Module 1 Separation Techniques and Mass Spectrometry for Life Sciences

Total Page:16

File Type:pdf, Size:1020Kb

Module 1 Separation Techniques and Mass Spectrometry for Life Sciences Module 1 Separation techniques and Mass Spectrometry for Life Sciences Wojciech Luczaj, Agnieszka Gegotek, Katarzyna Bielawska, Elzbieta Skrzydlewska Department of Analytical Chemistry, Medical University of Białystok, 15-089 Białystok, Poland e-materials (Intellectual Output 3) produced as part of Advanced Analytical Chemistry for Life Sciences [AACLifeSci] project This project has been funded with support from the European Commission Mass spectrometry Analytical technique that allows obtaining information on: molecular weight chemical structure amounts of examined compounds Analytical technique that allows to separate and identify ions according to their mass-to-charge ratio (m/z) Mass spectrometry Stages of the analytical procedure based on mass spectrometry sample ionization [in the ions source] ↓ separation of obtained ions [in the analyzer] ↓ ions identification [in the detector] ↓ mass spectra interpretation Mass spectrometry Mass spectrometer Ionization Mass analyzer Main components → source Detector Turbo pumps Rough pumps High vacuum system Rotary pumps Mass spectrometry MS workflow 1. Ionization of the analyte + + + + + + + + + + + + 2. Separation of the ionized molecules according to their m/z + m > m > m + 1 2 3 + + + + + + 3. Detection of the ions + + + ion detector 4. Analysis and interpretation of the mass spectrum Mass spectrometry Ionization methods . electron impact ionization [EI] . electrospray ionization [ESI] . matrix-assisted laser desorption ionization [MALDI] . atmospheric-pressure chemical ionisation [APCI] hard ionization – products: molecular ion + fragmented element EI soft ionization – the main product - molecular ion ESI MALDI APCI Mass spectrometry ionization techniques Electron ionization (EI) uncharged not detecable molecular ion accelerated electrons • + fragmentation • + M • M • A + B charged detecable charged detecable Electron ionization mechanism and subsequent fragmentation Mass spectrometry Electron ionization (EI) ionization techniques Typical analytes: • relatively small, • non-polar, • volatile, • thermostable Mass range: • <1 kDa Sample introduction: • GC or liquid/solid Advantages: Disadvantages: • non-polar analytes, . analysis • no ion suppression, volatile compounds, • easily coupled with GC, thermally stable compounds, • spectrum libraries low molecular weight compounds, . hard jonization, Mass spectrometry ionization techniques Electrospray ionization (ESI) + + +• + + • + + • + + + • • • + + + + +++ ++ ++ • + ++ ++ • • + + +•+ +•+ • • • + •• • + • + + ••+ +• • • + + + + + + • +++ • + + + + + • + + + + + + + +•+ +• 1 2 3 4 5 1- production of ions , 2- formation of charged droplets spray , 3- desolvation, 4- „Coulomb fission”, 5- gas phase ions genertion The mechanism of electrospray ionization Mass spectrometry ionization techniques Electrospray ionization (ESI) Typical analytes: • polar compounds e.g. peptides, proteins, sugars, nucleotides Mass range: • <200 kDa Sample introduction: • LC or solution Advantages: Disadvantages: • thermolabile compounds • ionizable analytes • high MW compounds • sensitive to salts • multi-charged ions • ion suppression • sensitivity • easy to interface with LC • soft ionization method Mass spectrometry ionization techniques Matrix-assisted laser desorption ionization (MALDI) Laser Analyte beam ion + + + + + + Analyzer + + + + + + Matrix The mechanism of matrix-assisted laser desorption ionization Mass spectrometry ionization techniques Matrix-assisted laser desorption ionization (MALDI) Typical analytes: • polar compounds e.g. peptides, proteins, sugars, nucleotides Mass range: • <500 kDa Sample introduction: • sample mixed with a solid matrix Advantages: • thermolabile compounds, Disadvantages: • high MW compounds, • a wide range of matrices, • sensitivity, • difficulties in quantitative • less sensitive to salts, analysis, • soft ionization method • ion suppression Mass spectrometry ionization techniques Atmospheric-pressure chemical ionization (APCI) Typical analytes: • polar compounds e.g. peptides, proteins, sugars, nucleotides Mass range: • <1 kDa Sample introduction: • LC or solution Advantages: • thermostabile compounds, Disadvantages: • sensitivity, • needs solubility in polar solvents, • allows for large flow rates, • sensitive to salts, • easy to interface with LC, • ion suppression • soft ionization technique Mass spectrometry mass analyzers Mass analyzers Separate ions according to their mass-to-charge (m/z) ratio operate under high vacuum key specifications are: • resolution • mass accuracy • sensitivity • dynamic range Mass spectrometry Resolution mass analyzers the ability to differentiate between closely related signals R = Dm/m where resolving power is defined as: m1/(m2-m1) m1 is the lighter ion and (m2-m1) is the difference between two consecutive ions Mass accuracy the proximity of the experimental mass (accurate mass) to the true value (exact mass) (monoisotopic exact mass – measured accurate mass) monoisotopic exact mass x 106 • determined in [ppm] Mass spectrometry mass analyzers The higher resolution the better mass accuracy Resolution =18100 8000 15 ppm error 6000 Resolution = 14200 24 ppm error 4000 Counts Resolution = 4500 2000 55 ppm error 0 2840 2845 2850 2855 mass to charge ratio (m/z) Mass spectrometry mass analyzers Sensitivity the detector response that is related to the concentration of an analyte which reaches the detector • determines the limit of detection (LOD) Dynamic range the range over which the ion signal is directly proportional to the analyte concentration • crucial for accurate measurements (quantification analysis) Mass spectrometry Mass analyzers mass analyzers Most frequently used mass analyzers Quadrupole (Q) Ion-trap (IT) Time-of –flight (TOF) Orbitrap Mass spectrometry Mass analyzers mass analyzers Quadrupole (Q): • consists of four parallel rods • uses combination of RF and DC voltages to operate as mass filter • has variable ion transmission modes: ion scanning (SCAN), single ion monitoring (SIM) • low resolution • highest sensitivity (quantitative analysis) Scheme of quadrupole mass analyzer Mass spectrometry Mass analyzers mass analyzers Quadrupole (Q): Characterization Quadrupole Acquisition speed (Hz) 2-10 Mass accuracy (ppm) low Mass range <3000 (m/z) Resolution unit Mass spectrometry Mass analyzers mass analyzers Ion-trap (IT): • traps ions using quadrupolar fields • two types: 2D ion-trap (linear ion-trap) 3D ion-trap (quadrupole ion trap) • low resolution • high scanning rate Scheme of 3D ion trap mass analyzer Mass spectrometry mass analyzers Mass analyzers Ion-trap (IT) Characterization Ion-trap Acquisition speed (Hz) 2-10 Mass accuracy (ppm) low Mass range <6000 (m/z) Resolution unit Mass spectrometry mass analyzers Mass analyzers Time-of-flight (TOF): • ions are formed in pulses • measures the time for ions to reach the detector • small ions reach the detector before large ones • high resolution • high mass accuracy • high sensitivity The mechanism of ions separation in TOF mass analyzer Mass spectrometry mass analyzers Mass analyzers Time-of-flight (TOF) Characterization TOF Acquisition speed (Hz) 10-100 Mass accuracy (ppm) 1-10 ppm Mass range <100,000 (m/z) unlimited Resolution <50,000 Mass spectrometry Mass analyzers mass analyzers Orbitrap: • consists of barrel-like electrode • the m/z values are calculated by fast Fourier transform from the oscillation frequencies of the trapped ions • high resolution • high mass accuracy • high sensitivity Mass spectrometry mass analyzers Mass analyzers Orbitrap Characterization Orbitrap Acquisition speed (Hz) 1-18 Mass accuracy (ppm) 1-5 ppm Mass range <6000 (m/z) Resolution <500,000 Mass spectrometry mass analyzers Comparison of different MS analyzers Analyzer Q IT TOF Orbitrap easily interfaced to easily interfaced fast scanning, various ionization to various high mass accuracy, techniques, ionization high mass Advantages range, fast polarity switch higher dynamic range, techniques, MSn , high mass low lost low cost accuracy low resolution, low resolution, lower scanning rate low mass accuracy, low mass lower than QTOF, low mass range, accuracy, dynamic Disadvantages range than Q, lower dynamic low scanning speed, low mass range, range than Q, high cost MS/MS requires low scanning high cost multiple analyzers speed Mass spectrometry mass analyzers Tandem mass spectrometry (MS/MS) Tandem mass spectrometers Triple quadrupole [QqQ] Quadrupole time-of-flight [QqTOF] Ion trap [IT] Quadrupole orbitrap [QqOrbitrap] Mass spectrometry mass analyzers Tandem mass spectrometry ionization source Q1 Q2 Q3 (CID) The tandem mass spectrometry based on triple quadrupole [QqQ] operation MS/MS analysis: • selected/multiply reaction monitoring (SRM/MRM) • product ion scan • precursor ion scan • neutral loss scan Separation techniques coupled with mass spectrometry Mass spectrometry is most commonly combined with liquid chromatography [LC] gas chromatography [GC] capillary electrophresis [CE] 30 LC-MS Introduction to LC-MS Combination of the physical separation capabilities of liquid chromatography (LC) with the mass analysis capabilities of mass spectrometry (MS) Sample liquid chromatograph mass spectrometer LC allows separation of many LC-MS allows differentiating many compounds according their compounds with similar tR, but with different m/z or retention time (tR) fragmentation pattern LC-MS Introduction to liquid chromatography [LC] LC - chromatography in which the mobile phase is a liquid (“eluent”) Separation
Recommended publications
  • Mycobacterium Tuberculosis
    Studies of a Ring-Cleaving Dioxygenase Illuminate the Role of Cholesterol Metabolism in the Pathogenesis of Mycobacterium tuberculosis Katherine C. Yam1., Igor D’Angelo1., Rainer Kalscheuer2., Haizhong Zhu1¤, Jian-Xin Wang3, Victor Snieckus3, Lan H. Ly4, Paul J. Converse5, William R. Jacobs Jr.2, Natalie Strynadka1, Lindsay D. Eltis1,6* 1 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, 2 Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America, 3 Department of Chemistry, Queen’s University, Kingston, Ontario, Canada, 4 Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Science Center, College Station, Texas, United States of America, 5 Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America, 6 Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada Abstract Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno- compromised mice infected with a DhsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung, and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen’s dissemination within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10- 21 21 seconandrost-1,3,5(10)-triene-9,17-dione; kcat/Km = 14.460.5 mM s ), and was inactivated by a halogenated substrate analogue (partition coefficient,50).
    [Show full text]
  • Catabolism and Biotechnological Applications of Cholesterol Degrading Bacteria
    bs_bs_banner Microbial Biotechnology (2012) 5(6), 679–699 doi:10.1111/j.1751-7915.2012.00331.x Minireview Catabolism and biotechnological applications of cholesterol degrading bacteria J. L. García,* I. Uhía and B. Galán according to its physiological relevance, an imbalance in Environmental Biology Department, Centro de its blood level causes serious diseases in humans. Investigaciones Biológicas, CSIC, C/ Ramiro de Maeztu, Cholesterol is frequently found in the biosphere, not 9, 28040 Madrid, Spain. only because of its natural abundance, but also due to its high resistance to microbial degradation. Cholesterol is a recalcitrant molecule to biodegradation because of its low Summary number of functional groups (one CC double bond and Cholesterol is a steroid commonly found in nature a single hydroxyl group), its low solubility in water with a great relevance in biology, medicine and chem- (3 ¥ 10-8 M) and its complex spatial conformation consti- istry, playing an essential role as a structural compo- tuted by four alicyclic rings and two quaternary carbon nent of animal cell membranes. The ubiquity of atoms. The high hydrophobicity and low volatility of cho- cholesterol in the environment has made it a refer- lesterol leads to a high absorption to solid phases. ence biomarker for environmental pollution analysis Because of their high rate of persistence, cholesterol and and a common carbon source for different microor- some derived compounds, such as coprostanol, have ganisms, some of them being important pathogens been used as reference biomarkers for environmental such as Mycobacterium tuberculosis. This work pollution analysis (Veiga et al., 2005). revises the accumulated biochemical and genetic Steroids, some of them derived from cholesterol, con- knowledge on the bacterial pathways that degrade or stitute a new class of pollutants discharged into the envi- transform this molecule, given that the characteriza- ronment as a result of human activity (Gagné et al., 2006).
    [Show full text]
  • Cholesterol Degradation: a Promising Novel Drug Target Against Tuberculosis
    Cholesterol degradation: a promising novel drug target against Tuberculosis Pieter Blom S2394715 June 2016 Supervisor: A. M. W. H. Thunnissen (Protein crystallography) Bachelor Thesis 1 Abstract One third of the world population is infected by Mycobacterium tuberculosis. Although for most patients, the disease is in its latent phase, this still poses a major threat for global health. Especially as drug resistant strains of this bacterium arise, effectively treating tuberculosis becomes increasingly difficult. New drugs against tuberculosis are constantly being developed, but the pipeline may be too narrow and multiple strategies have to be invoked to keep ahead of this disease. Alongside improvement of existing drugs and high throughput screening, target based drug design is one of the viable strategies. An interesting target is the cholesterol catabolism of Mtb as intervention in this pathway results in both accumulation of toxic intermediates and deprivation from an important energy and carbon source. Therefore successful inhibition of one or several of the key enzymes for this pathway, may be a decent way to combat Mtb. All known enzymes are discussed in this thesis on their potential to become a viable drug target, and for what enzymes further characterisation is necessary. Although not the entire pathway has yet been fully understood, several candidate enzymes for drug development arise, and their inhibitors may be leads for future clinical trials. 2 Table of contents Abstract ..................................................................................................................................................
    [Show full text]
  • A Gene Cluster Encoding Cholesterol Catabolism in a Soil Actinomycete Provides Insight Into Mycobacterium Tuberculosis Survival in Macrophages
    A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages Robert Van der Geize*, Katherine Yam†, Thomas Heuser†, Maarten H. Wilbrink*, Hirofumi Hara†, Matthew C. Anderton‡, Edith Sim‡, Lubbert Dijkhuizen*, Julian E. Davies†, William W. Mohn†§, and Lindsay D. Eltis†§ *Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN, Groningen, The Netherlands; †Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and ‡Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom Edited by William R. Jacobs, Jr., Albert Einstein College of Medicine, Bronx, NY, and accepted by the Editorial Board December 6, 2006 (received for review July 7, 2006) Rhodococcus sp. strain RHA1, a soil bacterium related to Mycobacte- (Fig. 1). In some Mycobacterium (4) and Rhodococcus (5, 6) species, rium tuberculosis, degrades an exceptionally broad range of organic the aliphatic side chain at C17 is removed via a process similar to compounds. Transcriptomic analysis of cholesterol-grown RHA1 re- ␤-oxidation involving progressively shorter carboxylic acids. In vealed a catabolic pathway predicted to proceed via 4-androstene- these strains, 3-ketosteroid ⌬1-dehydrogenase (KSTD) and 3-ke- 3,17-dione and 3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene- tosteroid 9␣-hydroxylase catalyze the opening of ring B and aro- 9,17-dione (3,4-DHSA). Inactivation of each of the hsaC, supAB, and matization of ring A to yield 3-HSA (3, 7–9). The subsequent mce4 genes in RHA1 substantiated their roles in cholesterol catabo- degradation of 3-HSA to 9,17-dioxo-1,2,3,4,10,19-hexanorandro- lism.
    [Show full text]
  • A Gene Cluster Encoding Cholesterol Catabolism in a Soil Actinomycete Provides Insight Into Mycobacterium Tuberculosis Survival in Macrophages
    A gene cluster encoding cholesterol catabolism in a soil actinomycete provides insight into Mycobacterium tuberculosis survival in macrophages Robert Van der Geize*, Katherine Yam†, Thomas Heuser†, Maarten H. Wilbrink*, Hirofumi Hara†, Matthew C. Anderton‡, Edith Sim‡, Lubbert Dijkhuizen*, Julian E. Davies†, William W. Mohn†§, and Lindsay D. Eltis†§ *Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9751 NN, Groningen, The Netherlands; †Department of Microbiology and Immunology, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada V6T 1Z3; and ‡Department of Pharmacology, University of Oxford, Oxford OX1 3QT, United Kingdom Edited by William R. Jacobs, Jr., Albert Einstein College of Medicine, Bronx, NY, and accepted by the Editorial Board December 6, 2006 (received for review July 7, 2006) Rhodococcus sp. strain RHA1, a soil bacterium related to Mycobacte- (Fig. 1). In some Mycobacterium (4) and Rhodococcus (5, 6) species, rium tuberculosis, degrades an exceptionally broad range of organic the aliphatic side chain at C17 is removed via a process similar to compounds. Transcriptomic analysis of cholesterol-grown RHA1 re- ␤-oxidation involving progressively shorter carboxylic acids. In vealed a catabolic pathway predicted to proceed via 4-androstene- these strains, 3-ketosteroid ⌬1-dehydrogenase (KSTD) and 3-ke- 3,17-dione and 3,4-dihydroxy-9,10-seconandrost-1,3,5(10)-triene- tosteroid 9␣-hydroxylase catalyze the opening of ring B and aro- 9,17-dione (3,4-DHSA). Inactivation of each of the hsaC, supAB, and matization of ring A to yield 3-HSA (3, 7–9). The subsequent mce4 genes in RHA1 substantiated their roles in cholesterol catabo- degradation of 3-HSA to 9,17-dioxo-1,2,3,4,10,19-hexanorandro- lism.
    [Show full text]
  • Characterization of Hsac and Hsad, an Oxygenase and a Hydrolase in the Cholesterol Catabolic Pathway of Mycobacterium Tuberculosis
    Characterization of HsaC and HsaD, an oxygenase and a hydrolase in the cholesterol catabolic pathway of Mycobacterium tuberculosis by Katherine Yam A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE STUDIES (Biochemistry & Molecular Biology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) August 2011 © Katherine Yam, 2011 ABSTRACT Mycobacterium tuberculosis (Mtb) is the leading cause of mortality from bacterial infection. A cholesterol degradation pathway identified in Mtb is implicated in the pathogen’s survival in the host. This pathway includes an Fe(II)-containing extradiol dioxygenase, HsaC, and a meta-cleavage product (MCP) hydrolase, HsaD, which are predicted to catalyze the cleavage of DHSA (3,4-dihydroxy-9,10-seconandrost-1,3,5(10)- triene-9,17-dione) and subsequent hydrolysis of DSHA (4,5-9,10-diseco-3-hydroxy-5,9,17- trioxoandrosta-1(10),2-diene-4-oic acid), respectively. HsaC and HsaD were expressed in E. coli, purified, and characterized. Substrates were obtained by biotransformation of cholesterol using a ΔhsaC mutant of Rhodococcus jostii RHA1. From steady-state kinetic studies, purified HsaC efficiently cleaved the proposed steroid metabolite, DHSA (kcat/Km = 15 ± 2 µM-1s-1), better than the biphenyl catechol, DHB, or a synthetic analogue, DHDS. Two halogenated substrates, 2’,6’-diCl DHB and 4-Cl DHDS, inactivated HsaC with partition coefficients < 50. Structures of HsaC:DHSA at 2.1 Å revealed predominantly bidentate binding of the catechol to the active site iron, as has been reported in similar enzymes. A high-throughput colorimetric assay was developed to screen for small molecular inhibitors of HsaC.
    [Show full text]
  • 20161616 Fmartinez-Jimenez.Pdf
    Structural study of the therapeutic potential of protein-ligand interactions Francisco Mart´ınez-Jimenez´ TESI DOCTORAL UPF / 2016 THESIS SUPERVISOR Dr. Marc A. Marti-Renom THESIS TUTOR Dr. Baldo Oliva Acknowledgments It is very difficult to remember all the people to whom I owe gratitude. It is not because I am bad at memorizing names, which I am, it is because there were so many people contributing to this wonderful experience that I probably have forgotten some of you. The first person that comes into my mind is my supervisor, Marc. Thank you for the scientific (and non-scientific) conversations, thank you for allowing me to attend to all those conferences, for the freedom I had to choose what I liked, thank you for your support, useful advice and your guidance; but yet more im- portantly, thank you for being my friend. Thank you, Marc, for making this thesis a wonderful experience. I am also very grateful to all the people in the lab. I really enjoyed this ex- perience with you guys. Thank you to Davide for helping me with the first steps in the lab, to Fransuuu for being so disastrous with names (we are not the exception but the rule!), to Yasmina for teaching Fransuuu how to properly dance, he is the master of the rhythm!; to Laia for showing us the single ap- ple’s diet, to Yannick for your good taste with wine and cheese, to Marco for patiently repeating the story of Sergio Roberto Alfredo, to David (Castillo) for surprisingly showing that people supporting Barc¸a may have some knowledge about football, to Silvia for all the chewing gums I’ve stolen, to Gireesh for all non-scientific activities we have shared over the PhD, to Irene for teaching this beautiful language called Irenico, to Mike for being such a nice guy and more importantly, such a great cook!; to David (Praga) for our long and instructive conversations about our shared topic of interest, and finally, thank you to Pauli, for listening, helping and having such a big heart despite of being so incredibly small.
    [Show full text]
  • Comprehensive Comparative Analysis of Cholesterol Catabolic Genes/Proteins in Mycobacterial Species
    International Journal of Molecular Sciences Article Comprehensive Comparative Analysis of Cholesterol Catabolic Genes/Proteins in Mycobacterial Species Rochelle van Wyk 1 , Mari van Wyk 1, Samson Sitheni Mashele 1, David R. Nelson 2 and Khajamohiddin Syed 3,* 1 Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein 9300, Free State, South Africa; [email protected] (R.v.W.); [email protected] (M.v.W.); [email protected] (S.S.M.) 2 Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA; [email protected] 3 Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa 3886, South Africa * Correspondence: [email protected]; Tel.: +27-0359026875 Received: 21 January 2019; Accepted: 12 February 2019; Published: 27 February 2019 Abstract: In dealing with Mycobacterium tuberculosis, the causative agent of the deadliest human disease—tuberculosis (TB)—utilization of cholesterol as a carbon source indicates the possibility of using cholesterol catabolic genes/proteins as novel drug targets. However, studies on cholesterol catabolism in mycobacterial species are scarce, and the number of mycobacterial species utilizing cholesterol as a carbon source is unknown. The availability of a large number of mycobacterial species’ genomic data affords an opportunity to explore and predict mycobacterial species’ ability to utilize cholesterol employing in silico methods. In this study, comprehensive comparative analysis of cholesterol catabolic genes/proteins in 93 mycobacterial species was achieved by deducing a comprehensive cholesterol catabolic pathway, developing a software tool for extracting homologous protein data and using protein structure and functional data.
    [Show full text]
  • Modeling Metabolism of Mycobacterium Tuberculosis R.A
    Modeling metabolism of Uitnodiging U bent van harte uitgenodigd voor het bijwonen van de openbare verdediging van mijn proefschrift Mycobacterium tuberculosis Modeling metabolism of met de titel: Mycobacterium tuberculosis Modeling metabolism of Mycobacterium tuberculosis Op woensdag 22 mei om 13:30 in de Aula van de Wageningen Universiteit, Generaal Foulkesweg 1, Wageningen. Rienk A. Rienksma Rienk Rienksma [email protected] Paranimfen: Mark Davids [email protected] Ruben Meulenkamp [email protected] R.A. Rienksma R.A. Modeling metabolism of Mycobacterium tuberculosis Rienk A. Rienksma Thesis committee Promotors Prof. Dr V.A.P. Martins Dos Santos Professor of Systems & Synthetic Biology Wageningen University & Research Co-promotors Dr P.J. Schaap Associate Professor, Systems & Synthetic Biology Group Wageningen University & Research Dr M. Suárez-Diez Assistent Professor, Systems & Synthetic Biology Group Wageningen University & Research Other members Prof. Dr H.F.J. Savelkoul, Wageningen University & Research Prof. Dr F.J. Bruggeman, VU Amsterdam Dr D.E. Martens, Wageningen University & Research Dr E.M. van Schothorst, Wageningen University & Research This research was conducted under the auspices of the Graduate School VLAG (Advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences) Modeling metabolism of Mycobacterium tuberculosis Rienk A. Rienksma Thesis submitted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus, Prof. Dr A.P.J. Mol, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Wednesday 22 May 2019 at 1.30 p.m. in the Aula. Rienk A. Rienksma Modeling metabolism of Mycobacterium tuberculosis, 168 pages.
    [Show full text]
  • Mycobacterium Tuberculosis
    Studies of a Ring-Cleaving Dioxygenase Illuminate the Role of Cholesterol Metabolism in the Pathogenesis of Mycobacterium tuberculosis Katherine C. Yam1., Igor D’Angelo1., Rainer Kalscheuer2., Haizhong Zhu1¤, Jian-Xin Wang3, Victor Snieckus3, Lan H. Ly4, Paul J. Converse5, William R. Jacobs Jr.2, Natalie Strynadka1, Lindsay D. Eltis1,6* 1 Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada, 2 Howard Hughes Medical Institute, Albert Einstein College of Medicine, Bronx, New York, United States of America, 3 Department of Chemistry, Queen’s University, Kingston, Ontario, Canada, 4 Department of Microbial and Molecular Pathogenesis, Texas A&M University Health Science Center, College Station, Texas, United States of America, 5 Center for Tuberculosis Research, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States of America, 6 Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada Abstract Mycobacterium tuberculosis, the etiological agent of TB, possesses a cholesterol catabolic pathway implicated in pathogenesis. This pathway includes an iron-dependent extradiol dioxygenase, HsaC, that cleaves catechols. Immuno- compromised mice infected with a DhsaC mutant of M. tuberculosis H37Rv survived 50% longer than mice infected with the wild-type strain. In guinea pigs, the mutant disseminated more slowly to the spleen, persisted less successfully in the lung, and caused little pathology. These data establish that, while cholesterol metabolism by M. tuberculosis appears to be most important during the chronic stage of infection, it begins much earlier and may contribute to the pathogen’s dissemination within the host. Purified HsaC efficiently cleaved the catecholic cholesterol metabolite, DHSA (3,4-dihydroxy-9,10- 21 21 seconandrost-1,3,5(10)-triene-9,17-dione; kcat/Km = 14.460.5 mM s ), and was inactivated by a halogenated substrate analogue (partition coefficient,50).
    [Show full text]