Differentiation of Epidermis with Reference to Stomata
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Stoma and Peristomal Skin Care: a Clinical Review Early Intervention in Managing Complications Is Key
WOUND WISE 1.5 HOURS CE Continuing Education A series on wound care in collaboration with the World Council of Enterostomal Therapists Stoma and Peristomal Skin Care: A Clinical Review Early intervention in managing complications is key. ABSTRACT: Nursing students who don’t specialize in ostomy care typically gain limited experience in the care of patients with fecal or urinary stomas. This lack of experience often leads to a lack of confidence when nurses care for these patients. Also, stoma care resources are not always readily available to the nurse, and not all hospitals employ nurses who specialize in wound, ostomy, and continence (WOC) nursing. Those that do employ WOC nurses usually don’t schedule them 24 hours a day, seven days a week. The aim of this article is to provide information about stomas and their complications to nurses who are not ostomy specialists. This article covers the appearance of a normal stoma, early postoperative stoma complications, and later complications of the stoma and peristomal skin. Keywords: complications, ostomy, peristomal skin, stoma n 46 years of clinical practice, I’ve encountered article covers essential information about stomas, many nurses who reported having little educa- stoma complications, and peristomal skin problems. Ition and even less clinical experience with pa- It is intended to be a brief overview; it doesn’t provide tients who have fecal or urinary stomas. These exhaustive information on the management of com- nurses have said that when they encounter a pa- plications, nor does it replace the need for consulta- tient who has had an ostomy, they are often un- tion with a qualified wound, ostomy, and continence sure how to care for the stoma and how to assess (WOC) nurse. -
Mohammad Karbaschi Thesis
STRUCTURAL, PHYSIOLOGICAL AND MOLECULAR CHARACTERISATION OF THE AUSTRALIAN NATIVE RESURRECTION GRASS TRIPOGON LOLIIFORMIS (F.MUELL.) C.E.HUBB. DURING DEHYDRATION AND REHYDRATION Mohammad Reza Karbaschi Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Centre for Tropical Crops and Biocommodities Science and Engineering Faculty Queensland University of Technology November 2015 Keywords Arabidopsis thaliana; Agrobacterium-mediated transformation; Anatomy; Anti-apoptotic proteins; BAG4; Escherichia coli; Bulliform cells; C4 photosynthesis; Cell wall folding; Cell membrane integrity; Chaperone-mediated autophagy; Chlorophyll fluorescence; Hsc70/Hsp70; Desiccation tolerance, Dehydration; Drought; Electrolyte leakage; Freehand sectioning; Homoiochlorophyllous; Leaf structure; Leaf folding; Reactive oxygen species (ROS); Resurrection plant; Morphology; Monocotyledon; Nicotiana benthamiana; Photosynthesis; Physiology; Plant tissue; Programed cell death (PCD); Propidium iodide staining; Protein microarray chip; Sclerenchymatous tissue; Stress; Structure; Tripogon loliiformis; Ubiquitin; Vacuole fragmentation; Kranz anatomy; XyMS+; Structural, physiological and molecular characterisation of the Australian native resurrection grass Tripogon loliiformis (F.Muell.) C.E.Hubb. during dehydration and rehydration i Abstract Plants, as sessile organisms must continually adapt to environmental changes. Water deficit is one of the major environmental stresses that affects plants. While most plants can tolerate moderate dehydration -
Redalyc.Stem and Root Anatomy of Two Species of Echinopsis
Revista Mexicana de Biodiversidad ISSN: 1870-3453 [email protected] Universidad Nacional Autónoma de México México dos Santos Garcia, Joelma; Scremin-Dias, Edna; Soffiatti, Patricia Stem and root anatomy of two species of Echinopsis (Trichocereeae: Cactaceae) Revista Mexicana de Biodiversidad, vol. 83, núm. 4, diciembre, 2012, pp. 1036-1044 Universidad Nacional Autónoma de México Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=42525092001 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Revista Mexicana de Biodiversidad 83: 1036-1044, 2012 DOI: 10.7550/rmb.28124 Stem and root anatomy of two species of Echinopsis (Trichocereeae: Cactaceae) Anatomía de la raíz y del tallo de dos especies de Echinopsis (Trichocereeae: Cactaceae) Joelma dos Santos Garcia1, Edna Scremin-Dias1 and Patricia Soffiatti2 1Universidade Federal de Mato Grosso do Sul, CCBS, Departamento de Biologia, Programa de Pós Graduação em Biologia Vegetal Cidade Universitária, S/N, Caixa Postal 549, CEP 79.070.900 Campo Grande, MS, Brasil. 2Universidade Federal do Paraná, SCB, Departamento de Botânica, Programa de Pós-Graduação em Botânica, Caixa Postal 19031, CEP 81.531.990 Curitiba, PR, Brasil. [email protected] Abstract. This study characterizes and compares the stem and root anatomy of Echinopsis calochlora and E. rhodotricha (Cactaceae) occurring in the Central-Western Region of Brazil, in Mato Grosso do Sul State. Three individuals of each species were collected, fixed, stored and prepared following usual anatomy techniques, for subsequent observation in light and scanning electronic microscopy. -
Tree Anatomy Stems and Branches
Tree Anatomy Series WSFNR14-13 Nov. 2014 COMPONENTSCOMPONENTS OFOF PERIDERMPERIDERM by Dr. Kim D. Coder, Professor of Tree Biology & Health Care Warnell School of Forestry & Natural Resources, University of Georgia Around tree roots, stems and branches is a complex tissue. This exterior tissue is the environmental face of a tree open to all sorts of site vulgarities. This most exterior of tissue provides trees with a measure of protection from a dry, oxidative, heat and cold extreme, sunlight drenched, injury ridden site. The exterior of a tree is both an ecological super highway and battle ground – comfort and terror. This exterior is unique in its attributes, development, and regeneration. Generically, this tissue surrounding a tree stem, branch and root is loosely called bark. The tissues of a tree, outside or more exterior to the xylem-containing core, are varied and complexly interwoven in a relatively small space. People tend to see and appreciate the volume and physical structure of tree wood and dismiss the remainder of stem, branch and root. In reality, tree life is focused within these more exterior thin tissue sets. Outside of the cambium are tissues which include transport cells, structural support cells, generation cells, and cells positioned to help, protect, and sustain other cells. All of this life is smeared over the circumference of a predominately dead physical structure. Outer Skin Periderm (jargon and antiquated term = bark) is the most external of tree tissues providing protection, water conservation, insulation, and environmental sensing. Periderm is a protective tissue generated over and beyond live conducting and non-conducting cells of the food transport system (phloem). -
Knockdown of Rice Microrna166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development1
Knockdown of Rice MicroRNA166 Confers Drought Resistance by Causing Leaf Rolling and Altering Stem Xylem Development1 Jinshan Zhang,a,b,c Hui Zhang,a,b Ashish Kumar Srivastava,a,b,2 Yujie Pan,a,b,c Jinjuan Bai,a,b Jingjing Fang,a,b Huazhong Shi,d and Jian-Kang Zhua,b,e,3 aShanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, People’s Republic of China bCenter of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 201602, People’s Republic of China cUniversity of Chinese Academy of Sciences, Shanghai 201602, People’s Republic of China dDepartment of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409 eDepartment of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana 47907 ORCID IDs: 0000-0001-7360-6837 (J.Z.); 0000-0003-3817-9774 (H.S.); 0000-0001-5134-731X (J.-K.Z.). MicroRNAs are 19- to 22-nucleotide small noncoding RNAs that have been implicated in abiotic stress responses. In this study, we found that knockdown of microRNA166, using the Short Tandem Target Mimic (STTM) system, resulted in morphological changes that confer drought resistance in rice (Oryza sativa). From a large-scale screen for miRNA knockdown lines in rice, we identified miR166 knockdown lines (STTM166); these plants exhibit a rolled-leaf phenotype, which is normally displayed by rice plants under drought stress. The leaves of STTM166 rice plants had smaller bulliform cells and abnormal sclerenchymatous cells, likely causing the rolled-leaf phenotype. The STTM166 plants had reduced stomatal conductance and showed decreased transpiration rates. The STTM166 lines also exhibited altered stem xylem and decreased hydraulic conductivity, likely due to the reduced diameter of the xylem vessels. -
Anatomical Traits Related to Stress in High Density Populations of Typha Angustifolia L
http://dx.doi.org/10.1590/1519-6984.09715 Original Article Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae) F. F. Corrêaa*, M. P. Pereiraa, R. H. Madailb, B. R. Santosc, S. Barbosac, E. M. Castroa and F. J. Pereiraa aPrograma de Pós-graduação em Botânica Aplicada, Departamento de Biologia, Universidade Federal de Lavras – UFLA, Campus Universitário, CEP 37200-000, Lavras, MG, Brazil bInstituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais – IFSULDEMINAS, Campus Poços de Caldas, Avenida Dirce Pereira Rosa, 300, CEP 37713-100, Poços de Caldas, MG, Brazil cInstituto de Ciências da Natureza, Universidade Federal de Alfenas – UNIFAL, Rua Gabriel Monteiro da Silva, 700, CEP 37130-000, Alfenas, MG, Brazil *e-mail: [email protected] Received: June 26, 2015 – Accepted: November 9, 2015 – Distributed: February 28, 2017 (With 3 figures) Abstract Some macrophytes species show a high growth potential, colonizing large areas on aquatic environments. Cattail (Typha angustifolia L.) uncontrolled growth causes several problems to human activities and local biodiversity, but this also may lead to competition and further problems for this species itself. Thus, the objective of this study was to investigate anatomical modifications on T. angustifolia plants from different population densities, once it can help to understand its biology. Roots and leaves were collected from natural populations growing under high and low densities. These plant materials were fixed and submitted to usual plant microtechnique procedures. Slides were observed and photographed under light microscopy and images were analyzed in the UTHSCSA-Imagetool software. The experimental design was completely randomized with two treatments and ten replicates, data were submitted to one-way ANOVA and Scott-Knott test at p<0.05. -
Eudicots Monocots Stems Embryos Roots Leaf Venation Pollen Flowers
Monocots Eudicots Embryos One cotyledon Two cotyledons Leaf venation Veins Veins usually parallel usually netlike Stems Vascular tissue Vascular tissue scattered usually arranged in ring Roots Root system usually Taproot (main root) fibrous (no main root) usually present Pollen Pollen grain with Pollen grain with one opening three openings Flowers Floral organs usually Floral organs usually in in multiples of three multiples of four or five © 2014 Pearson Education, Inc. 1 Reproductive shoot (flower) Apical bud Node Internode Apical bud Shoot Vegetative shoot system Blade Leaf Petiole Axillary bud Stem Taproot Lateral Root (branch) system roots © 2014 Pearson Education, Inc. 2 © 2014 Pearson Education, Inc. 3 Storage roots Pneumatophores “Strangling” aerial roots © 2014 Pearson Education, Inc. 4 Stolon Rhizome Root Rhizomes Stolons Tubers © 2014 Pearson Education, Inc. 5 Spines Tendrils Storage leaves Stem Reproductive leaves Storage leaves © 2014 Pearson Education, Inc. 6 Dermal tissue Ground tissue Vascular tissue © 2014 Pearson Education, Inc. 7 Parenchyma cells with chloroplasts (in Elodea leaf) 60 µm (LM) © 2014 Pearson Education, Inc. 8 Collenchyma cells (in Helianthus stem) (LM) 5 µm © 2014 Pearson Education, Inc. 9 5 µm Sclereid cells (in pear) (LM) 25 µm Cell wall Fiber cells (cross section from ash tree) (LM) © 2014 Pearson Education, Inc. 10 Vessel Tracheids 100 µm Pits Tracheids and vessels (colorized SEM) Perforation plate Vessel element Vessel elements, with perforated end walls Tracheids © 2014 Pearson Education, Inc. 11 Sieve-tube elements: 3 µm longitudinal view (LM) Sieve plate Sieve-tube element (left) and companion cell: Companion cross section (TEM) cells Sieve-tube elements Plasmodesma Sieve plate 30 µm Nucleus of companion cell 15 µm Sieve-tube elements: longitudinal view Sieve plate with pores (LM) © 2014 Pearson Education, Inc. -
Esau's Plant Anatomy
Glossary A of on other roots, buds developing on leaves or roots abaxial Directed away from the axis. Opposite of instead of in leaf axils on shoots. adaxial. With regard to a leaf, the lower, or “dorsal,” aerenchyma Parenchyma tissue containing particu- surface. larly large intercellular spaces of schizogenous, lysige- accessory bud A bud located above or on either side nous, or rhexigenous origin. of the main axillary bud. aggregate ray In secondary vascular tissues; a group accessory cell See subsidiary cell. of small rays arranged so as to appear to be one large acicular crystal Needle-shaped crystal. ray. acropetal development (or differentiation) Pro- albuminous cell See Strasburger cell. duced or becoming differentiated in a succession toward aleurone Granules of protein (aleurone grains) the apex of an organ. The opposite of basipetal but present in seeds, usually restricted to the outermost means the same as basifugal. layer, the aleurone layer of the endosperm. (Protein actin fi lament A helical protein fi lament, 5 to 7 nano- bodies is the preferred term for aleurone grains.) meters (nm) thick, composed of globular actin mole- aleurone layer Outermost layer of endosperm in cules; a major constituent of all eukaryotic cells. Also cereals and many other taxa that contains protein bodies called microfi lament. and enzymes concerned with endosperm digestion. actinocytic stoma Stoma surrounded by a circle of aliform paratracheal parenchyma In secondary radiating cells. xylem; vasicentric groups of axial parenchyma cells adaxial Directed toward the axis. Opposite of having tangential wing-like extensions as seen in trans- abaxial. With regard to a leaf, the upper, or “ventral,” verse section. -
Plant Anatomy,Morphology of Angiosperms and Plant Propagation
IV-Semester Paper-IVPlant Anatomy, Morphology of Angiosperms, Plant Propagations Solved questions SREE SIDDAGANGA COLLEGE OF ARTS, SCIENCE and COMMERCE B.H. ROAD, TUMKUR (AFFILIATED TO TUMKUR UNIVERSITY) BOTANY PAPER-IV II BSC IV SEMESTER Plant Anatomy,Morphology of Angiosperms and Plant propagation SOLVED QUESTION BANK 1 IV-Semester Paper-IVPlant Anatomy, Morphology of Angiosperms, Plant Propagations Solved questions Unit-1 : Meristamatic tissues – structure, classification based on origin, 14 Hrs. position and function. Theories of Apical meristems -Histogen theory, Tunica-Corpus theory. Permanent tissues-Simple and Complex and Secretory tissues. Unit-2: Structure of Dicot & Monocot Root, Stem and Leaf. 8 Hrs. Unit-3: Secondary growth in Dicot stem, Anamalous secondary growth in 10 Hrs. Dracena and Boerhaavia. Wood anatomy-A brief account, types of wood (Spring, Autumn Duramen, Alburnum, Porus wood and Non Porous wood). Unit-4: Morphology of Angiosperms-Root System and its modifications, 20 Hrs. Shoot system and Stem modifications, Leaf and its modifications, Inflorescence, Floral morphology and Fruits. Unit-5 : Plant Propagation-Methods of Vegetative propagation- Natural- 8 Hrs. Rhizome, Tuber, Corm, Bulb, Sucker, Stolon and offset, Artificial- Stem Cutting, Grafting and Layering. 2 IV-Semester Paper-IVPlant Anatomy, Morphology of Angiosperms, Plant Propagations Solved questions 3 Plant Anatomy,Morphology of Angiosperms and Plant propagation SOLVED QUESTION BANK 2 MARKS QUESTIONS 1. What is meristematic tissue?Classify them basaed on Origin. Meristematic tissue is a group of cells that has power of continuous division.Cells are immature and young Meristematic tissue is commonly called as meristems. Types of meristematic tissue on the basis of origin: Promeristem (primodial meristem) Primary meristem Secondary meristem 2. -
Plant Structure and Growth
Plant Structure And Growth The Plant Body is Composed of Cells and Tissues • Tissue systems (Like Organs) – made up of tissues • Made up of cells Plant Tissue Systems • ____________________Ground Tissue System Ø photosynthesis Ø storage Ø support • ____________________Vascular Tissue System Ø conduction Ø support • ___________________Dermal Tissue System Ø Covering Ground Tissue System • ___________Parenchyma Tissue • Collenchyma Tissue • Sclerenchyma Tissue Parenchyma Tissue • Made up of Parenchyma Cells • __________Living Cells • Primary Walls • Functions – photosynthesis – storage Collenchyma Tissue • Made up of Collenchyma Cells • Living Cells • Primary Walls are thickened • Function – _Support_____ Sclerenchyma Tissue • Made up of Sclerenchyma Cells • Usually Dead • Primary Walls and secondary walls that are thickened (lignin) • _________Fibers or _________Sclerids • Function – Support Vascular Tissue System • Xylem – H2O – ___________Tracheids – Vessel Elements • Phloem - Food – Sieve-tube Members – __________Companion Cells Xylem • Tracheids – dead at maturity – pits - water moves through pits from cell to cell • Vessel Elements – dead at maturity – perforations - water moves directly from cell to cell Phloem Sieve-tube member • Sieve-tube_____________ members – alive at maturity – lack nucleus – Sieve plates - on end to transport food • _____________Companion Cells – alive at maturity – helps control Companion Cell (on sieve-tube the side) member cell Dermal Tissue System • Epidermis – Single layer, tightly packed cells – Complex -
7.5 Role of Epidermis in Plants Objectives Root Epidermis Or Rhizodermis 7.2 Protective Features 7.6 Trichomes
Unit 7 Protective Features in Primary Organs of Plants UNIT 7 PROTECTIVEPROTECTIVE FEATURES IN PPRIMARYRIMARY ORGANS OF PPLANTSLANTSOF StStructureructureStructure 7.1 Introduction 7.5 Role of Epidermis in Plants Objectives Root epidermis or Rhizodermis 7.2 Protective features 7.6 Trichomes 7.3 Epidermis Types of Trichomes Development of Epidermis Functions of Trichomes Types of Epidermal Cells 7.7 Cuticle Guard Cells and Stomata 7.8 Summary 7.4 Specialised Epidermal Cells 7.9 Terminal Questions Cystoliths 7.10 Answers Silica and Cork Cells Bulliform Cells Root Hairs Multiple Epidermis 7.1 INTRODUCTION In earlier unit 1 you have studied about the various tissues in plants. The role of various meristems has also been discussed in regard to growth of root and shoot in plants. In this unit you will be studying about epidermis which forms the outermost layer of the primary plant body. It is derived from the protoderm layer in plants. Epidermis forms the interface between the plant and its environment, hence acts as the first line of defense in plants. As you know that defense mechanism is very important part of plant, animal kingdom wholly or partially depended on plant kingdom and fixed to the ground as they have to manoeuvre when attacked. For this reason plants have been provided with special organs to protect themselves from such attacks. In the present unit we will describes the structure of epidermis, various cells present in the layer along with their role in plant protection. 145 Block 2 Secondary Growth and Adaptive Features ObObjectivesjectivesObjectives After studying this unit you would be able to : demonstrate the structure and explain the function of epidermis; recognize various specialised cells present in the epidermis; illustrate the structure and distinguish the function of cuticle; and know the importance of trichomes in plants. -
Cross-Sectional Anatomy of Leaf Blade and Leaf Sheath of Cogon Grass (Imperata Cylindrica L.)
J. Bio-Sci. 25: 17-26, 2017 ISSN 1023-8654 http://www.banglajol.info/index.php/JBS/index CROSS-SECTIONAL ANATOMY OF LEAF BLADE AND LEAF SHEATH OF COGON GRASS (IMPERATA CYLINDRICA L.) SN Sima1∗, AK Roy2, MT Akther1 and N Joarder1 1Department of Botany, University of Rajshahi, Bangladesh 2Department of Genetic Engineering and Biotechnology, University of Rajshahi, Bangladesh Abstract Histology of leaf blade and sheath of cogon grass (Imperata cylindrica L.) Beauv., indicated typical C4 Kranz anatomy. Cells of adaxial epidermis were smaller and bulliform cells were present on the adaxial epidermis. The shape of bulliform cells was bulbous; 3-7 cells were present in a group and 3-5 folds larger than epidermal cells. Three types of vascular bundles in respect of size and structure were extra large, large and small and they were part of leaf blade histology. These three sizes of vascular bundles were arranged in successive manner from midrib to leaf margin. Leaf sheath bundles were of two types: large and small. Extra large bundles were flanked by five small and four large bundles but small bundles were alternate found to be with large typed bundles. Extra large bundles were of typical monocotyledonous type but the large type had reduced xylem elements and the small typed was found to be transformed into treachery elements. Small be bundles occupied half the thickness of the flat portion of leaf blade topped by large bulliform cells of the adaxial epidermis. Extra large and large bundle had been extended to upper and lower epidermis. Kranz mesophyll completely encircled the bundle sheath and radiated out into ground tissue.