water Article Estimating the Pan Evaporation in Northwest China by Coupling CatBoost with Bat Algorithm Liming Dong 1, Wenzhi Zeng 1,* , Lifeng Wu 2,*, Guoqing Lei 1, Haorui Chen 3 , Amit Kumar Srivastava 4 and Thomas Gaiser 4 1 State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China;
[email protected] (L.D.);
[email protected] (G.L.) 2 Nanchang Institute of Technology, Nanchang 330099, China 3 State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China;
[email protected] 4 Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Katzenburgweg 5, D-53115 Bonn, Germany;
[email protected] (A.K.S.);
[email protected] (T.G.) * Correspondence:
[email protected] (W.Z.);
[email protected] (L.W.) Abstract: Accurate estimation of pan evaporation (Ep) is vital for the development of water resources and agricultural water management, especially in arid and semi-arid regions where it is restricted to set up the facilities and measure pan evaporation accurately and consistently. Besides, using pan evap- oration estimating models and pan coefficient (kp) models is a classic method to assess the reference evapotranspiration (ET0) which is indispensable to crop growth, irrigation scheduling, and economic assessment. This study estimated the potential of a novel hybrid machine learning model Coupling Bat algorithm (Bat) and Gradient boosting with categorical features support (CatBoost) for estimating daily pan evaporation in arid and semi-arid regions of northwest China.