Prepubertal Human Spermatogonia and Mouse Gonocytes Share Conserved Gene Expression of Germline Stem Cell Regulatory Molecules

Total Page:16

File Type:pdf, Size:1020Kb

Prepubertal Human Spermatogonia and Mouse Gonocytes Share Conserved Gene Expression of Germline Stem Cell Regulatory Molecules Prepubertal human spermatogonia and mouse gonocytes share conserved gene expression of germline stem cell regulatory molecules Xin Wua, Jonathan A. Schmidta, Mary R. Avarbocka, John W. Tobiasb, Claire A. Carlsonc, Thomas F. Kolond, Jill P. Ginsbergc, and Ralph L. Brinstera,1 aDepartment of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104; bPenn Bioinformatics Core, University of Pennsylvania, Philadelphia, PA 19104; and cDivision of Oncology and dDepartment of Urology, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104 Contributed by Ralph L. Brinster, October 30, 2009 (sent for review October 8, 2009) In the human testis, beginning at Ϸ2 months of age, gonocytes are robust methods were developed for rodent germ cell transplan- replaced by adult dark (Ad) and pale (Ap) spermatogonia that make tation and SSC culture conditions (1, 4–8). These techniques led up the spermatogonial stem cell (SSC) pool. In mice, the SSC pool to the characterization of many aspects of SSC biology, including arises from gonocytes Ϸ6 days after birth. During puberty in both the identification of glial cell line-derived neurotrophic factor species, complete spermatogenesis is established by cells that (GDNF) as the main regulator of rodent SSC self-renewal (7, 8). differentiate from SSCs. Essentially pure populations of prepuber- GDNF binds to the c-Ret receptor tyrosine kinase (RET) in tal human spermatogonia and mouse gonocytes were selected combination with the cofactor GDNF-family receptor ␣1 from testis biopsies and validated by confirming the presence of (GFR␣1) to initiate intracellular signaling in SSCs (7, 9, 10). specific marker proteins in cells. Stem cell potential of germ cells Using SSC culture and transplantation in conjunction with was demonstrated by transplantation to mouse testes, following combinations of GDNF withdrawal, microarray analysis, small which the cells migrated to the basement membrane of the interference RNA (siRNA), and signaling molecule inhibition, seminiferous tubule and were maintained similar to SSCs. Differ- several GDNF-regulated genes involved in SSC self-renewal ential gene expression profiles generated between germ cells and were identified and studied in the mouse, including B-cell testis somatic cells demonstrated that expression of genes previ- CLL/lymphoma 6, member B (Bcl6b), Ets variant gene 5 (Etv5), ously identified as SSC and spermatogonial-specific markers (e.g., and LIM homeobox 1 (Lhx1) (10). Three additional GDNF- zinc-finger and BTB-domain containing 16, ZBTB16) was greatly regulated genes, basic helix–loop–helix family, member e 40 elevated in both human spermatogonia and mouse gonocytes (Bhlhb2), homeobox C4 (Hoxc4), and Tec protein tyrosine compared to somatic cells. Several genes were expressed at sig- kinase (Tec) were validated in rat SSCs (11). Among these six nificantly higher levels in germ cells of both species. Most impor- genes, Bcl6b and Etv5 have now been identified as important by tantly, genes known to be essential for mouse SSC self-renewal several studies and appear to play a central role in rodent SSC (e.g., Ret proto-oncogene, Ret; GDNF-family receptor ␣1, Gfr␣1; self-renewal (10–13). GDNF also regulates downstream signal- and B-cell CLL/lymphoma 6, member B, Bcl6b) were more highly ing and ultimately rodent SSC maintenance and self-renewal, expressed in both prepubertal human spermatogonia and mouse which involves phosphatidylinositol 3-kinase/serine-threonine gonocytes than in somatic cells. The results indicate remarkable kinase AKT family (PI3K/AKT), and Src family kinase (SFK) conservation of gene expression, notably for self-renewal genes, in signaling mechanisms (14–16). In contrast to rodent SSCs, little these prepubertal germline cells between two species that di- is known regarding the mechanisms regulating primate SSC verged phylogenetically Ϸ75 million years ago. function. This lack of knowledge is in part due to the absence of techniques for identification and isolation of essentially pure mouse spermatogonia ͉ spermatogenesis populations of primate SSCs for in vitro study. Several groups have attempted to characterize gene expression in human testes. permatogonial stem cells (SSCs) are the foundation for However, the lack of purified cell populations made interpre- Sspermatogenesis and are capable of both self-renewal and tation of results difficult (17, 18). production of daughter cells that differentiate into spermatozoa. To develop an understanding of SSCs and their regulation in the During embryonic development, primordial germ cells (PGCs) human germline, essentially pure populations of prepubertal hu- migrate to the genital ridge and subsequently differentiate into man spermatogonia were isolated and their gene expression profile gonocytes (1, 2). Following birth in the mouse, which has a short determined. Parallel studies were performed on mouse gonocytes (Ϸ3 weeks) prepubertal period, gonocytes undergo a transition for comparison, because extensive data exists regarding mouse to SSCs or develop directly to type A1 spermatogonia, an early SSCs and their regulation. Moreover, a similarity in self-renewal differentiation stage, by day six of life (2). However in humans, and survival mechanisms between human and mouse SSCs may which have a long (Ϸ12 years) prepubertal period, the gonocytes exist because transplantation of testis cells from nonrodent species, are gradually replaced in the first 2–3 months by adult dark (Ad) including human, into testes of immunodeficient mice allowed the and adult pale (Ap) spermatogonia that are thought to represent the reserve and active SSC pool, respectively (2, 3). Beginning at about age 5 years, these Ad and Ap spermatogonia undergo a Author contributions: X.W., J.A.S., and R.L.B. designed research; X.W. and M.R.A. per- formed research; C.A.C., T.F.K., and J.P.G. contributed new reagents/analytic tools; X.W., modest activation, particularly to type B spermatogonia, that J.A.S., J.W.T., and R.L.B. analyzed data; and X.W., J.A.S., and R.L.B. wrote the paper. Ϸ represent 10% of total spermatogonia by age 10. During The authors declare no conflict of interest. puberty, the SSCs in both human and mouse provide the Data deposition: The microarray data reported in this paper has been deposited in the foundation, through self-renewal and differentiation to daughter National Center for Biotechnology Information Gene Expression Omnibus (GEO) database, cells, for spermatogenesis and fertility. www.ncbi.nlm.nih.gov/geo (accession no. GSE18914). The study of rodent gonocytes and SSCs was previously 1To whom correspondence should be addressed. E-mail: [email protected]. hampered by the lack of techniques for purification and long- This article contains supporting information online at www.pnas.org/cgi/content/full/ term in vitro maintenance. However, over the past 15 years, 0912432106/DCSupplemental. 21672–21677 ͉ PNAS ͉ December 22, 2009 ͉ vol. 106 ͉ no. 51 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0912432106 Downloaded by guest on September 26, 2021 human spermatogonia and mouse gonocytes present an oppor- tunity to potentially isolate essentially pure populations of human SSCs and mouse gonocytes, which include the immediate precursor of mouse SSCs. To confirm that the large cells located in the seminiferous tubules were indeed prepubertal human spermatogonia and mouse gonocytes, histological sections were stained for charac- teristic germ cell marker proteins. ZBTB16 (previously known as PLZF) (20, 21) is highly expressed in gonocytes and spermato- gonia, including SSCs, but not in later differentiation stages of spermatogenesis, and the protein was found to be strongly immunostained in the large cells in the seminiferous tubules of both human and mouse testes (Fig. 1 C and D). Other charac- teristic spermatogonial proteins also stained in prepubertal human spermatogonia and mouse gonocytes (Fig. S1). In con- trast, GATA-binding protein 4 (GATA4), which is found in Sertoli cells but not germ cells (22), was not present in the large cells (Fig. 1 E and F). These data demonstrate that the large cells in the seminiferous tubules in both species are indeed immature germ cells. Following digestion of the testis tissue to a single cell suspension, immunostaining for the presence of germ cell and Sertoli cell-specific markers confirmed germ cell markers were expressed exclusively in large round cells from both human and Fig. 1. Germ cells in prepubertal human (age 9 years) and mouse testes (age: mouse testes (Fig. S2). GATA4 was not detected in any large 3 days). Histological cross sections of human (A) and mouse (B) testis show cells, and was exclusively found in smaller cells. large cells (arrows) resting near the basement membrane of the seminiferous tubule. Immunohistochemical staining of human and mouse testes with germ Prepubertal Human Spermatogonia and Mouse Gonocytes Can Be cell markers demonstrated that the large round cells (arrows) expressed Selected and Purified from Testis Cell Suspensions. Because of the CELL BIOLOGY ZBTB16, a well-characterized marker of SSCs and spermatogonia (C, human, D, difference in size and morphological characteristics between the mouse). In contrast, the large cells did not express the somatic cell marker immature germ cells and somatic cells, micromanipulation tech- GATA-4 (E, human, F, mouse), which was present in Sertoli cells (arrow heads). niques to select these two cell types from single cell suspensions Negative control images in which
Recommended publications
  • Mir-451A Suppresses Cell Proliferation, Metastasis and EMT Via Targeting YWHAZ in Hepatocellular Carcinoma
    European Review for Medical and Pharmacological Sciences 2019; 23: 5158-5167 MiR-451a suppresses cell proliferation, metastasis and EMT via targeting YWHAZ in hepatocellular carcinoma G.-Y. WEI1, M. HU2, L. ZHAO1, W.-S. GUO1 1Department of General Surgery, Henan Traditional Chinese Medicine Hospital, Zhengzhou, China 2Department of Infection Management, Henan Traditional Chinese Medicine Hospital, Zhengzhou, China Abstract. – OBJECTIVE: MicroRNAs (miR- lines. Moreover, miR-451a inhibited the prolif- NAs) have been identified to participate in eration, invasion and migration of HCC cells via the progression of hepatocellular carcinoma targeting YWHAZ. Our findings indicated that (HCC). However, the function of miR-451a in miR-451a could serve as a novel target for HCC HCC remains unknown. The aim of this study diagnosis and biological therapy. was to determine the function of miR-451a by construction of several experiments in HCC tis- Key Words: sues and cells. MiR-451a, Hepatocellular carcinoma (HCC), Prolifer- PATIENTS AND METHODS: The expression ation, Metastasis, YWHAZ. level of miR-451a in 69 paired of HCC and ad- jacent normal tissue samples was detected us- ing quantitative Real-time polymerase chain re- Introduction action (qRT-PCR). MiR-451a expression in HCC derived cell lines was detected as well. By trans- fecting with miR-451a mimics or inhibitor, the Hepatocellular carcinoma (HCC) accounts expression level of miR-451a in HepG2 or Huh-7 for 85-90% of primary liver cancer. HCC is the cells was up- or down-regulated. MTT (3-(4,5-di- fifth most common morbidity and third most methylthiazol-2-yl)-2,5-diphenyl tetrazolium bro- common mortality cancer worldwide1.
    [Show full text]
  • Focus on Stem Cells Germ Cells from Mouse and Human Embryonic Stem Cells
    REPRODUCTIONREVIEW Focus on Stem Cells Germ cells from mouse and human embryonic stem cells Behrouz Aflatoonian and Harry Moore Centre for Stem Cell Biology, University of Sheffield, Sheffield S10 2UH, UK Correspondence should be addressed to H Moore; Email: [email protected] Abstract Mammalian gametes are derived from a founder population of primordial germ cells (PGCs) that are determined early in embryogenesis and set aside for unique development. Understanding the mechanisms of PGC determination and differentiation is important for elucidating causes of infertility and how endocrine disrupting chemicals may potentially increase susceptibility to congenital reproductive abnormalities and conditions such as testicular cancer in adulthood (testicular dysgenesis syndrome). Primordial germ cells are closely related to embryonic stem cells (ESCs) and embryonic germ (EG) cells and comparisons between these cell types are providing new information about pluripotency and epigenetic processes. Murine ESCs can differentiate to PGCs, gametes and even blastocysts – recently live mouse pups were born from sperm generated from mESCs. Although investigations are still preliminary, human embryonic stem cells (hESCs) apparently display a similar developmental capacity to generate PGCs and immature gametes. Exactly how such gamete-like cells are generated during stem cell culture remains unclear especially as in vitro conditions are ill-defined. The findings are discussed in relation to the mechanisms of human PGC and gamete development and the biotechnology of hESCs and hEG cells. Reproduction (2006) 132 699–707 Introduction indicate that human embryonic stem cells (hESCs) most likely display a similar developmental capacity (Clark Detailed investigations of the earliest stages of germ cell et al.
    [Show full text]
  • Insights from Male Germ Cell Differentiation
    Cell Death & Differentiation (2021) 28:2296–2299 https://doi.org/10.1038/s41418-021-00812-0 COMMENT Natural selection at the cellular level: insights from male germ cell differentiation 1 1 Daniel H. Nguyen ● Diana J. Laird Received: 9 February 2021 / Revised: 20 May 2021 / Accepted: 20 May 2021 / Published online: 2 June 2021 © The Author(s) 2021. This article is published with open access Waddington’s concept of differentiation as an epigenetic The germline is a fascinating context for investigating landscape provides an enduring metaphor visualizing the the consequences of heterogeneity on differentiation and options faced by stem and progenitor cells. However, cell fate. As fetal germ cells establish the gametes, their increasing understanding of cellular heterogeneity poses population dynamics can greatly influence inheritance. The new questions about the identities and behaviors of the cells conflict between diversity and orderly differentiation looms beginning this process. We now recognize a greater diver- centrally over germline development. In mouse embryos, sity of initial states for individual progenitor cells, which germ cells undertake an epic journey, from specification may affect their trajectories and disrupt progress entirely. through sex differentiation, replete with opportunities for 1234567890();,: 1234567890();,: Here, we consider how developmental selection occurs heterogeneity to develop and be assessed. Notably, an when heterogeneity in differentiating progenitors produces excess of germ cells is produced and then pruned by pro- divergent cellular outcomes of survival versus elimination. grammed cell death [5]. This occurs across diverse species Heterogeneity is a fundamental property of biological regardless of sex, suggesting that differential fitness and systems. Individual cell properties like location or cell cycle elimination are critical.
    [Show full text]
  • Germ-Line Immortality
    COMMENTARY Germ-line immortality Martin M. Matzuk* Departments of Pathology, Molecular and Cellular Biology, and Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030 ajor advances in stem cell Table 1. Pathway of differentiation in males research have occurred over Spermatogonial Differentiated the last decades. Progress Markers ES cells ¡ PGCs ¡ Gonocytes ¡ stem cells ¡ spermatogonia has included the generation Mof lines of human and mouse embryonic Kit ϩϩϩ͞– – (low) ϩ ϩ ϩϩ stem (ES) cells and the identification and Thy-1 ? (low) – Oct4 ϩϩ ϩ ϩ – purification of stem cells for multiple Plzf ϩ (low)* ϩ* ϩϩ – independent lineages. Recent studies by GCNA1 – ϩ† ϩϩ ϩ Brinster and colleagues in this issue of TNAP ϩ (high) ϩ (high) – ϩ (low)͞–– PNAS (1) also suggest that the reproduc- RET ϩ (low)* ? ? ϩ – ␣ ϩ ϩ tive potential of an organism can be pro- GFR 1 (low)* ? ? (low) – NCAM ϩ ? ϩϩ ? longed indefinitely by using germ-line stem cells. It even appears that eggs and Markers that are known to be expressed (ϩ) or absent (–) in many of the pathway cells are listed. GCNA1, sperm can develop from cultured mouse germ cell nuclear antigen 1; TNAP, tissue-nonspecific alkaline phosphatase; NCAM, neural cell adhesion ES cells (2–4). Although gametes derived molecule. in vitro have yet to prove their develop- *mRNA levels. † mental potential, these studies suggest Postmigratory PGCs only. that ES cells and germ-line stem cells share many characteristics. ent males. The process was surprisingly KitϪ Sca-IϪ ␣6-integrinϩ ␣v-integrinϪ/dim In most mammalian females, meiosis efficient, with up to 100% of the injected (9, 10).
    [Show full text]
  • The Effects of Dexamethasone on the Differentiation and the Fertilisation of the Germinal Primordium in the Chick Embryo Danièle Cuminge, Julian Smith, Régis Dubois
    The effects of dexamethasone on the differentiation and the fertilisation of the germinal primordium in the chick embryo Danièle Cuminge, Julian Smith, Régis Dubois To cite this version: Danièle Cuminge, Julian Smith, Régis Dubois. The effects of dexamethasone on the differentiation and the fertilisation of the germinal primordium in the chick embryo. Reproduction Nutrition Devel- opment, EDP Sciences, 2000, 40 (2), pp.127-148. 10.1051/rnd:2000125. hal-00900392 HAL Id: hal-00900392 https://hal.archives-ouvertes.fr/hal-00900392 Submitted on 1 Jan 2000 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Reprod. Nutr. Dev. 40 (2000) 127–148 127 © INRA, EDP Sciences Original article The effects of dexamethasone on the differentiation and the fertilisation of the germinal primordium in the chick embryo Danièle CUMINGEa, Julian SMITHb, Régis DUBOISa* a Institut d’Embryologie Cellulaire et Moléculaire, 49 bis avenue de la Belle Gabrielle, Collège de France et CNRS, 94736 Nogent-sur-Marne Cedex, France b Centre de Biologie du Développement, Université Paul Sabatier, 31062 Toulouse, France (Received 15 December 1999; accepted 24 February 2000) Abstract — We showed that, in the chick embryo, the fertilisation of the attractive germinal epithe- lium by primary germ cells can be represented by a three-dimensional diagram in which the space and time co-ordinates are graduated in terms of the segmentation of the axial and paraxial mesoderm.
    [Show full text]
  • REVIEW Hormonal Regulation of Male Germ Cell Development
    117 REVIEW Hormonal regulation of male germ cell development Saleela M Ruwanpura, Robert I McLachlan and Sarah J Meachem Prince Henry’s Institute of Medical Research, Clayton, Victoria 3168, Australia (Correspondence should be addressed to S J Meachem; Email: [email protected]) Abstract Over the past five decades, intense research using various been established that testosterone is essential for spermato- animal models, innovative technologies notably genetically genesis, and also FSH plays a valuable role. Therefore modified mice and wider use of stereological methods, unique understanding the basic mechanisms by which hormones agents to modulate hormones, genomic and proteomic govern germ cell progression are important steps towards techniques, have identified the cellular sites of spermato- improved understating of fertility regulation in health diseases. genesis, that are regulated by FSH and testosterone. It has Journal of Endocrinology (2010) 205, 117–131 Introduction (termed spermiation) requires both testosterone and FSH (reviewed in McLachlan et al. (2002a)). In humans, sperma- The past decade has been a critical period in our discoveries of togonial development, meiosis, and spermiation are the how the complex process of spermatogenic cell development three main processes that are regulated by gonadotrophins is regulated. These discoveries have been aided through the (McLachlan et al. 2002b, Matthiesson et al. 2005, 2006). use of innovative technologies, most notably genetically A stable germ cell population is determined by the modified mice, the wider use of best practice stereological balance of death (apoptosis) and division, which are influenced methods that allow the rigorous mapping of cell populations, by many biochemical factors. The highly coordinated nature unique agents to modulate hormones, and the genomic and of spermatogenesis requires intimate functional and junctional proteomic revolution.
    [Show full text]
  • Disruption of Imprinting in Cloned Mouse Fetuses from Embryonic Stem
    REPRODUCTIONRESEARCH Maternal obesity disturbs the postnatal development of gonocytes in the rat without impairment of testis structure at prepubertal age Caroline Maria Christante1,2, Sebastia˜o Roberto Taboga1,2, Maria Etelvina Pinto-Fochi1 and Rejane Maira Go´es1,2 1Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Sa˜o Paulo State University, IBILCE/UNESP, Rua Cristo´va˜o Colombo, 2265, CEP 15054-000 Sa˜o Jose´ do Rio Preto, Sa˜o Paulo, Brazil and 2Department of Structural and Functional Biology, State University of Campinas, UNICAMP, 13083-970 Campinas, Sa˜o Paulo, Brazil Correspondence should be addressed to R M Go´es at Department of Biology, Institute of Biosciences, Letters and Exact Sciences, Sa˜o Paulo State University, IBILCE/UNESP; Email: [email protected] Abstract In this study, we evaluated whether maternal obesity (MO) affects testis development and gonocyte differentiation in the rat from 0.5 to 14.5 postnatal days. Male Wistar rats were used at 0.5, 4.5, 7.5, and 14.5 days post partum (dpp). These rats were born from obese mothers, previously fed with a high-fat diet (20% saturated fat), for 15 weeks, or normal mothers that had received a balanced murine diet (4% lipids). MO did not affect testis weight or histology at birth but changed the migratory behavior of gonocytes. The density of relocated cells was higher in MO pups at 0.5 dpp, decreased at 4.5 dpp, and differed from those of control pups, where density increased exponentially from 0.5 to 7.5 dpp. The numerical density of gonocytes within seminiferous cords did not vary in MO, in relation to control neonates, for any age considered, but the testis weight was 50% lower at 4.5 dpp.
    [Show full text]
  • Review Article Physiologic Course of Female Reproductive Function: a Molecular Look Into the Prologue of Life
    Hindawi Publishing Corporation Journal of Pregnancy Volume 2015, Article ID 715735, 21 pages http://dx.doi.org/10.1155/2015/715735 Review Article Physiologic Course of Female Reproductive Function: A Molecular Look into the Prologue of Life Joselyn Rojas, Mervin Chávez-Castillo, Luis Carlos Olivar, María Calvo, José Mejías, Milagros Rojas, Jessenia Morillo, and Valmore Bermúdez Endocrine-Metabolic Research Center, “Dr. Felix´ Gomez”,´ Faculty of Medicine, University of Zulia, Maracaibo 4004, Zulia, Venezuela Correspondence should be addressed to Joselyn Rojas; [email protected] Received 6 September 2015; Accepted 29 October 2015 Academic Editor: Sam Mesiano Copyright © 2015 Joselyn Rojas et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The genetic, endocrine, and metabolic mechanisms underlying female reproduction are numerous and sophisticated, displaying complex functional evolution throughout a woman’s lifetime. This vital course may be systematized in three subsequent stages: prenatal development of ovaries and germ cells up until in utero arrest of follicular growth and the ensuing interim suspension of gonadal function; onset of reproductive maturity through puberty, with reinitiation of both gonadal and adrenal activity; and adult functionality of the ovarian cycle which permits ovulation, a key event in female fertility, and dictates concurrent modifications in the endometrium and other ovarian hormone-sensitive tissues. Indeed, the ultimate goal of this physiologic progression is to achieve ovulation and offer an adequate environment for the installation of gestation, the consummation of female fertility. Strict regulation of these processes is important, as disruptions at any point in this evolution may equate a myriad of endocrine- metabolic disturbances for women and adverse consequences on offspring both during pregnancy and postpartum.
    [Show full text]
  • Regulation of Meiotic Entry and Gonadal Sex Differentiation in the Human: Normal and Disrupted Signaling
    BioMol Concepts 2014; 5(4): 331–341 Review Anne Jørgensen* and Ewa Rajpert-De Meyts Regulation of meiotic entry and gonadal sex differentiation in the human: normal and disrupted signaling Abstract: Meiosis is a unique type of cell division that is DOI 10.1515/bmc-2014-0014 performed only by germ cells to form haploid gametes. Received May 1, 2014; accepted May 28, 2014 The switch from mitosis to meiosis exhibits a distinct sex-specific difference in timing, with female germ cells entering meiosis during fetal development and male germ cells at puberty when spermatogenesis is initiated. Dur- Introduction ing early fetal development, bipotential primordial germ The mitotic-meiotic switch is a unique feature of germ cells migrate to the forming gonad where they remain cell development and is one of the first manifestations of sexually indifferent until the sex-specific differentiation of sex differentiation in the developing gonad. The current germ cells is initiated by cues from the somatic cells. This understanding of the molecular mechanisms of germ irreversible step in gonadal sex differentiation involves cell differentiation and regulation of meiosis is primarily the initiation of meiosis in fetal ovaries and prevention derived from studies in mice (1–4), with only few experi- of meiosis in the germ cells of fetal testes. During the last mental studies conducted on human fetal gonads thus decade, major advances in the understanding of meiosis far (5, 6). In contrast, the physiological manifestations of regulation have been accomplished, with the discovery sex differentiation that take place in humans during fetal of retinoic acid as an inducer of meiosis being the most gonad development and the expression pattern of key prominent finding.
    [Show full text]
  • Stem Cells/ Cloning Michael K
    Spring 2018 – Systems Biology of Reproduction Lecture Outline – Gametogenesis/ Stem Cells/ Cloning Michael K. Skinner – Biol 475/575 CUE 418, 10:35-11:50 am, Tuesday & Thursday March 20, 2018 Week 11 Gametogenesis/ Stem Cells/ Cloning - Gametogenesis - Spermatogenesis - Cell Development Stages - Meiosis - Male Germline Stem Cell and Niche - Cell Biology - Niche - Regulatory Factors - Germ Cell Transplantation - Oogenesis - Cell Development - Meiosis - Female Germline Stem Cells - Embryonic Stem Cells - Cloning REFERENCES Ahn J, Park YJ, Chen P, et al. (2017) Comparative expression profiling of testis-enriched genes regulated during the development of spermatogonial cells. PLoS One. 12(4):e0175787. Vicens A, Borziak K, Karr TL, Roldan ERS, Dorus S. (2017) Comparative Sperm Proteomics in Mouse Species with Divergent Mating Systems. Mol Biol Evol. 34(6):1403-1416. Goldmann JM, Wong WS, Pinelli M, et al (2016) Parent-of-origin-specific signatures of de novo mutations. Nat Genet. 48(8):935-9 Virant-Klun I, Leicht S, Hughes C, Krijgsveld J. (2016) Identification of Maturation- Specific Proteins by Single-Cell Proteomics of Human Oocytes. Mol Cell Proteomics. 15(8):2616-27. Ball RL, Fujiwara Y, Sun F, Hu J, Hibbs MA, Handel MA, Carter GW. (2016) Regulatory complexity revealed by integrated cytological and RNA-seq analyses of meiotic substages in mouse spermatocytes. BMC Genomics. 17(1):628. Totonchi M, Hassani SN, Sharifi-Zarchi A, et al. (2017) Blockage of the Epithelial-to- Mesenchymal Transition Is Required for Embryonic Stem Cell Derivation. Stem Cell Reports. 9(4):1275-1290. Pal D, Rao MRS. (2017) Long Noncoding RNAs in Pluripotency of Stem Cells and Cell Fate Specification.
    [Show full text]
  • Akt Is Involved in the Inhibition of Cell Proliferation by EGF
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 39, No. 4, 491-498, August 2007 Akt is involved in the inhibition of cell proliferation by EGF Soung Hoo Jeon1, Woo-Jeong Jeong1, proliferation and embryonic axis formation (Zeng et Jae-Young Cho1, Kee-Ho Lee2 al., 1997). Axin is a multi-domain scaffold protein and Kang-Yell Choi1,3 that associates directly with β-catenin, GSK3β, and phosphatase PP2A (Hsu et al., 1999). Axin is 1 implicated in down-regulation of Wnt/β-catenin Department of Biotechnology signaling (Ikeda et al., 1998; Itoh et al., 1998; Yonsei University Sakanaka et al., 1998; Kikuchi et al., 2006). There Seoul 120-752, Korea 2 are two vertebrate Axins (Axin 1 and Axin 2). Axin1 Laboratory of Molecular Oncology is constitutively expressed, but Axin 2 is induced Korea Institute of Radiological and Medical Sciences by active Wnt signaling and acts therefore in a Seoul 139-706, Korea negative feedback loop (Yan et al., 2001; Jho et 3 Corresponding author: Tel, 82-2-2123-2887; al., 2002; Lustig et al., 2002). Overexpressed Axin Fax, 82-2-362-7265; E-mail, [email protected] destabilizes β-catenin (Behrens et al., 1998; Hart et al., 1998; Ikeda et al.,1998; Kishida et al., 1998; Accepted 28 May 2007 Nakamura et al., 1998; Sakanaka et al., 1998; Yamamoto et al., 1998). Loss of Axin results in nu- Abbreviations: APC, adenomatos polyposis coli; BrdU, bromode- clear accumulation of β-catenin followed by forma- oxyuridine; DAPI, 4'6-diamidino-2-phenylindole; PI3K, phosphatidyl tion of the β-catenin-TCF transcriptional complex inositol 3-kinase involving transcriptional activation of its target genes (Sakanaka et al., 1998).
    [Show full text]
  • Dedifferentiation, Transdifferentiation, and Reprogramming: Future Directions in Regenerative Medicine
    82 Dedifferentiation, Transdifferentiation, and Reprogramming: Future Directions in Regenerative Medicine Cristina Eguizabal, PhD1 Nuria Montserrat, PhD1 Anna Veiga, PhD1,2 Juan Carlos Izpisua Belmonte, PhD1,3 1 Center for Regenerative Medicine in Barcelona Address for correspondence and reprint requests Juan Carlos Izpisua 2 Reproductive Medicine Service, Institut Universitari Dexeus, Belmonte, PhD, Gene Expression Laboratory, The Salk Institute for Barcelona, Spain Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 93027 3 Gene Expression Laboratory, The Salk Institute for Biological Studies, (e-mail: [email protected]). La Jolla, California Semin Reprod Med 2013;31:82–94 Abstract The main goal of regenerative medicine is to replace damaged tissue. To do this it is Keywords necessary to understand in detail the whole regeneration process including differenti- ► regenerative ated cells that can be converted into progenitor cells (dedifferentiation), cells that can medicine switch into another cell type (transdifferentiation), and somatic cells that can be ► stem cells induced to become pluripotent cells (reprogramming). By studying the regenerative ► dedifferentiation processes in both nonmammal and mammal models, natural or artificial processes ► transdifferentiation could underscore the molecular and cellular mechanisms behind these phenomena and ► reprogramming be used to create future regenerative strategies for humans. To understand any regenerative system, it is crucial to find the potency and differentiate and how they can revert to pluri- cellular origins of renewed tissues. Using techniques like potency (reprogramming) or switch lineages (dedifferentia- genetic lineage tracing and single-cell transplantation helps tion and transdifferentiation). to identify the route of regenerative sources. These tools were We synthesize the studies of different model systems to developed first in nonmammal models (flies, amphibians, and highlight recent insights that are integrating the field.
    [Show full text]