Bird Monitoring Protocol for the Central Alaska Network (CAKN)

Total Page:16

File Type:pdf, Size:1020Kb

Bird Monitoring Protocol for the Central Alaska Network (CAKN) Standard Operating Procedure #1: Sample Designs Please cite this document as: Knutson, M., B. Route, and T. Gostomski. 2010. Standard operating procedure #1: Sample designs. In Gostomski, T., M. Knutson, N. P. Danz, B. Route, and T. W. Sutherland. 2010. Landbird monitoring protocol, Great Lakes Inventory and Monitoring Network. Natural Resource Report NPS/GLKN/NRR—2010/225. National Park Service, Fort Collins, Colorado. Contents Page Figures............................................................................................................................................. v Tables .............................................................................................................................................. v Introduction ..................................................................................................................................... 1 Species of Management Concern ............................................................................................... 1 Target Population and Sampling Frame ..................................................................................... 1 Objectives ....................................................................................................................................... 3 1. Inventory .............................................................................................................................. 3 2. Change Over Time ............................................................................................................... 3 3. Community Composition ..................................................................................................... 4 4. Management Action ............................................................................................................. 4 5. Adaptive Management ......................................................................................................... 4 6. Habitat Associations ............................................................................................................ 5 Revisiting Sampling Points ............................................................................................................. 7 Spatial Considerations .................................................................................................................... 7 Sample Size ..................................................................................................................................... 9 Sampling Designs ......................................................................................................................... 11 Design #1: Random design, for small to large land units ......................................................... 11 Design #2: Stratified random design, stratified by access, for small to large land units .......... 12 Design #3: Stratified random design, stratified by habitat type, for small to large land units ........................................................................................................................................... 13 Design #4: Multi-stage probabilistic design, stratified by accessibility, for large land units ........................................................................................................................................... 15 Literature Cited ............................................................................................................................. 19 iii Figures Page Figure 1. Diagram of macro-grid with mini-grids marked in gray. Each mini-grid contains twenty-five 300 m cells. ................................................................................................................ 15 Tables Page Table 1. Minimum sample sizes and the number of required visits per year for sampling relatively common species. Sample sizes and number of visits correlate to different levels of alpha risk and power and to a minimum detectable trend and the number of years of sampling required to observe that trend. ......................................................................................... 9 Table 2. Example of a sampling rotation for landbird monitoring using a multi-stage design over a 20-year period (from McIntyre et al. 2004). ........................................................... 17 v Introduction This SOP provides options for sampling designs to be used for purposes of monitoring landbirds during the breeding season. Several resources that describe basic sampling designs were used in developing this SOP (Cochran 1977, Thompson 2002, Hill et al. 2005). The monitoring coordinator for each park should work with his/her supervisor to define management and sampling objectives and to select the appropriate sampling design to meet their needs. There may be technical resources available to assist in generating a set of points the meet the sampling design criteria. Species of Management Concern For parks whose management objectives focus on a condition or change in the status of specific species, it will be necessary to define a subset of landbird species a priori that will serve as focal species for management. Scientific reasoning, coupled with statistical analyses of inventory or pilot data are used to identify appropriate focal species for future monitoring. These species may have one or more of the following attributes: 1. closely associated with major habitat types under management (habitat specialist or indicator species); 2. classified as a species of management concern by Partners in Flight, North American Bird Conservation Initiative (NABCI), or U.S. Fish and Wildlife Service (USFWS) Division of Migratory Birds; and 3. detected with sufficient frequency that the sampling objectives are likely to be attainable with available resources. Target Population and Sampling Frame Important issues to consider in a monitoring plan are the target population and the sampling frame. The target population is what you are interested in learning about (i.e., which landbird birds occur in the park or in a particular management unit or habitat?). The sampling frame, or area of interest, is the population of sampling units (locations) that most closely approximates where the target population may be found and that has some possibility of being sampled (e.g., entire park, a management unit, particular habitat[s] in the park). All monitoring plans should clearly define the target population in the objectives and define the sampling frame in the sampling design so that it is clear to which area or population the summary information applies. A fundamental rule of sampling design is that you cannot extrapolate your results to locations that had no opportunity to be sampled. For example, if large portions of your target area are inaccessible because they occur on private property, you might be very interested in the birds that breed in those locations (target population), but if those areas are not in the sampling frame (no possibility of being sampled), then you cannot attribute your results to those areas. You should be able to describe your sampling frame and create a map, blocking out any areas that were not in the sampling frame. It is rare that your sampling frame will encompass your entire population of interest; your sampling design is the best representation of the population of interest that you can achieve, given logistical and resource limitations. 1 Objectives In any new monitoring effort, the first step is to clarify the management questions and objectives. Why do you want to monitor birds? How will you use the information to guide your land management decisions? A workshop may be needed for key park staff, partners, and advisors to answer these questions, set objectives, consider alternatives, and design an adaptive management framework that integrates bird monitoring with management objectives and decisions. These decisions drive your sampling design. The sampling designs in this SOP can be used to address several potential management objectives, all of which employ estimates of bird abundance and occupancy. The specific objectives of a park monitoring plan should be explicitly stated before undertaking the monitoring (Johnson 2000). The objectives below are a template for expressing management objectives and the associated sampling objectives; they should be modified to match the park’s management objectives (Elzinga et al. 2001). Various resources are available to guide you in defining clear management objectives (Elzinga et al. 2001, Adamcik et al. 2004, Butler and Koontz 2005, Arkema et al. 2006, Schroeder 2006, Mahan et al. 2007). 1. Inventory Conduct an inventory of landbird species and estimate their abundance, density, or occupancy. The objective is to create a list of all landbird species in the target habitat. This objective is generally applicable when there is no baseline data for the site. For this objective, sample the largest number of points in the target habitat that you can, regardless of the size of the land unit. For the smallest land units, we simply want an inventory and some estimate of variance from which to estimate sample sizes for future monitoring. Thus, if the unit will only accommodate 10 points, we still sample the 10 points. For larger land units, the more points sampled, the higher the probability of detecting a large proportion of the species present. Management objective: I want to create a species list for the park or management unit, and I want to estimate the abundance (birds/point),
Recommended publications
  • A Thesis Entitled Nocturnal Bird Call Recognition System for Wind Farm
    A Thesis entitled Nocturnal Bird Call Recognition System for Wind Farm Applications by Selin A. Bastas Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Electrical Engineering _______________________________________ Dr. Mohsin M. Jamali, Committee Chair _______________________________________ Dr. Junghwan Kim, Committee Member _______________________________________ Dr. Sonmez Sahutoglu, Committee Member _______________________________________ Dr. Patricia R. Komuniecki, Dean College of Graduate Studies The University of Toledo December 2011 Copyright 2011, Selin A. Bastas. This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Nocturnal Bird Call Recognition System for Wind Farm Applications by Selin A. Bastas Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Electrical Engineering The University of Toledo December 2011 Interaction of birds with wind turbines has become an important public policy issue. Acoustic monitoring of birds in the vicinity of wind turbines can address this important public policy issue. The identification of nocturnal bird flight calls is also important for various applications such as ornithological studies and acoustic monitoring to prevent the negative effects of wind farms, human made structures and devices on birds. Wind turbines may have negative impact on bird population. Therefore, the development of an acoustic monitoring system is critical for the study of bird behavior. This work can be employed by wildlife biologist for developing mitigation techniques for both on- shore/off-shore wind farm applications and to address bird strike issues at airports.
    [Show full text]
  • The Kavirondo Escarpment: a Previously Unrecognized Site of High Conservation Value in Western Kenya
    Scopus 33: 64-69 January 2014 The Kavirondo Escarpment: a previously unrecognized site of high conservation value in Western Kenya James Bradley and David Bradley Summary In western Kenya, extant woodland habitats and their representative bird species are increasingly scarce outside of protected areas. With the assistance of satellite imagery we located several minimally impacted ecosystems on the Kavirondo Escarpment (0°1.7’ S, 34°56.5’ E), which we then visited to examine the vegetation communities and investigate the avifauna. Despite only a limited effort there, we report several new atlas square occurrences, presence of the local and poorly known Rock Cisticola Cisticola emini and a significant range extension for the Stone Partridge Ptilopachus petrosus. Our short visits indicate high avian species richness is associated with the escarpment and we suggest comprehensive biodiversity surveys here are warranted. Introduction The Kavirondo Escarpment in central-west Kenya is a significant geologic and topographic feature. It straddles the equator, extending over 45 km from east to west, and comprises the northern fault line escarpment of the Kavirondo Rift Valley (Baker et al. 1972). Immediately to the south lie the lowlands of the Lake Victoria Basin and Nyando River Valley, and to the north, the high plateau of the western Kenya highlands (Fig. 1). The escarpment slopes range in elevation from 1200–1700 m at the western end to 1500–2000 m in the east, where it gradually merges with the Nandi Hills. Numerous permanent and seasonal drainages on the escarpment greatly increase the extent of land surface and variation in slope gradients, as well as the richness of vegetation communities.
    [Show full text]
  • Directional Embedding Based Semi-Supervised Framework for Bird Vocalization Segmentation ⇑ Anshul Thakur , Padmanabhan Rajan
    Applied Acoustics 151 (2019) 73–86 Contents lists available at ScienceDirect Applied Acoustics journal homepage: www.elsevier.com/locate/apacoust Directional embedding based semi-supervised framework for bird vocalization segmentation ⇑ Anshul Thakur , Padmanabhan Rajan School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Himachal Pradesh, India article info abstract Article history: This paper proposes a data-efficient, semi-supervised, two-pass framework for segmenting bird vocaliza- Received 16 October 2018 tions. The framework utilizes a binary classification model to categorize frames of an input audio record- Accepted 23 February 2019 ing into the background or bird vocalization. The first pass of the framework automatically generates training labels from the input recording itself, while model training and classification is done during the second pass. The proposed framework utilizes a reference directional model for obtaining a feature Keywords: representation called directional embeddings (DE). This reference directional model acts as an acoustic Bird vocalization segmentation model for bird vocalizations and is obtained using the mixtures of Von-Mises Fisher distribution Bioacoustics (moVMF). The proposed DE space only contains information about bird vocalizations, while no informa- Directional embedding tion about the background disturbances is reflected. The framework employs supervised information only for obtaining the reference directional model and avoids the background modeling. Hence, it can be regarded as semi-supervised in nature. The proposed framework is tested on approximately 79,000 vocalizations of seven different bird species. The performance of the framework is also analyzed in the presence of noise at different SNRs. Experimental results convey that the proposed framework performs better than the existing bird vocalization segmentation methods.
    [Show full text]
  • Vocal Communication in Zebra Finches: a Focused Description of Pair Vocal Activity
    Vocal communication in zebra finches: a focused description of pair vocal activity Dissertation Fakultät für Biologie Ludwig-Maximilians-Universität München durchgeführt am Max-Planck-Institut für Ornithologie Seewiesen vorgelegt von Pietro Bruno D’Amelio München, 2018 Erstgutachter: Prof. Dr. Manfred Gahr Zweitgutachter: Prof. Dr. Niels Dingemanse Eingereicht am: 06.03.2018 Tag der mündlichen Prüfung: 08.05.2018 Diese Dissertation wurde unter der Leitung von Prof. Dr. Manfred Gahr und Dr. Andries ter Maat angefertigt. i ii Table of Contents Summary ...................................................................................................................................................... iv General Introduction ..................................................................................................................................... 1 Vocal communication ................................................................................................................................ 1 Methodological challenges and how they were approached .................................................................... 8 Vocal individual recognition ................................................................................................................... 10 Pair communication ................................................................................................................................ 11 References ..................................................................................................................................................
    [Show full text]
  • Songs of the Wild: Temporal and Geographical Distinctions in the Acoustic Properties of the Songs of the Yellow-Breasted Chat
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses and Dissertations in Animal Science Animal Science Department 12-3-2007 Songs of the Wild: Temporal and Geographical Distinctions in the Acoustic Properties of the Songs of the Yellow-Breasted Chat Jackie L. Canterbury University of Nebraska - Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/animalscidiss Part of the Animal Sciences Commons Canterbury, Jackie L., "Songs of the Wild: Temporal and Geographical Distinctions in the Acoustic Properties of the Songs of the Yellow-Breasted Chat" (2007). Theses and Dissertations in Animal Science. 4. https://digitalcommons.unl.edu/animalscidiss/4 This Article is brought to you for free and open access by the Animal Science Department at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Theses and Dissertations in Animal Science by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. SONGS OF THE WILD: TEMPORAL AND GEOGRAPHICAL DISTINCTIONS IN THE ACOUSTIC PROPERTIES OF THE SONGS OF THE YELLOW-BREASTED CHAT by Jacqueline Lee Canterbury A DISSERTATION Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Doctor of Philosophy Major: Animal Science Under the Supervision of Professors Dr. Mary M. Beck and Dr. Sheila E. Scheideler Lincoln, Nebraska November, 2007 SONGS OF THE WILD: TEMPORAL AND GEOGRAPHICAL DISTINCTIONS IN ACOUSTIC PROPERTIES OF SONG IN THE YELLOW-BREASTED CHAT Jacqueline Lee Canterbury, PhD. University of Nebraska, 2007 Advisors: Mary M. Beck and Sheila E. Scheideler The Yellow-breasted Chat, Icteria virens, is a member of the wood-warbler family, Parulidae, and exists as eastern I.
    [Show full text]
  • Evidence for Human-Like Conversational Strategies in An
    EVIDENCE FOR HUMAN-LIKE CONVERSATIONAL STRATEGIES IN AN AFRICAN GREY PARROT'S SPEECH by ERIN NATANNIE COLBERT-WHITE (Under the Direction of Dorothy Fragaszy) ABSTRACT Researchers have established many similarities in the structure and function of human and avian communication systems. This dissertation investigated one unique nonhuman communication system—that of a speech-using African Grey parrot. In the same way that humans learn communicative competence (i.e., knowing what to say and how given a particular social context), I hypothesized that Cosmo the parrot‘s vocalizations to her caregiver, BJ, would show evidence of similar learning. The first study assessed turn-taking and the thematic nature of Cosmo‘s conversations with BJ. Results confirmed that Cosmo took turns during conversations which were very similar to humans‘ average turn-taking time. She also maintained thematically linked dialogues, indicating strategic use of her vocal units. The second study investigated Cosmo‘s ability to take BJ‘s auditory perspective by manipulating the distance between the two speakers. As predicted, Cosmo vocalized significantly more loudly when her owner was out of the room, and those vocalizations classified as social (e.g., kiss sounds) were uttered significantly more loudly than vocalizations which were considered nonsocial (e.g., answering machine beep sounds). These results suggested Cosmo may be able to take the perspective of a social partner, an ability others have documented in Greys using alternative tasks. Strategic use of vocalizations was revisited in Studies 3 and 4. The third study examined Cosmo‘s requesting behavior by comparing three separate corpora (i.e., bodies of text): Cosmo‘s normal vocalizations to BJ without requesting, Cosmo‘s vocalizations following a denied request, and Cosmo‘s vocalizations following an ignored request.
    [Show full text]
  • Linguistic Elements in Bird Vocalization
    LINGUISTIC ELEMENTS IN BIRD VOCALIZATION David G. Nichols The purpose of the following paragraphs is to call attention to the presence in bird vocalization of certain phenomena known to occur in human language. The phrase bird vocalization is.used inorder to avoid the expression bird langua whc wulduggest an. unwarran- ted equation of bird 'ndhuman oications systems. Just..wherein li6s the difference between those to system is an iterestig prob- lem which it is not the intention of these notes to solve. There. appears to be a slight (but very critical) difference which we cannot define adequately at present. Bird noise can be classified in several ways. The two principal bases of classification are formal pattern and function. A sort of compromise combination of these results in a division of bird vocal- ization into two major categories: call notes and song* This dis- tinotion is very often arbitrary. PraOtigI17 all birds have at least one simple. single syllable call note. Most birds have a small re- pertoire of different call notes which are uttered under different circumstances (changing with both internal condition and external en- vironment) but characteristically associated with flock control. Many birds have, in addition to a repertoire of call notes. a song consisting of a highly complicated pattern of notes.running up and down several scales, varying in many audible qualities including rhythm, pitch and timbre# and characteristically associated with mating and territory defence. A smaller but still considerable number of birds have not only call notes and a song but many different songs. In short, the profusion of sounds produced in the bird wrorld is impros- s ive.
    [Show full text]
  • A Novel Automated Method for the Detection of Strangers at Home Using Parrot Sound
    International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-7, Issue-6, March 2019 A Novel Automated Method for The Detection of Strangers at Home Using Parrot Sound Febin Antony, Anita H.B Automatic classification of audio signals will be a major Abstract: The sound produced by parrots is used to gather challenge in this field. Several authors have proposed information about their behavior. The study of sound variation is Common microphones are tuned for human hearing range important to obtain indirect information about the characteristics (20-20000 Hz) it has to be verified that the vocalization of the of birds. This paper is the first of a series in analyzing bird sounds, species to be monitored is within this frequency range. and establishing the adequate relation of bird's sound. The paper proposes a probabilistic method for audio feature classification in different algorithms to arrange and analyze the data on the a short interval of time. It proposes an application of digital sound basis of separate algorithms. Most of the proposed systems processing to check whether the parrots behave strangely when a use combination of different stages of processing. The first stranger comes. The sound is classified into different classes and stage is the analysis of the obtained waveform and extraction the emotions of the birds are analyzed. The time frequency of the of some features from the obtained waveform. The process of signal is checked using spectrogram. It helps to analyze the parrot extraction of the features will result in a huge figure of vocalization.
    [Show full text]
  • Southern Tanzania: Endemic Birds & Spectacular Mammals
    SOUTHERN TANZANIA: ENDEMIC BIRDS & SPECTACULAR MAMMALS SEPTEMBER 18–OCTOBER 6, 2018 Tanzanian Red-billed Hornbill © Kevin J. Zimmer LEADERS: KEVIN ZIMMER & ANTHONY RAFAEL LIST COMPILED BY: KEVIN ZIMMER VICTOR EMANUEL NATURE TOURS, INC. 2525 WALLINGWOOD DRIVE, SUITE 1003 AUSTIN, TEXAS 78746 WWW.VENTBIRD.COM SOUTHERN TANZANIA: ENDEMIC BIRDS & SPECTACULAR MAMMALS September 18–October 6, 2018 By Kevin Zimmer After meeting in Dar es Salaam, we kicked off our inaugural Southern Tanzania tour by taking a small charter flight to Ruaha National Park, at 7,800 square miles, the largest national park in all of east Africa. The scenery from the air was spectacular, particularly on our approach to the park’s airstrip. Our tour was deliberately timed to coincide with the dry season, a time when many of the trees have dropped their leaves, heightening visibility and leaving the landscapes starkly beautiful. This is also a time when the Great Ruaha River and its many smaller tributaries dwindle to shallow, often intermittent “sand rivers,” which, nonetheless, provide natural game corridors and concentration points for birds during a time in which water is at a premium. Bateleur, Ruaha National Park, Sept 2018 (© Kevin J. Zimmer) After touching down at the airstrip, we disembarked to find our trusty drivers, Geitan Ndunguru and Roger Mwengi, each of them longtime friends from our Northern Tanzania tours, waiting for us with their safari vehicles ready for action. The first order of business was to head to the lodge for lunch, but a large, mixed-species coven of Victor Emanuel Nature Tours 2 Southern Tanzania, 2018 vultures could not be ignored, particularly once we discovered the reason for the assemblage—a dead Hippo, no doubt taken down the previous night as it attempted to cross from one river to another, and, the sated Lion that had been gorging itself ever since.
    [Show full text]
  • Understanding Functioning and Evolution of Bird Middle Ear Mechanics: a Functional Morphological Analysis
    Faculteit Wetenschappen Departement Biologie Understanding functioning and evolution of bird middle ear mechanics: a functional morphological analysis Inzicht in functie en evolutie van de mechanica van het middenoor van vogels: een functioneel-morfologische analyse Proefschrift voorgelegd tot het behalen van de graad van Doctor in de Wetenschappen: Biologie aan de Universiteit Antwerpen te verdedigen door Raf CLAES Promotoren Prof. Dr. Peter Aerts Prof. Dr. Joris J.J. Dirckx Antwerpen 2018 The candidate was financially supported by research grant G049414N to Peter Aerts, Joris Dirkcx and Steve Vanlanduit of the Research Foundation of Flanders (FWO) De kandidaat werd financieel ondersteund met de onderzoeksbeurs G049414N aan Peter Aerts, Joris Dirckx en Steve Vanlanduit door het Fonds voor Wetenschappelijk Onderzoek – Vlaanderen (FWO) Doctoral committee Chair Prof. Dr. Raoul Van Damme: Department of Biology, University of Antwerp, Belgium Supervisors Prof. Dr. Peter Aerts: Department of Biology, University of Antwerp, Belgium; Department of Movement and Sport Science, Ghent University, Belgium Prof. Dr. Joris J.J. Dirckx: Department of Physics, University of Antwerp, Belgium Members of the jury Prof. Dr. Stefan Van Dongen: Department of Biology, University of Antwerp, Belgium Prof. Dr. Dominique Adriaens: Department of Biology, Ghent University, Belgium Prof. Dr. Anthony Herrel: Directeur de Recherche CNRS, Muséum National d’Histoire Naturelle, France Prof. Dr. Matthew J. Mason: Department of Physiology, Development & Neuroscience, University of Cambridge, United Kingdom Private PhD defense Friday, 23 November 2018, 13h30 Meeting room, D.134 Campus Drie Eiken, University of Antwerp, Belgium Public PhD defense Thursday, 20 December 2018, 17h00 Auditorium O.06 Campus Drie Eiken, University of Antwerp, Belgium 5 Contents Doctoral committee .........................................................................................................
    [Show full text]
  • Using Bioacoustics to Examine Vocal Phenology of Neotropical Migratory Birds on a Wild and Scenic River in Arizona
    Article Using Bioacoustics to Examine Vocal Phenology of Neotropical Migratory Birds on a Wild and Scenic River in Arizona Heather L. Bateman 1,* , Sidney B. Riddle 1,2 and Erin S. Cubley 3 1 College of Integrative Sciences and Arts, Arizona State University, Mesa, AZ 85212, USA; [email protected] 2 Arizona Game and Fish Department, Mesa, AZ 85207, USA 3 Graduate Degree Program in Ecology, Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO 80523, USA; [email protected] * Correspondence: [email protected] Simple Summary: Rivers can support forests of trees that mostly rely on water provided by the river. This area between the land and river is called riparian. In arid regions, that do not receive much rainfall, these riparian forests are very rare and support many unique bird species. Some songbirds migrate between North American and Central and South America and only nest in riparian forests. We used acoustic recorders which are instruments fitted with a microphone to record sound. We measured how many days during the summer four migratory birds were detected by their vocalizations in the riparian forest. We found that using acoustic recorders can be an effective way to document bird vocalization over time and in remote areas. Forests along rivers need water and are important to support a diversity of migratory birds. Abstract: Passive acoustic recorders have been used successfully as automated survey tools to detect Citation: Bateman, H.L.; Riddle, S.B.; terrestrial wildlife. However, few studies have monitored Neotropical migratory bird use of riparian Cubley, E.S.
    [Show full text]
  • Deep Learning for Detection of Bird Vocalisations Ilyas Potamitis
    1 Deep learning for detection of bird vocalisations Ilyas Potamitis Authors’ Affiliations: Ilyas Potamitis, Technological Educational Institute of Crete, Department of Music Technology and Acoustics, Crete, Greece Corresponding Author: Dr. Ilyas Potamitis, Assoc. Prof. e-mail: [email protected] phone: 0030 28310 21900 postal address: Dept. of Music Technology & Acoustics, Technological Educational Institute of Crete, E. Daskalaki Perivolia, Rethymno 74100, Crete, Greece. web: https://www.teicrete.gr/mta/en/potamitisstaffteicretegr google scholar: http://scholar.google.com/citations?user=gWZ4dTUAAAAJ&hl=en 2 Abstract— This work focuses on reliable detection of bird sound emissions as recorded in the open field. Acoustic detection of avian sounds can be used for the automatized monitoring of multiple bird taxa and querying in long-term recordings for species of interest for researchers, conservation practitioners, and decision makers. Recordings in the wild can be very noisy due to the exposure of the microphones to a large number of audio sources originating from all distances and directions, the number and identity of which cannot be known a-priori. The co-existence of the target vocalizations with abiotic interferences in an unconstrained environment is inefficiently treated by current approaches of audio signal enhancement. A technique that would spot only bird vocalization while ignoring other audio sources is of prime importance. These difficulties are tackled in this work, presenting a deep autoencoder that maps the audio spectrogram of bird vocalizations to its corresponding binary mask that encircles the spectral blobs of vocalizations while suppressing other audio sources. The procedure requires minimum human attendance, it is very fast during execution, thus suitable to scan massive volumes of data, in order to analyze them, evaluate insights and hypotheses, identify patterns of bird activity that, hopefully, finally lead to design policies on biodiversity issues.
    [Show full text]