). However, in-situ comprehensive observation and the quantitative analysis of the direct membrane translocation processes are challenging, and the mechanism therefore remains still unresolved. In this work, real-time in-cell NMR spectroscopy was applied to investigate the direct membrane translocation of octaarginine (R8) into living cells.
    [Show full text]
  • Annrheumd00427-0020.Pdf
    Annals of the Rheumatic Diseases, 1989; 48, 372-381 Evaluation of the effects of antiarthritic drugs on the secretion of proteoglycans by lapine chondrocytes using a novel assay procedure SIMON COLLIER AND PETER GHOSH From the Raymond Purves Research Laboratories (The University of Sydney) at the Royal North Shore Hospital of Sydney, St Leonards, NSW 2065, Australia SUMMARY A new method is described for separating free 35SO4- from 35SO4 labelled groteoglycans synthesised by rabbit articular chondrocytes cultured in the presence of excess 4 The procedure uses the low solubility product of barium sulphate to remove, by precipitation, free 35SO4- from culture medium. Optimum recovery of 35so4 labelled proteoglycans was achieved after papain digestion to release 35SO4-glycosaminoglycans, and addition of chondroitin sulphate before the precipitation step. Using this assay, we studied the effect of six drugs-indomethacin, diclofenac, sodium pentosan polysulphate, glycosaminoglycan polysulphate ester, tiaprofenic acid, and ketoprofen-on the secretion into the medium of labelled proteoglycans by lapine chondrocytes. The six drugs were tested at 0< 1, 1, 10, 50, and 100 I.g/ml over four consecutive 48 hour culture periods. A consistent concentration-response pattern was found for the four non-steroidal anti-inflammatory drugs (NSAIDs) studied. Generally they inhibited proteoglycan secretion at 50 and 100 [ig/ml but had no effect at lower concentrations. Inhibition of secretion was strongest with indomethacin and diclofenac at 50 and 100 ig/ml. In contrast with the NSAIDs studied, the two sulphated polysaccharides (sodium pentosan polysulphate and glycosaminoglycan polysulphate ester) at low concentrations increased proteoglycan secretion by chondrocytes, with maximal stimulation occurring at 1 [ig/ml.
    [Show full text]
  • The Acceleration of Articular Cartilage Degeneration in Osteoarthritis by Nonsteroidal Anti-Inflammatory Drugs Ross A
    WONDER WHY? THE ACCELERATION OF ARTICULAR CARTILAGE DEGENERATION IN OSTEOARTHRITIS WONDER WHY? The Acceleration of Articular Cartilage Degeneration in Osteoarthritis by Nonsteroidal Anti-inflammatory Drugs Ross A. Hauser, MD A B STRA C T introduction over the past forty years is one of the main causes of the rapid rise in the need for hip and knee Nonsteroidal anti-inflammatory drugs (NSAIDs) are replacements, both now and in the future. among the most commonly used drugs in the world for the treatment of osteoarthritis (OA) symptoms, and are While it is admirable for the various consensus and taken by 20-30% of elderly people in developed countries. rheumatology organizations to educate doctors and Because of the potential for significant side effects of the lay public about the necessity to limit NSAID use in these medications on the liver, stomach, gastrointestinal OA, the author recommends that the following warning tract and heart, including death, treatment guidelines label be on each NSAID bottle: advise against their long term use to treat OA. One of the best documented but lesser known long-term side effects The use of this nonsteroidal anti-inflammatory of NSAIDs is their negative impact on articular cartilage. medication has been shown in scientific studies to accelerate the articular cartilage breakdown In the normal joint, there is a balance between the in osteoarthritis. Use of this product poses a continuous process of cartilage matrix degradation and significant risk in accelerating osteoarthritis joint repair. In OA, there is a disruption of the homeostatic breakdown. Anyone using this product for the pain state and the catabolic (breakdown) processes of of osteoarthritis should be under a doctor’s care and chondrocytes.
    [Show full text]
  • 7 | Carbohydrates and Glycobiology
    7 | Carbohydrates and Glycobiology Aldoses and Ketoses; Representative monosaccharides. (a)Two trioses, an aldose and a ketose. The carbonyl group in each is shaded. • An aldose contains an aldehyde functionality • A ketose contains a ketone functionality The Glycosidic Bond • Two sugar molecules can be joined via a glycosidic bond between an anomeric carbon and a hydroxyl carbon • The glycosidic bond (an acetal) between monomers is less reactive than the hemiacetal at the second monomer – Second monomer, with the hemiacetal, is reducing – Anomeric carbon involved in the glycosidic linkage is nonreducing • The disaccharide formed upon condensation of two glucose molecules via 1 4 bond is called maltose • Formation of maltose. A disaccharide is formed from two monosaccharides (here, two molecules of D-glucose) when an —OH (alcohol) of one glucose molecule (right) condenses with the intramolecular hemiacetal of the other glucose molecule (left), with elimination of H2O and formation of a glycosidic bond. The reversal of this reaction is hydrolysis—attack by H2O on the glycosidic bond. The maltose molecule, shown here as an illustration, retains a reducing hemiacetal at the C-1 not involved in the glycosidic bond. Because mutarotation interconverts the α and β forms of the hemiacetal, the bonds at this position are sometimes depicted with wavy lines, as shown here, to indicate that the structure may be either α or β. Nonreducing Disaccharides • Two sugar molecules can be also joined via a glycosidic bond between two anomeric carbons • The product has two acetal groups and no hemiacetals • There are no reducing ends, this is a nonreducing sugar • Trehalose is a constituent of hemolymph of insects • Two common disaccharides.
    [Show full text]
  • Conducting Polymer Scaffolds Based on Poly(3,4- Ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring
    This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. Article Cite This: ACS Omega 2018, 3, 7424−7431 Conducting Polymer Scaffolds Based on Poly(3,4- ethylenedioxythiophene) and Xanthan Gum for Live-Cell Monitoring † ‡ § ‡ ‡ ∥ ‡ ⊥ ‡ Isabel del Agua, , , Sara Marina, Charalampos Pitsalidis, , Daniele Mantione, , Magali Ferro, ‡ ∥ ‡ # ‡ # ‡ ∥ Donata Iandolo, , Ana Sanchez-Sanchez, , George G. Malliaras, , Roiśín M. Owens,*, , † ¶ and David Mecerreyes*, , † POLYMAT University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-san Sebastian, Spain ‡ Department of Bioelectronics, Ecole Nationale Superieuré des Mines, CMP-EMSE, MOC, 13541 Gardanne, France § Panaxium SAS, 67 Cours Mirabeau, 13100 Aix-en-Provence, France ∥ Department of Chemical Engineering and Biotechnology, Philippa Fawcett Drive, Cambridge CB3 0AS, U.K. ⊥ Laboratoire de Chimie des Polymeres̀ Organiques, UniversitéBordeaux/CNRS/INP, Alleé Geoffroy Saint Hilaire, Batiment̂ B8, 33615 Pessac Cedex, France # Department of Engineering, Electrical Engineering Division, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K. ¶ Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain *S Supporting Information ABSTRACT: Conducting polymer scaffolds can promote cell growth by electrical stimulation, which is advantageous for some specific type of cells such as neurons, muscle, or cardiac cells. As an additional feature, the measure of their impedance has been demonstrated as a tool to monitor cell growth within the scaffold. In this work, we present innovative conducting polymer porous scaffolds based on poly(3,4-ethylenedioxythiophene) (PEDOT):xanthan gum instead of the well-known PEDOT:polystyrene sulfonate scaffolds.
    [Show full text]
  • Chemical Modification of Glycosaminoglycan Polysaccharides
    molecules Review Chemical Modification of Glycosaminoglycan Polysaccharides Lais C. G. F. Palhares 1 , James A. London 2 , Aleksandra M. Kozlowski 3, Emiliano Esposito 4, Suely F. Chavante 1, Minghong Ni 4 and Edwin A. Yates 2,* 1 Programa de Pós-graduação em Bioquímica e Biologia Molecular, Departamento de Bioquímica, Universidade do Rio Grande do Norte (UFRN), Natal 59012-570, Brazil; [email protected] (L.C.G.F.P.); [email protected] (S.F.C.) 2 Department of Biochemistry and Systems Biology, ISMIB, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK; [email protected] 3 Department of Chemistry and Chemical Engineering, Forest Products and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 58 Göteborg, Sweden; [email protected] 4 Instituto di Richerche Chemiche e Biochemiche, ‘G.Ronzoni’, Via G Colombo 81, 20133 Milano, Italy; [email protected] (E.E.); [email protected] (M.N.) * Correspondence: [email protected] or [email protected]; Tel.: +44-151-795-4429 Abstract: The linear anionic class of polysaccharides, glycosaminoglycans (GAGs), are critical throughout the animal kingdom for developmental processes and the maintenance of healthy tissues. They are also of interest as a means of influencing biochemical processes. One member of the GAG family, heparin, is exploited globally as a major anticoagulant pharmaceutical and there is a growing interest in the potential of other GAGs for diverse applications ranging from skin care to the treatment of neurodegenerative conditions, and from the treatment and prevention of microbial infection to biotechnology. To realize the potential of GAGs, however, it is necessary to develop effective tools that are able to exploit the chemical manipulations to which GAGs are susceptible.
    [Show full text]