Characters for Identifying Common Families of Diptera 1 Brachycera

Total Page:16

File Type:pdf, Size:1020Kb

Characters for Identifying Common Families of Diptera 1 Brachycera Characters for Identifying Common Families of Diptera1 Brachycera Stratiomyidae: Often patterned yellow and black, not bristly, but often with short dense pile (e.g., Odontomyia). Hexagonal cell in wing (cell d or dm); R4 and R5 end well before wing tip. Larvae are either aquatic (Stratiomyinae) or terrestrial (other subfamilies); larvae have deposits of calcium carbonate plates in the cuticle. Larvae are scavengers in decaying plant and animal material; some are predaceous or feed on root of grasses. Adults are found feeding on flowers, especially on willow, hawthorn, composites, and umbels, or resting on vegetation. Tabanidae: Antennal flagellum of distinctive shape and form, with large basal portion and terminal annulations. Head hemispherical. R4 and R5 “enclose” wing tip. Females of most species feed on blood of mammals and birds, but some feed on cold-blooded vertebrates; nonhematophagous species and males visit flowers. Some are important vectors of disease, including various bacterial, rickettsial, viral, and protozoan, and filarial diseases such as anthrax, tularemia, trypanosomiasis, filariasis. Transmission is usually mechanical. Fortunately in North America disease transmission by tabanids is absent. Larvae are aquatic or found in moist wetland soil, they are predaceous. Rhagionidae (snipe flies): Drab, with yellow or orange markings, without bristles, but with thin pile. 3rd antennal segment rounded, with long slender style; d or dm cell large, situated near center of wing. Some have patterned wings. 1 Images UMSP, www.diptera.info, Wikimedia Commons !1 Larvae are presumed to be predators and are found in rich organic soil, but food habits of adults are largely unknown. Asilidae: Top of head hollowed out between eyes. Body varies from very hairy to nearly hairless and robust to slender, but face is usually bearded. Males and females are rapacious predators of other insects, including bees and wasps (Laphria, the “bee catchers"). They are usually found in open sunny areas. Larvae are poorly known and live in soil and rotting wood. Bombyliidae: Hairy, bee-like; often with very long proboscis. R2+3 and R4 often sinuate. Adults are commonly seen hovering near flowers where they feed on nectar. Larvae are poorly known, but those studied are parasitic on immature Lepidoptera, Hymenoptera, Coleoptera, Diptera, and Neuroptera or prey on grasshopper egg pods. Empididae (dance flies): Common, but difficult to characterize. Usually slender and long legged, the legs often modified for predation (raptorial or semi-raptorial). Proboscis usually elongate (also for predation). 3rd antennal segment usually rounded, with a long terminal style. r-m cross vein located beyond basal 1/4 of wing. Larvae are aquatic or terrestrial and little is known about their biology. Terrestrial species have been recorded in dung, soil, leaf litter, rotten wood, owl's nests, roots, and fungi. Aquatic species occur is aquatic mosses in flowing water or in thin surface films; they feed on simuliid larvae. Some larvae attack caddisfly pupae. Adults are also predaceous on swarming Diptera, emerging aquatic insects, including mosquitoes and blackflies, or insects trapped in spider's webs. Males present captured prey to females in ritualized courtship behaviors. !2 Dolichopodidae: Usually metallic green or coppery. Male genitalia folded under abdomen. Male often with modified foretarsal segments. Adults and most larvae are predaceous; some species prey on mosquito larvae. Most species are sensitive to cold and only appear in late spring or summer. Lonchopteridae (spear-winged flies): Wings long and pointed with characteristic venation: R2+3 and R4+5 long and straight with their apices converging at wing tip; few crossveins. These are very common flies, but little is known about their biology. Larvae occur in leaf litter and plant detritus. Adults are common on riparian vegetation, woodlands, meadows and other humid habitats. Adults probably feed on nectar. Phoridae (humpbacked flies): Very distinctive. Often humpbacked. Major bristles characteristically feathered. Wing venation very characteristic, anterior veins thick, usually short, crowded forward, remaining 4 veins (M1, M2, CuA1, A1+CuA2) thin and weak. Hind femur may be enlarged. Adults and larvae are associated with decaying plant and animal material, including human corpses, carion, flowers, seeds, bird and mammal nests, wasp, bee, ant, and termite nests, fungi, etc. Some are endoparasites of insects and spiders, others are associated with snails, and some are involved in myiasis. Adults are very active, with quick, jerky movements. Pipunculidae (big-headed flies): Globose compound eyes covering almost entire head. Larval big-head flies are endoparasites of leafhoppers and planthoppers, especially Cicadellidae and Delphacidae, but little is known of their biology. Females hover over vegetation and snatch up immature leafhoppers. While in flight they insert their eggs between the abdominal membranes of the host. The larvae grow to fill their host. !3 Syrphidae: Wing with spurious vein. R5 cell (and frequently M2) closed. Many are mimics of Hymenoptera (bees and wasps) and may appear similar to bombyliid flies. Very common and abundant. Most species hover and visit flowers, making them significant pollinators of plants. Larval biology is diverse and includes species that live in ant nests, predators of aphids and other homopterous pests, fungal and detrital feeders, scavengers in the nests of social Hymenoptera, those living in dung and rotting vegetation, aquatic species found in tree holes or very enriched waters, with other aquatic species are found in clean water; a few species cause intestinal myiasis in humans. Conopidae (thick-headed flies): Proboscis long, slender. Abdomen usually narrowed at base. Body shape and color characteristic, strongly resembling solitary wasps. Larvae are endoparasites of bees and wasps or of cockroaches and calyptrate Diptera. Females attack their prey in flight. Adults take nectar through their long proboscis while hovering at flowers, particularly members of the mint family. Micropezidae (stilt-legged flies): Legs long and stiltlike. R5 cell (formed by R4+5 and M1+2) narrowed or closed apically. Body shape characteristic; terminalia of both sexes turned downward and forward. Larvae feed on roots, decaying vegetation, and dung. Adults are usually found in moist habitats. !4 Diopsidae (stalk-eyed flies): Stalklike process bearing eyes on sides of head. Antennae widely separated; scutellum with two stout tubercles. Sphracephala brevicornis is the only North American species. Adults hibernate and emerge in the early spring. Larve feed on rotting organic material. In Minnesota they are often associated with skunk cabbage (P. Clausen, pers. com.) Ulidiidae (picture-winged flies) : Some are metallic green, small. Wings often banded or patterned. Sc slightly curved at tip. Anal cell cup usually with an acute distal extension posteriorly. Biology is little known. Adults are frequently found in moist areas. Larvae are associated with decaying vegetation, manure, or under bark, where they are mostly saprophagous. Pyrgotidae (pyrgotid flies): Head large and rounded, no ocelli in Nearctic species. Legs usually long. Wings usually strongly patterned with bands, bars, or spots. Larvae are endoparasites of adult scarab beetles. Females oviposit at night on their hosts while both are in flight. They can be important beneficial insects in controlling June beetles and other pest scarabs. !5 Tephritidae (fruit flies) : Wings often spotted or banded; may also be solid brown. Often brightly colored. Sc bent abruptly forward. Anal cell often with acute distal extension posteriorly. Larvae feed on living plant tissue, including leaves, roots, stems, fruits, etc., some are leaf miners or gall formers, including goldenrod stem galls. Many are important pests of commercial plants, including the apple maggot and the med fly, or are useful as biocontrol agents of weeds. Adults are common and found on flowers and vegetation. Sepsidae (black scavenger flies): Small, usually shining black or dark purplish. Head rounded and abdomen usually narrowed at base (characteristic body shape - body somewhat antlike). Usually with a dark spot at wing tip. Forelegs of males modified for grasping females. (Photo: diptera.info) Sepsid larvae occur most commonly in dung and excrement, but are also found in decaying animal and plant matter. Adults flip their wings outward when walking. Sciomyzidae (marsh flies): Brownish-yellowish, with patterned wings. Antennae generally project foreward, often long. Femora well developed with characteristic seta. Larvae are exclusively associated with freshwater and terrestrial snails, or slugs and fingernail clams. They feed on snails as predators, parasitoids, or scavengers. Females search out snails for oviposition. !6 Sphaeroceridae (small dung flies): Small, dark-colored flies. First tarsal segment of hind leg short, thick, second somewhat widened and longer. (Photos: diptera.info) Very common and abundant flies, associated with all types of decaying organic matter, including dung, carrion, rotting seaweed, mammal nests, fungi, etc., - even the dung balls of dung beetles! Anthomyzidae: Small, slender. Fore femur with a strong ctenidial spine. Wing venation: with subcostal break only; cells bm and dm weakly separated; cup present; A1 straight, strong, not reaching wing margin. These are abundant flies, often found in grassy marshes, where their larvae feed in grass and sedge stems. Agromyzidae (leaf-miner flies):
Recommended publications
  • Wing Polymorphism in European Species of Sphaeroceridae (Diptera)
    ACTA ENTOMOLOGICA MUSEI NATIONALIS PRAGAE Published 17.xii.2012 Volume 52( 2), pp. 535–558 ISSN 0374-1036 Wing polymorphism in European species of Sphaeroceridae (Diptera) Jindřich ROHÁČEK Slezské zemské muzeum, Tyršova 1, CZ-746 46 Opava, Czech Republic; e-mail: [email protected] Abstract. The wing polymorphism is described in 8 European species of Sphae- roceridae (Diptera), viz. Crumomyia pedestris (Meigen, 1830), Phthitia spinosa (Collin, 1930), Pteremis fenestralis (Fallén, 1820), Pullimosina meijerei (Duda, 1918), Puncticorpus cribratum (Villeneuve, 1918), Spelobia manicata (Richards, 1927), Spelobia pseudonivalis (Dahl, 1909) and Terrilimosina corrivalis (Ville- neuve, 1918). These cases seem to belong to three types of alary polymorphism: i) species with separate macropterous and brachypterous forms – Crumomyia pedestris, Pteremis fenestralis, Pullimosina meijerei; ii) species with a continual series of wing forms ranging from brachypterous to macropterous – Puncticor- pus cribratum, Spelobia pseudonivalis, Terrilimosina corrivalis; iii) similar to the foregoing type but with only slightly reduced wing in the brachypterous form – Phthitia spinosa, Spelobia manicata. The variability of venation of wing polymorphic and brachypterous species of the West-Palaearctic species of Sphaeroceridae was examined and general trends in the reduction of veins during evolution are defi ned. These trends are found to be different in Copromyzinae (C. pedestris) and Limosininae (all other species) where 6 successive stages of reduction are recognized. The fi rst case of a specimen (of Pullimosina meije- rei) with unevenly developed wings (one normal, other reduced) is described in Sphaeroceridae. Causes of the origin of wing polymorphism, variability of wing polymorphic populations depending on geographical and climatic factors, importance of wing polymorphism in the evolution of brachypterous and apterous species and the probable genetic background of wing polymorphism in European species are discussed.
    [Show full text]
  • New and Interesting Records of Diptera on Glacial Sand Deposits in Silesia (NE Czech Republic)
    ISSN 2336-3193 Acta Mus. Siles. Sci. Natur., 69: 1-19, 2020 DOI: 10.2478/cszma-2020-0001 Published: online 31 March 2020, print March 2020 New and interesting records of Diptera on glacial sand deposits in Silesia (NE Czech Republic). Part 1 - Acalyptratae Jindřich Roháček, Miloš Černý, Martin J. Ebejer & Štěpán Kubík New and interesting records of Diptera on glacial sand deposits in Silesia (NE Czech Republic). Part 1 - Acalyptratae. – Acta Mus. Siles. Sci. Natur. 69: 1-19, 2020. Abstract: Records of 18 species of the families Micropezidae (1 species), Lonchaeidae (1 species), Lauxaniidae (1 species), Chamaemyiidae (6 species), Agromyzidae (6 species) and Chloropidae (3 species) from glacial sand deposits in the Czech Silesia (NE Czech Republic) are presented and their association with sandy habitats is discussed. All of them are recorded from the Czech Silesia for the first time, 4 are new additions to the fauna of Moravia and 9 for the whole Czech Republic. None of the recorded species is psammobiont but five of them are classified as psammophilous, viz. Micro- peza lateralis Meigen, 1826 (Micropezidae), Calliopum geniculatum (Fabricius, 1805) (Lauxaniidae), Cerodontha (Xenophytomyza) leptophallus L. Papp, 2016, Ophiomyia disordens Pakalniškis, 1998 (both Agromyzidae), Aphanotrigonum parahastatum Dely-Draskovits, 1981 (Chloropidae), and Leucopis celsa Tanasijtshuk, 1979 as probably psammophilous. A new easternmost record of M. late- ralis (from S. Poland: Godów) is presented and the association of this species and C. geniculatum with growths of Cytisus scoparius is confirmed. Leucopis monticola Tanasijtshuk, 1961, L. celsa and A. parahastatum are recorded from northernmost known localities. These species, and also C.
    [Show full text]
  • Evaluation of Seedling Tray Drench of Insecticides for Cabbage Maggot (Diptera: Anthomyiidae) Management in Broccoli and Cauliflower
    Evaluation of seedling tray drench of insecticides for cabbage maggot (Diptera: Anthomyiidae) management in broccoli and cauliflower Shimat V. Joseph1,*, and Shanna Iudice2 Abstract The larval stages of cabbage maggot, Delia radicum (L.) (Diptera: Anthomyiidae), attack the roots of cruciferous crops and often cause severe eco- nomic damage. Although lethal insecticides are available to controlD. radicum, efficacy can be improved by the placement of residues near the roots where the pest is actively feeding and causing injury. One such method is drenching seedlings with insecticide before transplanting, referred to as “tray drench.” The efficacy of insecticides, when applied as tray drench, is not thoroughly understood for transplants of broccoli and cauliflower. Thus, a series of seedling tray drench trials were conducted on transplants of these 2 vegetables using cyantraniliprole, chlorantraniliprole, clothianidin, bifenthrin, flupyradifurone, chlorpyrifos, and spinetoram in greenhouse and field settings. In the greenhouse trials, the severityD. of radicum feeding injury was significantly lower on broccoli and cauliflower transplants when drenched with clothianidin, bifenthrin, and cyantraniliprole compared with untreated controls. In broccoli field trials, incidence and severity of feeding injury was lower in seedlings drenched with cyantraniliprole and clothianidin, as well as a clothianidin spray at the base of seedlings, than the use of spinetoram, chlorpyrifos, flupyradifurone, and chlorantraniliprole. In a cauliflower field trial,
    [Show full text]
  • The Occurrence of Stalk-Eyed Flies (Diptera, Diopsidae) in the Arabian Peninsula, with a Review of Cluster Formation in the Diopsidae Hans R
    Tijdschrift voor Entomologie 160 (2017) 75–88 The occurrence of stalk-eyed flies (Diptera, Diopsidae) in the Arabian Peninsula, with a review of cluster formation in the Diopsidae Hans R. Feijen*, Ralph Martin & Cobi Feijen Catalogue and distribution data are presented for the six Diopsidae species known to occur in the Arabian Peninsula: Sphyracephala beccarii, Chaetodiopsis meigenii, Diasemopsis aethiopica, Diopsis arabica, Diopsis mayae and Diopsis sp. (ichneumonea species group). The biogeographical aspects of their distribution are discussed. Records of Diopsis apicalis and Diopsis collaris are removed from the list for Arabia as these were based on misidentifications. Synonymies involving Diasemopsis aethiopica and Diasemopsis varians are discussed. Only one out of four specimens in the D. elegantula type series proved conspecific with D. aethiopica. The synonymy of D. aethiopica and D. varians is rejected. A lectotype for Diasemopsis elegantula is now designated. D. elegantula is proposed as junior synonym of D. varians. A fly cluster of more than 80,000 Sphyracephala beccarii, observed in Oman, is described. The occurrence of cluster formations in the Diopsidae is reviewed, while a possible explanation is indicated. Hans R. Feijen*, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands. [email protected] Ralph Martin, University of Freiburg, Münchhofstraße 14, 79106 Freiburg, Germany Cobi Feijen, Naturalis Biodiversity Center, P.O. Box 9517, 2300 RA Leiden, The Netherlands Introduction catalogue for Diopsidae, Steyskal (1972) only re- Westwood (1837b) described Diopsis arabica as ferred to Westwood and Hennig as far as Diopsidae the first stalk-eyed fly from the Arabian Peninsula. in Arabia was concerned.
    [Show full text]
  • Diptera - Cecidomyiidae, Trypetidae, Tachinidae, Agromyziidae
    DIPTERA - CECIDOMYIIDAE, TRYPETIDAE, TACHINIDAE, AGROMYZIIDAE. DIPTERA Etymology : Di-two; ptera-wing Common names : True flies, Mosquitoes, Gnats, Midges, Characters They are small to medium sized, soft bodied insects. The body regions are distinct. Head is often hemispherical and attached to the thorax by a slender neck. Mouthparts are of sucking type, but may be modified. All thoracic segments are fused together. The thoracic mass is largely made up of mesothorax. A small lobe of the mesonotum (scutellum) overhangs the base of the abdomen. They have a single pair of wings. Forewings are larger, membranous and used for flight. Hindwings are highly reduced, knobbed at the end and are called halteres. They are rapidly vibrated during flight. They function as organs of equilibrium.Flies are the swiftest among all insects. Metamorphosis is complete. Larvae of more common forms are known as maggots. They are apodous and acephalous. Mouthparts are represented as mouth hooks which are attached to internal sclerites. Pupa is generally with free appendages, often enclosed in the hardened last larval skin called puparium. Pupa belongs to the coarctate type. Classification This order is sub divided in to three suborders. I. NMATOCERA (Thread-horn) Antenna is long and many segmented in adult. Larval head is well developed. Larval mandibles act horizontally. Pupa is weakly obtect. Adult emergence is through a straight split in the thoracic region. II. BRACHYCERA (Short-horn) Antenna is short and few segmented in adult. Larval head is retractile into the thorax Larval mandibles act vertically Pupa is exarate. Adult emergence is through a straight split in the thoracic region.
    [Show full text]
  • Survey to the Species of Family Sepsidae (Insecta: Diptera) in Iraq
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2015): 78.96 | Impact Factor (2015): 6.391 Survey to the species of Family Sepsidae (Insecta: Diptera) in Iraq Hanaa H. Al- Saffar Iraq Natural History Research Center and Museum, University of Baghdad, Baghdad, Iraq Abstract: The aim of this study is to survey species of Sepsidae family, The investigation showed three genera , date and locality of collecting specimens were recorded. Keywords: Acalybtarae, Black scavenger fly, Brachycera Diptera, Iraq, Sepsidae 1. Introduction 2. Materials and Methods The black scavenger flies is common name known on family The adult specimens were collected by sweeping net from Sepsidae (Diptera: Acalbtrata ) . The members of this family several region of Iraq , Baghdad, Najaf , Basra from field are worldwide distribution in all zoogeographical regions. near animal houses , and from carions of rabbit . After The family is represented about 339 species belonging to 38 collecting flies they killed by freezing for several hours , genera [1] then mounted with small label recorded the locality and date of collections and insect pins , they were keptq in insect box The sepsid flies are small –medium in size (2-12mm length). until diagnosis. For identification to genra and species using Most species are ant-like flies, with a narrow "waist[1] and taxonomic keys such as [2], [10], [21], [22]. The plates were morphologically and ecologically uniform family of the pictured by Dino Light microscope super family Sciomyzoidea [2],[3] 3. Results and Discussion The adults and larvae abundance in several dung of horses ,cows and other animals , and they associated with animal Family SEPSIDAE Walker, 1883 vertebrates carrion and human , decaying vegetations and other organic matter.
    [Show full text]
  • Lesser Dung Flies (Sphaeroceridae) of the Belgian Fauna: Little Known Nutrient Recyclers
    BULLETIN DE L'lNSTITUT ROY AL DES SCIENCES NATUR ELLES DE BELGIQUE BIOLOGIE, 72 -SUPPL.: 155 -157, 2002 BULLETIN VAN HET KONINKLIJK BELGISCI-IlNSTITUUT VOOR NATUURWETENSCI-IAPPE N BIOLOGIE, 72-SUPPL.: 155 -157, 2002 Lesser dung flies (Sphaeroceridae) of the Belgian fauna: little known nutrient recyclers L DE BRUYN, J. SCHEIRS & H. VAN GOSSUM Introduction Habitat specificity and indicator species The family Sphaeroceridae, or lesser dung flies, consists In recent decades, the conservation of insects has re­ of very common to rare, small to very small flies (PITKIN ceived increasing attention, not only because they are 1988). They can easily be distinguished from other fa­ - "worth conserving, but also because some insect groups milies by the distinctly widened and shortened first tar­ have been shown to be particularly good bio-indicators somere of the hind legs. Most species are darkly coloured which react ve1y quickly to environmental alterations. and possess fully developed wings. In some species wings However, the basic knowledge on habitat specificity, are reduced or can even be absent. The third antenna( necessary to construct such a predictive system, is still segment is usually spherical with a long, sideways or­ scarce, and in most groups even absent (LOBRY DE BRUYN iented arista. 1997, VAN STRAALEN & VERHOEF 1997). The family Sphaeroceridae is generally saprophagous. Sphaerocerid flies are tightly linked to the soil. This The larvae develop in a wide range of decaying organic can probably be attributed to the feeding habit and the matter such as dung (mainly from mammals), carcasses restricted locomot01y behaviour of the studied species. of animals, refuse heaps, grass cuttings, etc.
    [Show full text]
  • Serie B 1995 Vo!. 42 No. 2 Norwegian Journal of Entomology
    Serie B 1995 Vo!. 42 No. 2 Norwegian Journal of Entomology Publ ished by Foundation for Nature Research and Cultural Heritage Research Trondheim Fauna norvegica Ser. B Organ for Norsk Entomologisk Forening Appears with one volume (two issues) annually. also welcome. Appropriate topics include general and 1Jtkommer med to hefter pr. ar. applied (e.g. conservation) ecology, morphology, Editor in chief (Ansvarlig redakt0r) behaviour, zoogeography as well as methodological development. All papers in Fauna norvegica are Dr. John O. Solem, University of Trondheim, The reviewed by at least two referees. Museum, N-7004 Trondheiln. Editorial committee (Redaksjonskomite) FAUNA NORVEGICA Ser. B publishes original new information generally relevant to Norwegian entomol­ Arne C. Nilssen, Department of Zoology, Troms0 ogy. The journal emphasizes papers which are mainly Museum, N-9006 Troms0, Ole A. Scether, Museum of faunal or zoogeographical in scope or content, includ­ Zoology, Musepl. 3, N-5007 Bergen. Reidar Mehl, ing check lists, faunal lists, type catalogues, regional National Institute of Public Health, Geitmyrsveien 75, keys, and fundalnental papers having a conservation N-0462 Oslo. aspect. Subnlissions must not have been previously Abonnement 1996 published or copyrighted and must not be published Medlemmer av Norsk Entomologisk Forening (NEF) subsequently except in abstract form or by written con­ far tidsskriftet fritt tilsendt. Medlemlner av Norsk sent of the Managing Editor. Ornitologisk Forening (NOF) mottar tidsskriftet ved a Subscription 1996 betale kr. 90. Andre ma betale kr. 120. Disse innbeta­ Members of the Norw. Ent. Soc. (NEF) will receive the lingene sendes Stiftelsen for naturforskning og kuItur­ journal free. The membership fee of NOK 150 should be minneforskning (NINA-NIKU), Tungasletta 2, N-7005 paid to the treasurer of NEF, Preben Ottesen, Gustav Trondheim.
    [Show full text]
  • Stable Structural Color Patterns Displayed on Transparent Insect Wings
    Stable structural color patterns displayed on transparent insect wings Ekaterina Shevtsovaa,1, Christer Hanssona,b,1, Daniel H. Janzenc,1, and Jostein Kjærandsend,1 aDepartment of Biology, Lund University, Sölvegatan 35, SE-22362 Lund, Sweden; bScientific Associate of the Entomology Department, Natural History Museum, London SW7 5BD, United Kingdom; cDepartment of Biology, University of Pennsylvania, Philadelphia, PA 19104-6018; and dDepartment of Biology, Museum of Zoology, Lund University, Helgonavägen 3, SE-22362 Lund, Sweden Contributed by Daniel H. Janzen, November 24, 2010 (sent for review October 5, 2010) Color patterns play central roles in the behavior of insects, and are and F). In laboratory conditions most wings are studied against a important traits for taxonomic studies. Here we report striking and white background (Fig. 1 G, H, and J), or the wings are embedded stable structural color patterns—wing interference patterns (WIPs) in a medium with a refractive index close to that of chitin (e.g., —in the transparent wings of small Hymenoptera and Diptera, ref. 19). In both cases the color reflections will be faint or in- patterns that have been largely overlooked by biologists. These ex- visible. tremely thin wings reflect vivid color patterns caused by thin film Insects are an exceedingly diverse and ancient group and interference. The visibility of these patterns is affected by the way their signal-receiver architecture of thin membranous wings the insects display their wings against various backgrounds with and color vision was apparently in place before their huge radia- different light properties. The specific color sequence displayed tion (20–22). The evolution of functional wings (Pterygota) that lacks pure red and matches the color vision of most insects, strongly can be freely operated in multidirections (Neoptera), coupled suggesting that the biological significance of WIPs lies in visual with small body size, has long been viewed as associated with their signaling.
    [Show full text]
  • Order Diptera) with Its Species Diopsis Apicalis in Egypt
    Egypt. Acad. J. biolog. Sci., 2 (2): 135-145 (2009) A. Entomology Email: [email protected] ISSN: 1687–8809 Received: 25/11/2009 www.eajbs.eg.net Described a new recorded family Diopsidae of (Order Diptera) with its Species Diopsis apicalis in Egypt Ayman M. Ebrahim Ministry of Agriculture. Plant protection research institute. Taxonomy Department. ASTRACT During rearranging and trying to identify the unidentified specimens of the order Diptera in the main reference insect collection of the Plant Protection Research Institute, 25 unidentified dipterous specimens that were collected from Armant (Assiut, Egypt) attracted the attention with its eyes that far projected from the head. These specimens were identified to the family rank (Diopsidae) by using the key. The representative specimens of this family were identified by Prof. Dr. Hans Feijen to the species ( Diopsis apicalis ). The present study includes Description and taxonomic characters of the family and its species with illustrated species. Key words: Diptera, Diopsidae, Diopsis, Diopsis apicalis Distribution, Egypt INTRODUCTION The family Diopsidae is essentially, confined to the old world tropics. It is unrepresented in the Neotropical region and there is a single species in North America. Aproximately two-third of all described species of the family are Afrotropical in origin. With the exception of Centrioncus prodiopsis, all diopsid adults of both sexes have characteristic eye-stalks. Their bizarre form has engendered considerable interest among taxonomists, resulted in the description of many supposed new species, often without recourse to previous work. Descamps (1957) figured some of the early stages of the common pest species, and considered their biology.
    [Show full text]
  • ROBBER-FLIES and EMPIDS ROBBER-FLIES Asilidae. Very
    ROBBER-FLIES and EMPIDS Asilus ROBBER-FLIES Asilidae. Very bristly predatory flies that head from front generally chase and catch other insects in mid-air. Most species sit in wait and dart out when likely prey appears. The prey is then sucked dry with the stout proboscis, which projects horizontally or obliquely forward. There is a deep groove between the eyes in both sexes, the eyes never touching even in males. A 'beard' on the face protects eyes from struggling prey. Legs are sturdy and have 2 pads at most. Wings folded flat over body at rest. Larvae eat some dead vegetable matter, but most are at least partly predatory and some feed mainly on beetle and fly grubs in the soil. Asilus with prey As Asi/us crabroniformis. An unmistakable fly - one of the largest in B - inhabiting open country 7-10. A very strong flier. Breeds in cow pats and other dung. Dasypogon diadema. First 2 long veins both reach wing margin: wing membrane ribbed. Front tibia has curved spine at tip. Male more uniformly black, with dark wings. 6-8 in scrubby places, especially coastal dunes. S. ;., Leptogaster cylindrica. Feet without pads. Hind femur yellow. 3rd antennal segment ends in bristle. One of the slimmest robber-flies, it resembles a crane-fly in flight. It hunts in grassy places, flying slowly and plucking aphids from the grasses. 5-8. A L. guttiventris is similar but has reddish hind femur. 85 Dioctria atricapi/la. First 2 long veins reach margin. Beard rather sparse and, as in all Oioctria species, the antennae spring from a prominence high on the head.
    [Show full text]
  • Notable Invertebrates Associated with Fens
    Notable invertebrates associated with fens Molluscs (Mollusca) Vertigo moulinsiana BAP Priority RDB3 Vertigo angustior BAP Priority RDB1 Oxyloma sarsi RDB2 Spiders and allies (Arachnida:Araeae/Pseudoscorpiones) Clubiona rosserae BAP Priority RDB1 Dolomedes plantarius BAP Priority RDB1 Baryphyma gowerense RDBK Carorita paludosa RDB2 Centromerus semiater RDB2 Clubiona juvensis RDB2 Enoplognatha tecta RDB1 Hypsosinga heri RDB1 Neon valentulus RDB2 Pardosa paludicola RDB3 Robertus insignis RDB1 Zora armillata RDB3 Agraecina striata Nb Crustulina sticta Nb Diplocephalus protuberans Nb Donacochara speciosa Na Entelecara omissa Na Erigone welchi Na Gongylidiellum murcidum Nb Hygrolycosa rubrofasciata Na Hypomma fulvum Na Maro sublestus Nb Marpissa radiata Na Maso gallicus Na Myrmarachne formicaria Nb Notioscopus sarcinatus Nb Porrhomma oblitum Nb Saloca diceros Nb Sitticus caricis Nb Synageles venator Na Theridiosoma gemmosum Nb Woodlice (Isopoda) Trichoniscoides albidus Nb Stoneflies (Plecoptera) Nemoura dubitans pNotable Dragonflies and damselflies (Odonata ) Aeshna isosceles RDB 1 Lestes dryas RDB2 Libellula fulva RDB 3 Ceriagrion tenellum N Grasshoppers, crickets, earwigs & cockroaches (Orthoptera/Dermaptera/Dictyoptera) Stethophyma grossum BAP Priority RDB2 Now extinct on Fenland but re-introduction to undrained Fenland habitats is envisaged as part of the Species Recovery Plan. Gryllotalpa gryllotalpa BAP Priority RDB1 (May be extinct on Fenland sites, but was once common enough on Fenland to earn the local vernacular name of ‘Fen-cricket’.)
    [Show full text]