Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation INVESTIGATION OF GLACIAL RETREAT, TERRACE ABANDONMENT, AND CATCHMENT-WIDE DENUDATION RATES IN THE VAKHSH CATCHMENT, TAJIKISTAN Dissertation DER MATHEMATISCH-NATURWISSENSCHAFTLICHEN FAKULTÄT DER EBERHARD KARLS UNIVERSITÄT TÜBINGEN ZUR ERLANGUNG DES GRADES EINES DOKTORS DER NATURWISSENSCHAFTEN (Dr. rer. nat.) VORGELEGT VON ELENA GRIN AUS SCHYTOMYR/UKRAINE TÜBINGEN 2019 Gedruckt mit Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Eberhard Karls Universität Tübingen. Tag der mündlichen Qualifikation: 25.10. 2019 Dekan: Prof. Dr. Wolfgang Rosenstiel 1. Berichterstatter: Prof. Todd A. Ehlers 2. Berichterstatter: Prof. Ronny Schönberg Ich erkläre hiermit, dass ich die zur Promotion eingereichte Arbeit mit dem Titel „Investigation of Glacial Retreat, Terrace Abandonment, and Catchment-wide Denudation Rates in the Vakhsh Catchment, Tajikistan“ selbstständig verfasst, nur die angegebenen Quellen und Hilfsmittel benutzt und wörtlich oder inhaltlich übernommene Stellen (alternativ: Zitate) als solche gekennzeichnet habe. Ich erkläre, dass die Richtlinien zur Sicherung guter wissenschaftlicher Praxis der Universität Tübingen (Beschluss des Senats vom 25.05.2000) beachtet wurden. Ich versichere an Eides statt, dass diese Angaben wahr sind und, dass ich nichts verschwiegen habe. Tubingen, den 18.02.2020 Ort, Datum Unterschrift ABSTRACT Abstract The development of the Vakhsh catchment is linked to the tectonic development of the Pamir during the India-Asia collision. The northward motion of the Pamir block relative to Eurasia, as well as its uplift and shortening, confined the Vakhsh River system between the western Tian Shan and the Pamir along the Pamir Thrust System deformation zone (PTS). The northern Pamir overthrusts the western Tian Shan and the Alai Valley experiences shortening along the PTS. At the present, the Vakhsh catchment drains two orogens along a thrust system and provides an opportunity for understanding denudation associated with plate convergence. During the Quaternary, the Vakhsh River catchment experienced changes in climatic conditions such as Quaternary glaciation and the Holocene thermal optimum, which caused fluctuations in sediment supply and water discharge. This study investigates the timing of glaciation, terrace formation as well as modern and paleo-denudation rates in the context of the tectonic and paleo-climatic conditions of the region. Glacial deposits, such as moraines, are archives that record advance and retreat cycles driven by climate change. Collecting spatial and temporal data about glaciations is essential for the reconstruction of both, the regional and global timing of ice ages and climate change. The investigation of glacial extent and timing in the Vakhsh River catchment was addressed by studying the glacial deposits near the former terminus of the Fedchenko Glacier. The Fedchenko Glacier is particularly important for understanding the glacial chronology in Central Asia, because it is the longest (~72 km) glacier outside the Polar Regions and the timing of its advance and retreat may be representative for the climate evolution of the Westerly-dominated Central Asia region. The present-day climate is dominated by the Mid-Latitude Westerlies and supplies the region with 400 – 1,000 mm annual precipitation. The present-day mean annual temperatures range between -6.7 and 12 ˚C. Inter alia, the interaction between precipitation and temperature induces flooding and increases mass movement events during snow melt. To understand and I ABSTRACT quantify the temporal and spatial influence of climate and tectonics on the evolution of mountain belts and the fluvial systems within is of a major importance for human existence in this challenging environment. To target the timing and possible causes for fluctuations in sediment supply, I investigated a flight of fluvial terraces along the main trunk. The incision into the investigated terraces started at Holocene times ~ 3 ka ago and was accompanied by high incision rates of 4 – 29 mm/yr. The paleo- denudation rates associated with the terraces range between 1.75 ± 0.41 mm/yr and 2.01 ± 0.36 mm/yr. The modern denudation rates cover the same magnitude (1.28 ± 0.16 – 1.94 ± 0.26 mm/yr) along the main trunk. The investigation of the tributaries yielded the greatest variation in modern denudation rates in the western Tian Shan tributaries (0.18 ± 0.02 mm/yr to 2.05 ± 0.27 mm/yr). The Alai Valley displays an intermediate signal of 1.14 ± 0.14 mm/yr and the northern Pamir tributaries display rates (1.78 ± 0.23 mm/yr and 1.63 ± 0.21 mm/yr) at the higher end of the spectrum. Additionally 26Al/10Be ratios were used to test, whenever the tributaries are prone to store or mix fresh sediment with shielded material. The results indicate no immediate storage or mixing (26Al/10Be ratios: 6.0 ± 1.0 to 7.6 ± 1.2), except for one western Tian Shan catchment (26Al/10Be ratio: 5.2 ± 0.5). II ZUSAMMENFASSUNG Zusammenfassung Der geologische Werdegang des Pamir während der Indien-Eurasien- Kollision beeinflusste maßgeblich die Entwicklung des Einzugsgebiets des Flusses Vakhsh. Die nordwärts gerichtete Verschiebung des Pamirblocks relativ zu Eurasien, dessen Hebung und Verkürzung, positionierten den Vakhsh zwischen dem westlichen Tian Shan und dem nördlichen Pamir entlang der Deformationszone des PTS (Pamir Thrust System), an der sich der nördliche Pamir über den westlichen Teil des Tian Shan schiebt. Gegenwärtig repräsentiert der Fluss Vakhsh ein aktives Beispiel eines Flusses, der zwischen zwei Gebirgszügen gefangen, entlang einer Deformationszone entwässert. Dieser Umstand bietet die Gelegenheit, die Denudation beider Gebirgszüge im Zusammenhang mit der intrakontinentalen Deformationszone zu untersuchen. Ferner umschließt das über 39 000 km2 große Einzugsgebiet des Vakhsh mehrere Landschaftsformen, wie die beiden Gebirgszüge westlicher Tian Shan und nördlicher Pamir, aber auch das Alai- Tal und die Tadschikische Depression. Im Quartär unterlag das Einzugsgebiet des Vakhsh mehreren Klimaschwankungen. Sowohl das Quartäre Eiszeitalter als auch das Holozäne Optimum verursachten Fluktuationen in Sedimentzufuhr und Abflussvolumen. Die Ziele der vorliegenden Arbeit sind die Bestimmung a) des Zeitpunktes des Gletschervorstoßes während des Quartärs, b) des Beginns der Inzision in die Terrassenablagerungen entlang des Hauptstroms und c) der zeitlichen und räumlichen Evolution der Denudationsraten im Kontext des tektonischen Umfelds und der Klimageschichte der Region. Glaziale Ablagerungen, wie etwa Moränen, können herangezogen werden, um klimatisch bedingte Vergletscherungszyklen zu datieren. Die Rekonstruktion von Vergletscherungszyklen auf einer regionalen Skala und deren Korrelation mit globalen Daten ist unabdingbar für das Verständnis der Klimageschichte. Um den Zeitpunkt und die Ausdehnung der letzten großen Vergletscherung im Einzugsgebiet des Vakhsh zu bestimmen, wurden Proben von glazialen Ablagerungen in der Umgebung des ehemaligen Terminus des Fedchenko Gletschers entnommen. Dieser Gletscher nimmt insofern eine wichtige Rolle III ZUSAMMENFASSUNG ein, dass er aufgrund seiner Ausdehnung (~72 km) der längste Gletscher außerhalb der Polarregion ist. Die Chronologie seines Rückzugs könnte exemplarisch sein für das in der Westwindzone gelegene Zentralasien. Die Westwinde versorgen das Einzugsgebiet des Vakhsh mit 400 – 1.000 mm Niederschlag pro Jahr. Die gegenwärtigen Temperaturen erreichen monatliche Durchschnittswerte von -6,7 ˚C bis 12˚C. Das Zusammenspiel zwischen Niederschlag und Temperatur resultiert in gehäuft auftretenden Hangrutschungen und Flutereignissen während der Schneeschmelze. Das Verstehen und Quantifizieren der Konsequenzen von Klima und Tektonik auf die Entstehung von Flusssystemen in Gebirgen ist von großer Wichtigkeit für die menschliche Existenz unter solch herausfordernden Bedingungen. Um mögliche Ursachen und das Timing von Sedimenteintragsfluktuationen zu ergründen, wurde eine Terrassensequenz entlang des Hauptflusses untersucht. Das Einschneiden in die Terrassensedimente begann währen des Holozäns, vor etwa 3 ka und ging mit hohen Einschneidungsraten einher (4 - 29 mm/Jahr). Die mit der Terrassensequenz assoziierten Palaeo-Denudationsraten liegen zwischen 1,75 ± 0,41 mm/Jahr und 2,01 ± 0,36 mm/Jahr. Die modernen Denudationsraten entlang des Haupstroms liegen mit 1,28 ± 0,16 – 1,94 ± 0,26 mm/Jahr in derselben Größenordnung. Die Untersuchung der Zuflüsse zeigt, dass die größte Variation in den Denudationsraten bei den Zuflüssen im Tian Shan liegt (0,18 ± 0,02 mm/Jahr bis 2,05 ± 0,27 mm/Jahr). Das Alai-Tal nimmt mit 1,14 ± 0,14 mm/Jahr eine intermediäre Stellung ein und die Zuflüsse des nördlichen Pamir weisen Denudationsraten von 1,78 ± 0,23 mm/Jahr und 1,63 ± 0,21 mm/Jahr auf. Zusätzlich wurden 26Al/10Be Verhältnisse gemessen, um eventuell vorhandene Abschirmung und Ablagerung der Flusssedimente nachvollziehen zu können. Die Resultate weisen keine solchen Signale auf (6,0 ± 1,0 bis 7,6 ± 1,2), außer im Falle eines Zuflusses aus dem Tian Shan (5,2 ± 0,5). IV TABLE OF CONTENTS Table of Contents Abstract .................................................................................................................................. I Zusammenfassung ............................................................................................................ III I Acknowledgments .................................................................................................. VIII II Publication of Data ...................................................................................................
Recommended publications
  • Download File
    For non-commercial distribution only All photos used in this compendium were provided by the Knowledge Management Initiative (KMI) participants. The compendium is available in English and Russian. The electronic version of the compendium can be found at: www.preventionweb.net Hard copies are available at: UNISDR CA, 37/1 Bokhtar str, 6th floor, 734000, Dushanbe, Tajikistan. UNICEF RO CEE/CIS, Avenue de la Paix 5, 1202 Genève, Switzerland. Any comments and suggestions regarding the Compendium can be addressed to: Mr. Parviz Mahmudov, Education coordinator, UNISDR CA [email protected] Mr. Asim Rehman, Regional Emergency Preparedness and DRR Specialist, UNICEF CEE/CIS [email protected] Design: Zafar Mahmoudov, Advocacy and Communications Consultant, UNISDR CA Editor: Stephen Boyle The views expressed in this Compendium are those of the respective authors and do not necessarily reflect the position of ECHO, UNISDR and UNICEF. Acknowledgements The Compendium of Good Practices and Tools on Disaster Risk Reduction in Education in Central Asia has been developed as a result of the Knowledge Management Initiative, implemented by the United Nations International Strategy for Disaster Reduction in Central Asia (UNISDR) and the United Nations Children’s Fund (UNICEF) within the framework of the Disaster Preparedness Programme of the European Commission’s Humanitarian Aid Department (DIPECHO) and financed by ECHO. UNISDR and UNICEF express their gratitude to all participants who submitted examples of their experiences on disaster risk reduction in education: Mr. Timur Idrisov, NGO “Little Earth”, Tajikistan; Ms. Lyudmila Bakhareva, NGO “Man and elements”, Kazakhstan; Mr. Alexandr Kravchuk, UNDP Kazakhstan, Kazakhstan; Mr. Khusan Tursunov, NGO “HAYOT”, Uzbekistan; Ms.
    [Show full text]
  • The Republic of Tajikistan Ministry of Energy and Industry
    The Republic of Tajikistan Ministry of Energy and Industry DATA COLLECTION SURVEY ON THE INSTALLMENT OF SMALL HYDROPOWER STATIONS FOR THE COMMUNITIES OF KHATLON OBLAST IN THE REPUBLIC OF TAJIKISTAN FINAL REPORT September 2012 Japan International Cooperation Agency NEWJEC Inc. E C C CR (1) 12-005 Final Report Contents, List of Figures, Abbreviations Data Collection Survey on the Installment of Small Hydropower Stations for the Communities of Khatlon Oblast in the Republic of Tajikistan FINAL REPORT Table of Contents Summary Chapter 1 Preface 1.1 Objectives and Scope of the Study .................................................................................. 1 - 1 1.2 Arrangement of Small Hydropower Potential Sites ......................................................... 1 - 2 1.3 Flowchart of the Study Implementation ........................................................................... 1 - 7 Chapter 2 Overview of Energy Situation in Tajikistan 2.1 Economic Activities and Electricity ................................................................................ 2 - 1 2.1.1 Social and Economic situation in Tajikistan ....................................................... 2 - 1 2.1.2 Energy and Electricity ......................................................................................... 2 - 2 2.1.3 Current Situation and Planning for Power Development .................................... 2 - 9 2.2 Natural Condition ............................................................................................................
    [Show full text]
  • Environmental and Social Impact Assessment Public Disclosure Authorized Nurek Hydropower Rehabilitation Project Phase 2 Republic of Tajikistan
    Public Disclosure Authorized Public Disclosure Authorized Public Disclosure Authorized FINAL Environmental and Social Impact Assessment Public Disclosure Authorized Nurek Hydropower Rehabilitation Project Phase 2 Republic of Tajikistan May 2020 Environmental and Social Impact Assessment Nurek HPP Rehabilitation Contents 1 Introduction .................................................................................................................................... 1 1.1 Background ........................................................................................................................... 1 1.2 Purpose of the ESIA ............................................................................................................... 3 1.3 Organization of the ESIA ....................................................................................................... 3 2 Project description .......................................................................................................................... 4 2.1 Description of Nurek HPP ..................................................................................................... 4 2.2 The Project ............................................................................................................................ 7 Dam Safety ............................................................................................................... 9 Details of work to be performed ............................................................................. 9 Refurbishment
    [Show full text]
  • Water Resources Lifeblood of the Region
    Water Resources Lifeblood of the Region 68 Central Asia Atlas of Natural Resources ater has long been the fundamental helped the region flourish; on the other, water, concern of Central Asia’s air, land, and biodiversity have been degraded. peoples. Few parts of the region are naturally water endowed, In this chapter, major river basins, inland seas, Wand it is unevenly distributed geographically. lakes, and reservoirs of Central Asia are presented. This scarcity has caused people to adapt in both The substantial economic and ecological benefits positive and negative ways. Vast power projects they provide are described, along with the threats and irrigation schemes have diverted most of facing them—and consequently the threats the water flow, transforming terrain, ecology, facing the economies and ecology of the country and even climate. On the one hand, powerful themselves—as a result of human activities. electrical grids and rich agricultural areas have The Amu Darya River in Karakalpakstan, Uzbekistan, with a canal (left) taking water to irrigate cotton fields.Upper right: Irrigation lifeline, Dostyk main canal in Makktaaral Rayon in South Kasakhstan Oblast, Kazakhstan. Lower right: The Charyn River in the Balkhash Lake basin, Kazakhstan. Water Resources 69 55°0'E 75°0'E 70 1:10 000 000 Central AsiaAtlas ofNaturalResources Major River Basins in Central Asia 200100 0 200 N Kilometers RUSSIAN FEDERATION 50°0'N Irty sh im 50°0'N Ish ASTANA N ura a b m Lake Zaisan E U r a KAZAKHSTAN l u s y r a S Lake Balkhash PEOPLE’S REPUBLIC Ili OF CHINA Chui Aral Sea National capital 1 International boundary S y r D a r Rivers and canals y a River basins Lake Caspian Sea BISHKEK Issyk-Kul Amu Darya UZBEKISTAN Balkhash-Alakol 40°0'N ryn KYRGYZ Na Ob-Irtysh TASHKENT REPUBLIC Syr Darya 40°0'N Ural 1 Chui-Talas AZERBAIJAN 2 Zarafshan TURKMENISTAN 2 Boundaries are not necessarily authoritative.
    [Show full text]
  • The Economic Effects of Land Reform in Tajikistan
    FAO Regional Office for Europe and Central Asia Policy Studies on Rural Transition No. 2008-1 The Economic Effects of Land Reform in Tajikistan Zvi Lerman and David Sedik October 2008 The Regional Office for Europe and Central Asia of the Food and Agriculture Organization distributes this policy study to disseminate findings of work in progress and to encourage the exchange of ideas within FAO and all others interested in development issues. This paper carries the name of the authors and should be used and cited accordingly. The findings, interpretations and conclusions are the authors’ own and should not be attributed to the Food and Agriculture Organization of the UN, its management, or any member countries. Zvi Lerman is Sir Henry d’Avigdor Goldsmid Professor of Agricultural Economics, The Hebrew University of Jerusalem, Israel David Sedik is the Senior Agricultural Policy Officer in the FAO Regional Office for Europe and Central Asia. Contents Executive summary . 1 1. Introduction: purpose of the study. 5 2. Agriculture in Tajikistan. 7 2.1. Geography of agriculture in Tajikistan. 8 Agro-climatic zones of Tajikistan. 10 Regional structure of agriculture. 13 2.2. Agricultural transition in Tajikistan: changes in output and inputs. 15 Agricultural land. 16 Agricultural labor. 17 Livestock. 17 Farm machinery. 19 Fertilizer use. 19 3. Land reform legislation and changes in land tenure in Tajikistan. 21 3.1. Legal framework for land reform and farm reorganization. 21 3.2. Changes in farm structure and land tenure since independence. 24 4. The economic effects of land reform . 27 4.1. Recovery of agricultural production in Tajikistan.
    [Show full text]
  • The Second Assessment of Transboundary Rivers, Lakes and Groundwaters: Central Asia
    The Second Assessment of Transboundary Rivers, Lakes and Groundwaters: Central Asia Annukka Lipponen Environmental Affairs Officer, UNECE Coordinator of the Second Assessment Convention on the Protection and Use of Transboundary Watercourses and International Lakes Process • Letters to ministers in August 2010 • Workshop on transboundary water management in Central Asia in Almaty, Kazakhstan 13-15 October 2010 • Draft assessments prepared based on the information provided (datasheets & presentations in Almaty) & sent for comments • Some challenges with making drafts available in Russian for country review • Comments received from IR Iran, Kazakhstan (GW only), Kyrgyzstan (just received, not yet incorporated), Mongolia Particularities • Information on land use/land cover and population hardly available at all – taken from GlobCover and LandScan products for the graphs • Recent quantitative data commonly lacking • Discharge information complemented from GRDC • Assessment of transboundary aquifers by UNESCO and IGRAC in 2009 built on General gaps • No input from the following countries: China, Turkmenistan and Uzbekistan • Information on management response and about the future outlook very limited • In most cases information concerning the institutional and legal side of water management very scarce Ramsar Sites included • Gomishan Lagoon • Daurian wetlands • Xingkai Lake National Nature Reserve – Lake Khanka • Tobol-Ishim forest-steppe • Aydar-Arnasay Lakes System • Ili Delta, Balkhash Lake Syr Darya • Main issues/pressures: irrigation
    [Show full text]
  • Crop and Food Security Assessment Mission Report Tajikistan 2011
    Crop and Food Security Assessment Mission Report Tajikistan 2011 Ministry of Agriculture of Republic of Tajikistan Food and Agriculture Organisation of the United Nations (FAO) World Food Programme (WFP) Dushanbe, September 2011 0 FAO and Ministry of Agriculture Crop and Food Security Assessment 2011 This publication has been produced with the assistance of the European Union. The contents of this publication are the sole responsibility of FAO, Ministry of Agriculture of Tajikistan, WFP and can no way be taken to reflect the views of the European Union 1 FAO and Ministry of Agriculture Crop and Food Security Assessment 2011 List of Content Acronyms 3 Introduction 4 Report Highlights 5 1. Overview 6 2. Socio-Economic Context 7 2.1 Macroeconomic Situation 7 2.2 Population and Employment 9 2.3 Agriculture Sector 9 3. Cereals and other Filed Crops Production 2010/2011 13 3.1 General 13 3.2 Factors Affecting Area and Production 2010/2011 – Rainfall 13 3.3 Other Factors affecting Area and Production 2010/2011 14 3.4 Factors Affecting Yield/ha (Productivity) of Cereal 2010/2011 17 3.5 Crop Production estimates – Main Season 2010/2011 20 3.6 Crop Production estimates – Second (summer) season 2010/2011 21 3.6 Estimated and Forecast Harvest data 2010/2011 22 3.7 Livestock 22 4. Cereal Availability 24 4.1 Cereal Balance 2010/2011 (July-June) 24 4.2 Cereal Marketing 25 4.3 Prices, Volatility and Terms of Trade 26 5. Food Security and Food assistance 2011/2012 28 5.1 Population with Inadequate Food Intake 29 5.2 Food Consumption Score April – June 2011-09-23 30 5.3 Food Assistance Needs for 2011/12 31 6.
    [Show full text]
  • Reservoirs, Tajikistan
    Reservoirs of Tajikistan 3 Beginning and Volume, mln.m Regulation Name Location Water source Use type end of type Total useful Total useful construction Farkhad Sogd province Syrdarya River 330 daily I, E, R, S 1942-1948 Kairakkum Sogd province Syrdarya River 4160 2600 seasonal I, E, R, S, F 1952-1956 Kattasay Sogd province Kattasay River 55 36,6 seasonal I, M, R, S 1958-1966 Nurek Khatlon province Vakhsh River 10500 4500 seasonal E, I, S, R 1961-1983 Golovnoye Khatlon province Vakhsh River 94,5 20,0 daily E, I, S, R 1956-1962 Muminabad Khatlon province Obi-Surkh River 31 30 seasonal I, S, R 1958-1959 Selbur Khatlon province Kyzylsu River 20,7 17 seasonal I, S, W, M 1961-1966 Baypaza Khatlon province Vakhsh River 125 87 seasonal E, I, S, R 1962-1989 Daganasay Sogd province Daganasay River 28 14 seasonal I, S, M 1977-1983 1980 under Rogun RRS Vakhsh River 13300 8600 multyear E, I, S, R construction Djar Sogd province Aksu River 51,7 27 seasonal I, S, M perspective Baljuvan Khatlon province Kyzylsu River 202 140 seasonal I, S perspective Khovaling Khatlon province Obi-Mazor River 7,5 6,6 seasonal I, S perspective Nizhny Khatlon province Kafirnigan River 905 583 seasonal I, S, F perspective Kafirnigan Гиссарский Khanakin Khanaka River 40 38 seasonal I, E, S, M perspective район Нурабадский Shurob Obikhingou River 50 20 daily E perspective район Варзобский Ziddy Varzob River 240 227 seasonal I, E, S, M perspective район Дангаринский under Sangtuda 1 Vakhsh River 250 120 seasonal I, E, S, F район construction Дангаринский under Sangtuda 2
    [Show full text]
  • DRAINAGE BASIN of the ARAL SEA and OTHER TRANSBOUNDARY SURFACE WATERS in CENTRAL ASIA Chapter 3
    68 DRAINAGE BASIN OF THE ARAL SEA AND OTHER TRANSBOUNDARY SURFACE WATERS IN CENTRAL ASIA Chapter 3 ARAL SEA AND OTHER WATERS IN CENTRAL ASIA 69 71 AMU DARYA RIVER BASIN 75 ZERAVSHAN RIVER BASIN 76 SYR DARYA RIVER BASIN 83 ARAL SEA 84 CHU-TALAS RIVER BASINS 89 ILI RIVER BASIN 91 LAKE BALQASH 91 MURGAB RIVER BASIN 91 TEJEN RIVER BASIN Chapter 3 70 ARAL SEA AND OTHER WATERS IN CENTRAL ASIA This chapter deals with major transboundary rivers in Central Asia which have a desert sink, or discharge either into one of the rivers (or their tributaries) or the Aral Sea or an another enclosed lake. It also includes lakes located within the basin of the Aral Sea. Practically all of the renewable water resources in this area are used predominantly for irrigation, and the national economies are developing under conditions of increasing freshwater shortages. TRANSBOUNDARY WATERS IN THE BASIN OF THE ARAL SEA AND OTHER TRANSBOUNDARY SURFACE WATERS IN CENTRAL ASIA1 Basin/sub-basin(s) Total area (km²) Recipient Riparian countries Lakes in the basin Amu Darya …2 Aral Sea AF, KG, TJ, UZ, TM - Surkhan Darya 13,500 Amu Darya TJ, UZ - Kafirnigan 11,590 Amu Darya TJ, UZ - Pyanj 113,500 Amu Darya AF, TJ -- Bartang … Pyanj AF, TJ -- Pamir … Pyanj AF, TJ - Vakhsh 39,100 Amu Darya KG, TJ Aral Sea Zeravshan …2 Desert sink TJ, UZ Syr Darya …2 Aral Sea KZ, KG, TJ, UZ - Naryn … Syr Darya KG, UZ - Kara Darya 28,630 Syr Darya KG, UZ - Chirchik 14,240 Syr Darya KZ, KG, UZ -Chatkal 7,110 Chirchik KG, UZ Chu 62,500 Desert sink KZ, KG Talas 52,700 Desert sink KZ, KG Assa … Desert sink KZ, KG Ili 413,000 Lake Balqash CN, KZ Lake Balqash Murgab 46,880 Desert sink AF, TM - Abikajsar … Murgab AF, TM Tejen 70,260 Desert sink AF, IR, TM 1 The assessment of water bodies in italics was not included in the present publication.
    [Show full text]
  • Climate Change in Turkmenistan
    Climate Change in Turkmenistan Elena Lioubimtseva, Jahan Kariyeva, and Geoffrey M. Henebry Abstract More than 80% of Turkmenistan is desert; thus, key environmental issues are associated with redistribution and supply of limited water resources. Turkmenistan is projected to become warmer and probably drier during the coming decades. Aridity is expected to increase in all republics of Central Asia, but especially in the western part of Turkmenistan. The temperature increases are predicted to be particularly high in summer and fall but lower in winter. Especially significant decrease in precipitation is predicted in summer and fall, while a modest increase or no change in precipitation is expected in winter months. These seasonal climatic shifts are likely to have profound implications for agriculture, particularly in western Turkmenistan and Uzbekistan, where frequent droughts are likely to negatively affect cotton, cereals, and forage production, increase already extremely high water demands for irrigation, exacerbate the already existing water crisis, and accelerate human-induced desertification. The Amudarya is the most water-bearing river in Central Asia; its endorheic drainage basin includes the territories of Afghanistan, Tajikistan, Uzbekistan, and Turkmenistan. Fed by seasonal snowmelt of snowpacks and glaciers, the flow of the Amudarya may increase due to intensified melting of the glaciers and snowpacks under a warming climate, which could further contribute to expansion of agricultural land use at the expense of converted natural areas. During the last few decades, Turkmenistan has experi- enced widespread changes in land cover and land use following the socioeconomic E. Lioubimtseva (*) Geography and Planning Department and Environmental Studies Program, Grand Valley State University, B-4-202 MAK, 1 Campus Drive, Allendale, MI 49401-9403, USA e-mail: [email protected] J.
    [Show full text]
  • Natural Hazards in Tajikistan
    Natural Hazards in Tajikistan Dushanbe, Tajikistan Natural Hazards in Tajikistan | OSCE Technical Report Contributors to the report Author of Part I: Assessment and Distribution of Avalanches in Tajikistan Mirzo Saidov, (Doctor of Science), Head of the Scientific and Research Center under the State Committee of the Land Management and Geodesy of the Republic of Tajikistan Author of Part II: Assessment and Distribution of Mudflows in Tajikistan Author of Part III: Assessment and Distribution Glaciers in Tajikistan Nikolai Ischuk, Senior Geologist, Main Committee of the Geological Survey under the Government of the Republic of Tajikistan Editor Stefanos Xenarios, Associate Professor, Graduate School of Public Policy, Nazarbayev University, Astana, Kazakhstan Reviewer and final edit Björn Klöve, professor, University of Oulu, Finland. The materials in this publication are for information purposes only. While the OSCE endeavour to ensure the accuracy and completeness of the contents of this publication, the views, findings, interpretations and conclusions expressed herein are those of the authors and contributors and do not necessarily reflect the official position of the OSCE and its participating States. The OSCE does not accept any liability for any loss which may arise from the reliance on information contained in this publication. Organization for Security and Co-operation in Europe (OSCE) Programme Office in Dushanbe https://www.osce.org/programme-office-in-dushanbe/ All rights reserved. No part of this publication may be reproduced,
    [Show full text]
  • Environment and Security Thematic Issues for Possible ENVSEC Action
    ���������������������������������� Environment and Security / 1 �� ��� �� �� �� ������� ��� ���������� ��������� �� ��� �� ���������� �� � ���������� �������� �� ��������� �� �� �������� � �� �������� ������� ���������� ���������� �� �������� ��� �� ������� � � � � � � � � � � � � � � � � �� �� � � � ��� � �������� � � �������� � �������� ��������� Transforming risks into cooperation Transforming ������� and Security Environment ������� ������ ���������� �������� ������ � ����� ��� ��� ���� � ��� ������������ ��������� ��������� ��������� Central Asia / Osh Khujand area Ferghana � ����� ����� ���������� ��� ������������������������������������������������������������������������������������������������������������� ��������������������������������������������������������������������������������������������������������� 2 / Environment and Security The United Nations Development Programme is the UN´s Global Development Network, advocating for change and connecting countries to knowledge, experience and resources to help people build a better life. It operates in 166 countries, working with them on responses to global and national development challenges. As they develop local capacity, the countries draw on the UNDP people and its wide range of partners. The UNDP network links and co-ordinates global and national efforts to achieve the Millennium Development Goals. The United Nations Environment Programme, as the world’s leading intergovernmental environmental organization, is the authoritative source of knowledge on the current state of,
    [Show full text]