Microbial Ecology of the Cocoa Chain

Total Page:16

File Type:pdf, Size:1020Kb

Microbial Ecology of the Cocoa Chain Microbial ecology of the cocoa chain Quality aspects and insight into heat-resistant bacterial spores Lídia Josélia Rebelo Lima Thesis commitee Promotor Prof. dr. ir. M. H. Zwietering Professor of Food Microbiology Laboratory of Food Microbiology Wageningen University Co-promotor Dr. ir. M. J. R. Nout Associate professor of Food Microbiology Laboratory of Food Microbiology Wageningen University Other members Prof. dr. L. de Vuyst, Vrije Universiteit Brussel Prof. dr. M. Kleerebezem, Wageningen University Dr. M. H. J. Wells-Bennik, Nizo food research B.V. Prof. dr. S. Brul, Universiteit van Amsterdam This research was conducted under the auspices of the graduate school of Voeding, Levensmiddelentechnologie, Agrobiotechnologie en Gezonheid (VLAG). Microbial ecology of the cocoa chain Quality aspects and insight into heat-resistant bacterial spores Lídia Josélia Rebelo Lima Thesis Submitted in partial fulfillment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M. J. Kropff, in the presence of the Thesis Committee appointed by the Doctorate Board to be defended in public on Monday 10 December 2012 at 1.30 p.m. in the Aula. Lima, L. Microbial ecology of the cocoa chain. Quality aspects and insight into heat-resistant bacterial spores 312 pp. Thesis, Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-433-4 Aos meus queridos pais e aos meus manos Table of Contents Abstract Abbreviations Chapter 1 Introduction and thesis outline 1 Chapter 2 Theobroma cacao L., “The food of the gods”: Quality determinants 23 of commercial cocoa beans, with particular reference to the impact of the fermentation Chapter 3 Quality and safety of commercial cocoa beans 71 Chapter 4 Microbiota of cocoa powder with particular reference to aerobic 95 thermoresistant spore-formers Chapter 5 Microbiota dynamics and diversity at different stages of cocoa bean 119 industrial processing to cocoa powder Chapter 6 Compositional and ultrastructural factors that make Bacillus subtilis 147 subsp. subtilis spores highly heat-resistant Chapter 7 Germination of highly heat-resistant Bacillus subtilis spores and 173 relevance for cocoa-derived products Chapter 8 Genomic biomarkers of growth temperature preferences and spore 193 heat-resistance: a meta-analysis with Firmicutes Chapter 9 General discussion and future perspectives 233 List of references 253 Summary 291 Samenvatting 295 Acknowledgements 299 List of publications 305 About the author 309 Overview of completed training activities 311 Abstract Cocoa beans (Theobroma cacao L.) are the basis for chocolate and cocoa powder production. The first step in the production of these food products consists of a spontaneous fermentation of the beans in the tropical producing countries, in order to allow the formation of the essential precursor compounds of the cocoa flavour. Following this stage, cocoa beans are industrially transformed into a range of different products. In the first part of this thesis, the state of literature of cocoa bean fermentation was revisited with the aim of interlinking post-harvest processing practices and characteristics of the fermenting microbiota, with the quality of commercial cocoa beans obtained. This literature survey resulted in the identification of a number of research needs that can be used to design agricultural and operational measures, towards improving the quality of commercial cocoa beans. The second part of this thesis addressed the occurrence, levels and diversity of bacterial Thermoresistant Spores (ThrS) in commercial cocoa powder and in cocoa being transformed to cocoa powder in an industrial setting. Thermoresistant Spores were defined as spores which survive a heat-treatment of at least 100°C for 10 min, as opposed to the standard treatment at 80°C for 10 min for Total Spores (TS) determination. It was found that strains of Bacillus licheniformis and of the B. subtilis complex were the predominant species in the ThrS library and that strains of B. subtilis complex, including B. subtilis subsp. subtilis formed the most heat-resistant spores in situ and in vitro. Interestingly, a high heat-resistant spore phenotype was associated with diverse genotypes. In addition, a strategy was devised in order to identify biomarkers of spore heat-resistance. The comparison of physicochemical and ultrastructural properties among spores of different heat-resistance allowed the identification of manganese as a potential physiological biomarker for B. subtilis subsp. subtilis spores heat- resistance. On the other hand, a study of various genomic features conducted across strains of the phylum of Firmicutes, did not yield genomic biomarkers related to spore high heat- resistant phenotype, suggesting the primary role of spore physicochemical composition and ultrastructural characteristics as determinant factors of spore differential heat-resistance. In conclusion, this study presents suggestions to delve into the functionality of the microbiota involved in cocoa bean fermentation and to improve the quality of commercial cocoa beans. Furthermore, it contributes towards the understanding of the ecology of high heat-resistant aerobic bacterial spores in the cocoa chain and provides knowledge regarding their heat-resistance. The data gathered in this thesis are useful input for predictive modelling and to assist in the production of safe and high quality food. Abbreviations AA Acetic Acid AAB Acetic Acid Bacteria AF Aflatoxin AFLP Amplified Fragment Length Polymorphism ANOVA Analysis of Variance AOAC Association of Official Analytical Chemists B Basionym BCCCA The Biscuit Cake Chocolate and Confectionary Alliance CA Citric Acid CBS Centraalbureau voor Schimmelcultures CCP Critical Control Point CFU Colony Forming Unit CMAA Cocoa Merchants’ Association of America COG Cluster of Orthologous Groups DGGE Denaturing Gradient Gel Electrophoresis DNA Deoxyribonucleic Acid DPA Pyridine-2,6-dicarboxylic acid (Dipicolinic acid) E Ethanol EU European Union F Fructose FAO Food and Agriculture Organization FCC Federation of Cocoa Commerce FDA Food and Drug Administration FFA Free Fatty Acid G Glucose GC Gas Chromatography GC-content Guanine plus Cytosine content GTM Gene-Trait Matching HACCP Hazard Analysis and Critical Control Points ICA International Confectionary Association ICCO International Cocoa Organization ICE Intercontinental Exchange ICP-AES Inductively Coupled Plasma Atomic Emission Spectrometry ISO International Organization for Standardization IUPAC International Union of Pure and Applied Chemistry HPLC High Performance Liquid Chromatography KD Kyte and Doolittle LA Lactic Acid LAB Lactic Acid Bacteria LC Liquid Chromatography M Mannitol MDS Metadata set MLR Multiple Linear Regression MS Mass Spectrometry NGS Next Generation Sequencing NIRS Near Infrared Spectroscopy NMR Nuclear Magnetic Resonance NOG Non Supervised Orthologous Groups OG Orthologous Group OMCL Orthologs Markov Cluster ORF Open Reading Frame OTA Ochratoxin PAH Polycyclic Aromatic Hydrocarbons PCR Polymerase Chain Reaction RDP Ribosomal Database Project RNA Ribonucleic Acid S Sucrose SA Succinic Acid SASP Small Acid Soluble Protein SFC Solid Fat Content SOO Saturated fatty acid, Oleic acid, Oleic acid SOS Saturated fatty acid, Oleic acid, Saturated fatty acid TAG Triacylglycerol TAM Total Aerobic Microorganisms ThrS Thermoresistant Spores TS Total Spores UHT Ultra-High Temperature UNCTAD United Nations Conference on Trade and Development UV Ultra Violet WW Wimley and White Chapter 1 Introduction and thesis outline Chapter 1 The cocoa chain Introduction Cocoa beans, the fruit seeds from the tropical tree Theobroma cacao L. (family Sterculiaceae) are the principal raw material for chocolate production (Figure 1). However, before being traded in the countries of origin, the beans must undergo post-harvest processing comprising opening of the fruit (botanically a pod), natural fermentation and drying (Schwan and Wheals, 2004) (Figure 2). After the post-harvest processing, the beans are transported to industrial plants, for chocolate and cocoa powder production as well as cocoa butter extraction. Thus, the cocoa bean chain can be considered to be divided into two stages: the post-harvest and the industrial processing. Figure 1. The cocoa pod and the cocoa bean. (A) Cocoa plantation in São Tomé and Príncipe. (B) Cocoa pods with different degrees of ripening. (C) Detail of the inside of a cocoa seed, where the white mucilaginous pulp surrounding the seed is visible. (D) Fermented and dried cocoa beans. Source: L. Lima. (See back cover for colour version) Cocoa bean fermentation is the process whereby cocoa beans are converted into a commodity which is suitable to produce chocolate and cocoa powder. Without this process raw and dried cocoa beans do not develop the typical cocoa flavour upon roasting (Afoakwa et al., 2008). The process of fermentation typically involves piling of cocoa beans, mainly by forming heaps or in a cascade of boxes, and allowing microorganisms naturally occurring in the environment to develop on the mucilaginous pulp surrounding the bean during a number of days. The primary 2 Introduction and thesis outline goal of cocoa bean fermentation is to bring about changes in the parenchyma cells of the seeds, in order to form the precursor compounds of the flavour (namely free amino acids, reducing sugars and peptides) (Afoakwa et al., 2008). Other (desirable) roles fulfilled by the
Recommended publications
  • Characterization of the Uncommon Enzymes from (2004)
    OPEN Mannosylglucosylglycerate biosynthesis SUBJECT AREAS: in the deep-branching phylum WATER MICROBIOLOGY MARINE MICROBIOLOGY Planctomycetes: characterization of the HOMEOSTASIS MULTIENZYME COMPLEXES uncommon enzymes from Rhodopirellula Received baltica 13 March 2013 Sofia Cunha1, Ana Filipa d’Avo´1, Ana Mingote2, Pedro Lamosa3, Milton S. da Costa1,4 & Joana Costa1,4 Accepted 23 July 2013 1Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal, 2Instituto de Tecnologia Quı´mica Published e Biolo´gica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal, 3Centro de Ressonaˆncia Magne´tica Anto´nio Xavier, 7 August 2013 Instituto de Tecnologia Quı´mica e Biolo´gica, Universidade Nova de Lisboa, 2781-901 Oeiras, Portugal, 4Department of Life Sciences, University of Coimbra, Apartado 3046, 3001-401 Coimbra, Portugal. Correspondence and The biosynthetic pathway for the rare compatible solute mannosylglucosylglycerate (MGG) accumulated by requests for materials Rhodopirellula baltica, a marine member of the phylum Planctomycetes, has been elucidated. Like one of the should be addressed to pathways used in the thermophilic bacterium Petrotoga mobilis, it has genes coding for J.C. ([email protected].) glucosyl-3-phosphoglycerate synthase (GpgS) and mannosylglucosyl-3-phosphoglycerate (MGPG) synthase (MggA). However, unlike Ptg. mobilis, the mesophilic R. baltica uses a novel and very specific MGPG phosphatase (MggB). It also lacks a key enzyme of the alternative pathway in Ptg. mobilis – the mannosylglucosylglycerate synthase (MggS) that catalyses the condensation of glucosylglycerate with GDP-mannose to produce MGG. The R. baltica enzymes GpgS, MggA, and MggB were expressed in E. coli and characterized in terms of kinetic parameters, substrate specificity, temperature and pH dependence.
    [Show full text]
  • Levels of Firmicutes, Actinobacteria Phyla and Lactobacillaceae
    agriculture Article Levels of Firmicutes, Actinobacteria Phyla and Lactobacillaceae Family on the Skin Surface of Broiler Chickens (Ross 308) Depending on the Nutritional Supplement and the Housing Conditions Paulina Cholewi ´nska 1,* , Marta Michalak 2, Konrad Wojnarowski 1 , Szymon Skowera 1, Jakub Smoli ´nski 1 and Katarzyna Czyz˙ 1 1 Institute of Animal Breeding, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; [email protected] (K.W.); [email protected] (S.S.); [email protected] (J.S.); [email protected] (K.C.) 2 Department of Animal Nutrition and Feed Management, Wroclaw University of Environmental and Life Sciences, 51-630 Wroclaw, Poland; [email protected] * Correspondence: [email protected] Abstract: The microbiome of animals, both in the digestive tract and in the skin, plays an important role in protecting the host. The skin is one of the largest surface organs for animals; therefore, the destabilization of the microbiota on its surface can increase the risk of diseases that may adversely af- fect animals’ health and production rates, including poultry. The aim of this study was to evaluate the Citation: Cholewi´nska,P.; Michalak, effect of nutritional supplementation in the form of fermented rapeseed meal and housing conditions M.; Wojnarowski, K.; Skowera, S.; on the level of selected bacteria phyla (Firmicutes, Actinobacteria, and family Lactobacillaceae). The Smoli´nski,J.; Czyz,˙ K. Levels of study was performed on 30 specimens of broiler chickens (Ross 308), individually kept in metabolic Firmicutes, Actinobacteria Phyla and cages for 36 days. They were divided into 5 groups depending on the feed received.
    [Show full text]
  • EXPERIMENTAL STUDIES on FERMENTATIVE FIRMICUTES from ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, and THEIR GEOCHEMICAL IMPACTS By
    EXPERIMENTAL STUDIES ON FERMENTATIVE FIRMICUTES FROM ANOXIC ENVIRONMENTS: ISOLATION, EVOLUTION, AND THEIR GEOCHEMICAL IMPACTS By JESSICA KEE EUN CHOI A dissertation submitted to the School of Graduate Studies Rutgers, The State University of New Jersey In partial fulfillment of the requirements For the degree of Doctor of Philosophy Graduate Program in Microbial Biology Written under the direction of Nathan Yee And approved by _______________________________________________________ _______________________________________________________ _______________________________________________________ _______________________________________________________ New Brunswick, New Jersey October 2017 ABSTRACT OF THE DISSERTATION Experimental studies on fermentative Firmicutes from anoxic environments: isolation, evolution and their geochemical impacts by JESSICA KEE EUN CHOI Dissertation director: Nathan Yee Fermentative microorganisms from the bacterial phylum Firmicutes are quite ubiquitous in subsurface environments and play an important biogeochemical role. For instance, fermenters have the ability to take complex molecules and break them into simpler compounds that serve as growth substrates for other organisms. The research presented here focuses on two groups of fermentative Firmicutes, one from the genus Clostridium and the other from the class Negativicutes. Clostridium species are well-known fermenters. Laboratory studies done so far have also displayed the capability to reduce Fe(III), yet the mechanism of this activity has not been investigated
    [Show full text]
  • A Study of the Microorganisms from Grass Silage I
    A Study of the Microorganisms from Grass Silage I. The Cocci C. WV. LANGSTON AND CECELIA BOUMA Dairy Cattle Research Branch, Animal Husbandry Research Division, Agriculture Research Service, 1griculture Research Center, Beltsville, Marlyland Received for ptiblication November 16, 1959 In a natural silage fermentation, the mass is acidified their taxonomical relationship. The data presented are by lactic and acetic acid forming bacteria that ferment the results of detailed colonial, morphological, and sugars in the plant material. When forage is ensiled the physiological studies on the cocci important in the plant cells continue to respire for a time, using up the silage fermentation. oxygen and giving off CO2 and heat. As conditions be- come favorable, acid producing bacteria increase MIATERI.ALS ANDV IETHODS rapidly and, at the end of 3 or 4 days, each gram of Preparationi of silages and techniques used in iso- silage will contain several hundred million bacteria. lating and grouping the lactic acid bacteria from the These organisms produce acid until the sugar is ex- silages have been outlined in an earlier publication hausted or until the pH becomes unfavorable for further (Langston et al., 1958). growth. This phase of w-ork includes detailed studies on repre- A recent study (Langston et al., 1958) on the micro- sentative strains of lactic acid bacteria obtained from organisms in orchard grass and alfalfa silages showed 30 silages. The strains were picked from highest dilution that the total numbers of acid producing bacteria had roll tubes (Trypticase)l and plates (Rogosa et al., 1951). little bearing on the final quality.
    [Show full text]
  • Endocarditis Caused by Leuconostoc Lactis in an Infant. Case Report Endocarditis Por Leuconostoc Lactis En Un Lactante
    467 Rev. Fac. Med. 2020 Vol. 68 No. 3: 467-70 CASE REPORT DOI: http://dx.doi.org/10.15446/revfacmed.v68n3.77425 Received: 22/01/2019 Accepted: 14/04/2019 Revista de la Facultad de Medicina Endocarditis caused by Leuconostoc lactis in an infant. Case report Endocarditis por Leuconostoc lactis en un lactante. Reporte de caso Edgar Alberto Sarmiento-Ortiz1, Oskar Andrey Oliveros-Andrade1,2, Juan Pablo Rojas-Hernández1,2,3,4 1 Universidad Libre Cali Campus - Faculty of Health Sciences - Department of Pediatrics - Pediatrics Research Group - Santiago de Cali - Colombia. 2 Universidad Libre Cali Campus - Faculty of Health Sciences - Department of Pediatrics - Santiago de Cali - Colombia. 3 Fundación Clínica Infantil Club Noel - Department of Infectious Diseases - Santiago de Cali - Colombia. 4 Universidad del Valle - Faculty of Health - Santiago de Cali - Colombia. Corresponding auhtor: Oskar Andrey Oliveros-Andrade. Departamento de Pediatría, Facultad de Ciencias de la Salud, Universidad Libre Seccional Cali. Carrera 109 No. 22-00, bloque: 5, oficina de Posgrados Clínicos de la Facultad de Ciencias de la Salud. Telephone number: +57 2 5240007, ext.: 2543. Santiago de Cali. Colombia. Email: [email protected]. Abstract Introduction: Infections caused by Leuconostoc lactis are rare and are associated with Sarmiento-Ortiz EA, Oliveros-Andra- multiple risk factors. According to the literature reviewed, there are no reported cases of de OA, Rojas-Hernández JP. Endocar- ditis caused by Leuconostoc Lactis in endocarditis caused by this microorganism in the pediatric population. an infant. Case report. Rev. Fac. Med. Case presentation: An infant with short bowel syndrome was taken by his parents to the 2020;68(3):467-70.
    [Show full text]
  • Comparative Analyses of Whole-Genome Protein Sequences
    www.nature.com/scientificreports OPEN Comparative analyses of whole- genome protein sequences from multiple organisms Received: 7 June 2017 Makio Yokono 1,2, Soichirou Satoh3 & Ayumi Tanaka1 Accepted: 16 April 2018 Phylogenies based on entire genomes are a powerful tool for reconstructing the Tree of Life. Several Published: xx xx xxxx methods have been proposed, most of which employ an alignment-free strategy. Average sequence similarity methods are diferent than most other whole-genome methods, because they are based on local alignments. However, previous average similarity methods fail to reconstruct a correct phylogeny when compared against other whole-genome trees. In this study, we developed a novel average sequence similarity method. Our method correctly reconstructs the phylogenetic tree of in silico evolved E. coli proteomes. We applied the method to reconstruct a whole-proteome phylogeny of 1,087 species from all three domains of life, Bacteria, Archaea, and Eucarya. Our tree was automatically reconstructed without any human decisions, such as the selection of organisms. The tree exhibits a concentric circle-like structure, indicating that all the organisms have similar total branch lengths from their common ancestor. Branching patterns of the members of each phylum of Bacteria and Archaea are largely consistent with previous reports. The topologies are largely consistent with those reconstructed by other methods. These results strongly suggest that this approach has sufcient taxonomic resolution and reliability to infer phylogeny, from phylum to strain, of a wide range of organisms. Te reconstruction of phylogenetic trees is a powerful tool for understanding organismal evolutionary processes. Molecular phylogenetic analysis using ribosomal RNA (rRNA) clarifed the phylogenetic relationship of the three domains, bacterial, archaeal, and eukaryotic1.
    [Show full text]
  • 1 Supplementary Material a Major Clade of Prokaryotes with Ancient
    Supplementary Material A major clade of prokaryotes with ancient adaptations to life on land Fabia U. Battistuzzi and S. Blair Hedges Data assembly and phylogenetic analyses Protein data set: Amino acid sequences of 25 protein-coding genes (“proteins”) were concatenated in an alignment of 18,586 amino acid sites and 283 species. These proteins included: 15 ribosomal proteins (RPL1, 2, 3, 5, 6, 11, 13, 16; RPS2, 3, 4, 5, 7, 9, 11), four genes (RNA polymerase alpha, beta, and gamma subunits, Transcription antitermination factor NusG) from the functional category of Transcription, three proteins (Elongation factor G, Elongation factor Tu, Translation initiation factor IF2) of the Translation, Ribosomal Structure and Biogenesis functional category, one protein (DNA polymerase III, beta subunit) of the DNA Replication, Recombination and repair category, one protein (Preprotein translocase SecY) of the Cell Motility and Secretion category, and one protein (O-sialoglycoprotein endopeptidase) of the Posttranslational Modification, Protein Turnover, Chaperones category, as annotated in the Cluster of Orthologous Groups (COG) (Tatusov et al. 2001). After removal of multiple strains of the same species, GBlocks 0.91b (Castresana 2000) was applied to each protein in the concatenation to delete poorly aligned sites (i.e., sites with gaps in more than 50% of the species and conserved in less than 50% of the species) with the following parameters: minimum number of sequences for a conserved position: 110, minimum number of sequences for a flank position: 110, maximum number of contiguous non-conserved positions: 32000, allowed gap positions: with half. The signal-to-noise ratio was determined by altering the “minimum length of a block” parameter.
    [Show full text]
  • Leuconostoc Mesenteroıdes
    Case Report A rarely seen cause for empyema: Leuconostoc mesenteroıdes Hanife Usta-Atmaca1, Feray Akbas1, Yesim Karagoz2, Mehmet Emin Piskinpasa1 1 Internal Medicine Clinic Istanbul Education and Research Hospital, Istanbul, Turkey 2 Radiology Clinic, Istanbul Education and Research Hospital, Istanbul, Turkey Abstract Leuconostoc species are Gram-positive, non-motile, vancomycin-resistant bacteria placed within the family of Streptococcaceae. They naturally exist in food and are important in the sauerkraut, milk and wine industries due to their role in fermentation. Infections caused by Leuconostocs are generally reported in immunosuppressed patients with an underlying disease, or in those who were previously treated with vancomycin. Central venous catheter insertion is also a risk factor for introducing bacteria into the body. Although they are resistant to vancomycin, leuconostocs are sensitive to erythromycin and clindamycin. Here, we report a case with pleural empyema due to Leuconostoc mesenteroides in an otherwise healthy person whose occupation is known to be selling pickles. Key words: Leuconostoc mesenteroides; pleural empyema; pickle. J Infect Dev Ctries 2015; 9(4):425-427. doi:10.3855/jidc.5237 (Received 02 May 2014 – Accepted 17 November2014) Copyright © 2015 Usta-Atmaca et al. This is an open-access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Case Report with aseptic technique were injected to BACTEC A 64 year-old male patient was admitted to our medium bottles and incubated under normal hospital with cough, fever and yellowish sputum atmospheric conditions, at 35°C in automatic production which had been present for the previous BACTEC blood culture machine (Becton Dickinson, two weeks.
    [Show full text]
  • Lactococcus Lactis and Lactobacillus Sakei As Bio-Protective Culture to Eliminate Leuconostoc
    1 Lactococcus lactis and Lactobacillus sakei as bio-protective culture to eliminate Leuconostoc 2 mesenteroides spoilage and improve the shelf life and sensorial characteristics of commercial 3 cooked bacon 4 5 Giuseppe Comi, Debbie Andyanto, Marisa Manzano and Lucilla Iacumin* 6 7 Department of Food Science, University of Udine, Via Sondrio 2/A, 33100 Udine, Italy. 8 9 Running headline: Quality improvement of cooked bacon. 10 11 *Correponding author: 12 Lucilla Iacumin, PhD 13 Dipartimento di Scienze degli Alimenti, Università degli Studi di Udine 14 Via Sondrio 2/A, 33100 Udine, Italy 15 e-mail: [email protected]; 16 Phone: +39 0432 558126; 17 Fax. +39 0432 558130. 18 19 20 21 22 23 24 25 26 1 27 28 Abstract 29 Cooked bacon is a typical Italian meat product. After production, cooked bacon is stored at 4 ± 2 30 °C. During storage, the microorganisms that survived pasteurisation can grow and produce spoilage. 31 For the first time, we studied the cause of the deterioration in spoiled cooked bacon compared to 32 unspoiled samples. Moreover, the use of bio-protective cultures to improve the quality of the 33 product and eliminate the risk of spoilage was tested. The results show that Leuconostoc 34 mesenteroides is responsible for spoilage and produces a greening colour of the meat, slime and 35 various compounds that result from the fermentation of sugars and the degradation of nitrogen 36 compounds.. Finally, Lactococcus lactis spp. lactis and Lactobacillus sakei were able to reduce the 37 risk of Leuconostoc mesenteroides spoilage. 38 39 40 Keywords: Cooked bacon, spoilage, bio-protective cultures.
    [Show full text]
  • Impact of Anaerobic Digestion and Centrifugation/Decanting Processes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional de la Universidad de Oviedo 1 Impact of anaerobic digestion and 2 centrifugation/decanting processes in 3 bacterial communities fractions 4 Short title: “Impact of anaerobic digestion in bacterial communities” 5 Ana Isabel Díaz1, Paula Oulego1, Sergio Collado1, Adriana Laca1, J. Manuel González2 1* 6 and Mario Díaz 7 1Department of Chemical and Environmental Engineering, University of Oviedo, C/ 8 Julián Clavería, s/n, Oviedo, E-33006, Spain 9 2 R&D, COGERSA SAU, C/ La Zoreda, s/n, Gijón, E-33697, Spain 10 *E-mail: [email protected], Phone: +34 985 10 34 39, Fax: +34 985 10 34 34 1 11 ABSTRACT 12 Sewage sludge can be treated by anaerobic processes that frequently are followed by 13 physical separation processes. In this work, a high-throughput sequencing technology, 14 based on variation in the bacterial 16S rRNA gene, has been used to characterise the 15 bacterial populations present in samples taken from different points of an industrial 16 anaerobic digestion process fed with sewage sludge. Relative abundances of phyla and 17 classes throughout the biological process and the subsequent separation steps were 18 determined. Results revealed that the Bacteroidetes, Firmicutes and Proteobacteria phyla 19 were the most representative. However, significant changes in relative abundance were 20 detected along treatments, showing the influence of operational parameters on the 21 distribution of microorganisms throughout the process. After anaerobic digestion, phylum 22 Firmicutes doubled its relative abundance, which seems to indicate that the anaerobic 23 conditions and the nutrients favoured its growth, in contrast to other phyla that almost 24 disappeared.
    [Show full text]
  • Genome Diversity of Spore-Forming Firmicutes MICHAEL Y
    Genome Diversity of Spore-Forming Firmicutes MICHAEL Y. GALPERIN National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894 ABSTRACT Formation of heat-resistant endospores is a specific Vibrio subtilis (and also Vibrio bacillus), Ferdinand Cohn property of the members of the phylum Firmicutes (low-G+C assigned it to the genus Bacillus and family Bacillaceae, Gram-positive bacteria). It is found in representatives of four specifically noting the existence of heat-sensitive vegeta- different classes of Firmicutes, Bacilli, Clostridia, Erysipelotrichia, tive cells and heat-resistant endospores (see reference 1). and Negativicutes, which all encode similar sets of core sporulation fi proteins. Each of these classes also includes non-spore-forming Soon after that, Robert Koch identi ed Bacillus anthracis organisms that sometimes belong to the same genus or even as the causative agent of anthrax in cattle and the species as their spore-forming relatives. This chapter reviews the endospores as a means of the propagation of this orga- diversity of the members of phylum Firmicutes, its current taxon- nism among its hosts. In subsequent studies, the ability to omy, and the status of genome-sequencing projects for various form endospores, the specific purple staining by crystal subgroups within the phylum. It also discusses the evolution of the violet-iodine (Gram-positive staining, reflecting the pres- Firmicutes from their apparently spore-forming common ancestor ence of a thick peptidoglycan layer and the absence of and the independent loss of sporulation genes in several different lineages (staphylococci, streptococci, listeria, lactobacilli, an outer membrane), and the relatively low (typically ruminococci) in the course of their adaptation to the saprophytic less than 50%) molar fraction of guanine and cytosine lifestyle in a nutrient-rich environment.
    [Show full text]
  • Systema Naturae. the Classification of Living Organisms
    Systema Naturae. The classification of living organisms. c Alexey B. Shipunov v. 5.601 (June 26, 2007) Preface Most of researches agree that kingdom-level classification of living things needs the special rules and principles. Two approaches are possible: (a) tree- based, Hennigian approach will look for main dichotomies inside so-called “Tree of Life”; and (b) space-based, Linnaean approach will look for the key differences inside “Natural System” multidimensional “cloud”. Despite of clear advantages of tree-like approach (easy to develop rules and algorithms; trees are self-explaining), in many cases the space-based approach is still prefer- able, because it let us to summarize any kinds of taxonomically related da- ta and to compare different classifications quite easily. This approach also lead us to four-kingdom classification, but with different groups: Monera, Protista, Vegetabilia and Animalia, which represent different steps of in- creased complexity of living things, from simple prokaryotic cell to compound Nature Precedings : doi:10.1038/npre.2007.241.2 Posted 16 Aug 2007 eukaryotic cell and further to tissue/organ cell systems. The classification Only recent taxa. Viruses are not included. Abbreviations: incertae sedis (i.s.); pro parte (p.p.); sensu lato (s.l.); sedis mutabilis (sed.m.); sedis possi- bilis (sed.poss.); sensu stricto (s.str.); status mutabilis (stat.m.); quotes for “environmental” groups; asterisk for paraphyletic* taxa. 1 Regnum Monera Superphylum Archebacteria Phylum 1. Archebacteria Classis 1(1). Euryarcheota 1 2(2). Nanoarchaeota 3(3). Crenarchaeota 2 Superphylum Bacteria 3 Phylum 2. Firmicutes 4 Classis 1(4). Thermotogae sed.m. 2(5).
    [Show full text]