A Review of the Economic, Social, and Environmental Impacts of China's

Total Page:16

File Type:pdf, Size:1020Kb

A Review of the Economic, Social, and Environmental Impacts of China's sustainability Review A Review of the Economic, Social, and Environmental Impacts of China’s South–North Water Transfer Project: A Sustainability Perspective Maxwell C. Wilson 1,*, Xiao-Yan Li 2,3 ID , Yu-Jun Ma 2,3, Andrew T. Smith 1 and Jianguo Wu 1,4,5 1 School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA; [email protected] (A.T.S.); [email protected] (J.W.) 2 State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100875, China; [email protected] (X.-Y.L.); [email protected] (Y.-J.M.) 3 School of Natural Resources, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China 4 Center for Human-Environment System Sustainability (CHESS), Beijing Normal University, Beijing 100875, China 5 School of Sustainability, Arizona State University, Tempe, AZ 85287, USA * Correspondence: [email protected] Received: 29 June 2017; Accepted: 14 August 2017; Published: 22 August 2017 Abstract: China’s South–North Water Transfer Project (SNWTP) has the potential to transfer as much as 44.8 km3 year−1 of water from the Yangtze River basin to the Yellow River basin. However, the SNWTP has not been assessed from a sustainability perspective. Thus, in this study we evaluated the SNWTP’s economic, social, and environmental impacts by reviewing the English literature published in journals that are part of the Web of Science database. We then synthesized this literature using a Triple Bottom Line framework of sustainability assessment. Our study has led to three main findings: (1) whether the SNWTP is economically beneficial depends largely on model assumptions, meaning that economic gains at the regional and national level are uncertain; (2) the SNWTP requires the resettlement of hundreds of thousands of people and challenges existing water management institutions, suggesting possible social concerns beyond the short term; and (3) evidently large environmental costs in water-providing areas and uncertain environmental benefits in water-receiving areas together point to an uncertain environmental future for the geographic regions involved. Thus, the overall sustainability of SNWTP is seriously questionable. Although much work has been done studying individual aspects of SNWTP’s sustainability, few studies have utilized the multi-scale, transdisciplinary approaches that such a project demands. To minimize environmental risks, ensure social equity, and sustain economic benefits, we suggest that the project be continuously monitored in all three dimensions, and that integrated sustainability assessments and policy improvements be carried out periodically. Keywords: inter-basin water transfer; Integrated Water Resource Management; North China Plain; South–North Water Transfer Project; water sustainability 1. Introduction Access to clean water is fundamental to sustainable development. Despite the central role of water, as much as 80% of the human population lives in a state of water insecurity [1]. However, on a global scale water is abundant, suggesting that the problems of water scarcity are partly attributable to spatial and temporal mismatches in water availability and water demand [2]. One solution to these spatial mismatches is to move water from water-rich areas to water-poor areas using inter-basin water transfers. Sustainability 2017, 9, 1489; doi:10.3390/su9081489 www.mdpi.com/journal/sustainability Sustainability 2017, 9, 1489 2 of 11 Sustainability 2017, 9, 1489 2 of 11 ChinaChina isis aa classicclassic exampleexample ofof thethe disconnectiondisconnection between between water water supply supply and and demand. demand. ThoughThough thethe countrycountry may may have have adequate adequate water water supplies supplies on aon national a nation scale,al scale, the vast the majority vast majority of this waterof this is water located is inlocated the Yangtze in the drainage Yangtze basindrainage which basin is too which mountainous is too mountainous for the large-scale for the agriculture large-scale necessary agriculture to feednecessary China’s to population feed China’s [3]. population In contrast, [3]. the In North cont Chinarast, the Plain North (NCP), China which Plain contains (NCP), many which of contains China’s mostmany productive of China’s agricultural most productive centers andagricultural large urban centers areas, and faces large acute urban water areas, scarcity faces when acute measured water onscarcity a per when capita measured basis [4,5 ].on Further, a per capita many basis of the [4,5]. NCP’s Further, rivers many suffer of fromthe NCP’s poor waterrivers qualitysuffer from [6], worseningpoor water water quality scarcity. [6], worsening Exacerbated water by thescarcity. NCP’s Exacerbated critical place by in the China’s NCP’s food critical supply place and in economy, China’s thisfood scarcity supply has and long economy, lead the this Chinese scarcity government has long lead to seekthe Chinese alternative government measures to to seek alleviate alternative water stressmeasures in this to regionalleviate [7 ,water8]. Broadly stress conceivedin this region by Chairman [7,8]. Broadly Mao conceived Zedong [ 9by], theChairman South–North Mao Zedong Water Transfer[9], the South–North Project (SNWTP) Water represents Transfer China’s Project grandest (SNWTP attempt) represents to solve China’s the NCP’s grandest water attempt woes throughto solve thethe largest NCP’s inter-basinwater woes water through transfer the largest in human inter-basin history water [10]. transfer in human history [10]. TheThe SNWTPSNWTP consistsconsists ofof three routes (Figure 11).). The Eastern Route Route (ER-SNWTP) (ER-SNWTP) is is an an update update of ofthe the ancient ancient Grand Grand Canal Canal [9], [ 9a], system a system of diversions of diversions and and lakes lakes that thathistorically historically transported transported goods goods from fromthe Yangtze the Yangtze River River basin basinto the to Yellow the Yellow River Riverbasin. basin.This route This can route transfer can transfer nearly 9 nearly km3/year 9 km of3 /yearwater, ofand water, future and plans future suggest plans that suggest this could that rise this to could as much rise as to 14.8 as much km3/year as 14.8 by 2030 km3 /year[11]. In by contrast, 2030 [11 the]. InMiddle contrast, Route the (MR-SNWTP), Middle Route the (MR-SNWTP), first stage of thewhich first was stage completed of which in was 2014, completed is a new inconstruction, 2014, is a newreaching construction, from the Danjiangkou reaching from Reservoir the Danjiangkou on the Han Reservoir River (a tributary on the Han to the River Yangtze), (a tributary and crossing to the Yangtze),Henan and and Hebei crossing provinces Henan before and Hebeireaching provinces its destination before reachingin Beijing its and destination Tianjin. In in total, Beijing the andMR- Tianjin.SNWTP In can total, carry the MR-SNWTPup to 9.5 km can3/year carry of upwater to 9.5 over km 12463/year km of [7]. water Similar over 1246to the km ER-SNWTP, [7]. Similar tofuture the ER-SNWTP,plans to expand future this plans structure to expand suggest this that structure 13 km suggest3/year of that water 13 km could3/year eventually of water be could transferred eventually [7]. beFinally, transferred the Western [7]. Finally, Route the(WR-SNWTP) Western Route calls (WR-SNWTP)for a system of callscanals, for which, a system if constructed, of canals, which,will cross if constructed,the Qinghai–Tibetan will cross Platea the Qinghai–Tibetanu, transferring Plateau,17 km3/year transferring [7] of water 17 km from3/year the [7 ]headwaters of water from of thethe headwatersYangtze River of the Basin Yangtze to the River headwa Basinters to of the the headwaters Yellow River of theBasin. Yellow River Basin. FigureFigure 1.1. AA sketchsketch mapmap ofof thethe South–NorthSouth–North WaterWaterTransfer Transfer Project Project (modified (modified from from [ 12[12]).]). ConstructionConstruction of the the most most recent recent phase phase began began in 2002 in 2002following following as much as as much 50 years as 50 of yearsplanning of planning[4,13]. Two[4, 13of ]three. Two routes, of three ER-SNWTP routes, ER-SNWTP and MR-SNW and MR-SNWTP,TP, are operational are operational and will together and will be together capable 3 beof capabledelivering of up delivering to 27.8 km up/year to 27.8 of kmwater3/year to the of NCP water when to the future NCP construction when future is constructioncomplete [7,11]. is completeThe construction [7,11]. The of the construction WR-SNWTP of, on the the WR-SNWTP, other hand, onhas the been other indefinitely hand, has delayed been [14]. indefinitely Despite delayedthe scale [14 of]. this Despite massive the hydrological scale of this massive project, hydrologicalit has not been project, holistical it hasly assessed not been from holistically a sustainability assessed fromperspective. a sustainability Rather, perspective.in place of Rather,such a inholistic place ofassessment, such a holistic fragmented assessment, literature fragmented exists literaturein which individual disciplinary groups have each examined the SNWTP separately while failing to integrate their findings with those from other disciplines. Here we carry out such an integrative analysis, Sustainability 2017, 9, 1489 3 of 11 exists in which individual disciplinary groups have each examined the SNWTP separately while failing to integrate their findings with those from other disciplines. Here we carry out such an integrative analysis, reviewing each paper concerning the SNWTP published in Web of Science journals from up to July 2017, regardless of discipline, and synthesizing the existing knowledge of the SNWTP using a Triple Bottom Line framework [15,16]. 2. Materials and Methods To generate the body of literature on the SNWTP, we entered the search term “South North Water Transfer Project” into Clarivate Analytics’ Web of Science (https://www.webofknowledge.com/) for the years 1900–2017 on 24 July 2017. To these, we added nine immediately relevant works published outside the journals in the Web of Science database: Liu [3], Liu and Zeng [17], Berkoff [4], Nickum [9], He et al.
Recommended publications
  • Chapter 5 Sinicization and Indigenization: the Emergence of the Yunnanese
    Between Winds and Clouds Bin Yang Chapter 5 Sinicization and Indigenization: The Emergence of the Yunnanese Introduction As the state began sending soldiers and their families, predominantly Han Chinese, to Yunnan, 1 the Ming military presence there became part of a project of colonization. Soldiers were joined by land-hungry farmers, exiled officials, and profit-driven merchants so that, by the end of the Ming period, the Han Chinese had become the largest ethnic population in Yunnan. Dramatically changing local demography, and consequently economic and cultural patterns, this massive and diverse influx laid the foundations for the social makeup of contemporary Yunnan. The interaction of the large numbers of Han immigrants with the indigenous peoples created a 2 new hybrid society, some members of which began to identify themselves as Yunnanese (yunnanren) for the first time. Previously, there had been no such concept of unity, since the indigenous peoples differentiated themselves by ethnicity or clan and tribal affiliations. This chapter will explore the process that led to this new identity and its reciprocal impact on the concept of Chineseness. Using primary sources, I will first introduce the indigenous peoples and their social customs 3 during the Yuan and early Ming period before the massive influx of Chinese immigrants. Second, I will review the migration waves during the Ming Dynasty and examine interactions between Han Chinese and the indigenous population. The giant and far-reaching impact of Han migrations on local society, or the process of sinicization, that has drawn a lot of scholarly attention, will be further examined here; the influence of the indigenous culture on Chinese migrants—a process that has won little attention—will also be scrutinized.
    [Show full text]
  • 2018-May10.Pdf
    Fisheries, Midwest Region Conserving America's Fisheries To subscribe to Fishlines via email, Discover the Great River send a message to our webmaster: Road with the word "subscribe" in the subject line. Earth Day Event Reels in Field Focus New Anglers Neosho National Fish Hatchery Mudpuppies Ready for It was only a year ago that major Service changes and challenges were on our plate. Our production ponds were then Great Lakes Sturgeon Day in the beginning phases of getting a...Read More Discover the Great River Road 2018 U.S. Fisheries Current Edition PDF Delegation to China Three miles south of the small village of Genoa, Wisconsin straddling either side of the Great River Road Scenic...Read More Fish Tails Field Notes "Fish Tails” refers to articles that are submitted by "Field Notes” is an online searchable database that field staff that do not appear as a feature in the current showcases hundreds of employee-written summaries edition of Fish Lines. These articles provide examples of field activities and accomplishments of the U.S. Fish of the diverse work that the Service's Midwest Fisheries and Wildlife Service from across the nation. Program and partners perform on behalf of our aquatic resources and for the benefit of the American public. Archive 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 Editorial Staff Tim Smigielski, Editor Karla Bartelt, Webmaster https://www.fws.gov/midwest/fisheries/fishlines/index.html Fisheries, Midwest Region Conserving America's Fisheries Hooked on a Hatchery: Discover the Great River Road BY MONICA BLASER, REGIONAL OFFICE - EXTERNAL AFFAIRS Three miles south of the small village of Genoa, Wisconsin straddling either side of the Great River Road Scenic Byway, otherwise known as Wisconsin State Highway 35, sits the Genoa National Fish Hatchery.
    [Show full text]
  • Landscape Analysis of Geographical Names in Hubei Province, China
    Entropy 2014, 16, 6313-6337; doi:10.3390/e16126313 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Article Landscape Analysis of Geographical Names in Hubei Province, China Xixi Chen 1, Tao Hu 1, Fu Ren 1,2,*, Deng Chen 1, Lan Li 1 and Nan Gao 1 1 School of Resource and Environment Science, Wuhan University, Luoyu Road 129, Wuhan 430079, China; E-Mails: [email protected] (X.C.); [email protected] (T.H.); [email protected] (D.C.); [email protected] (L.L.); [email protected] (N.G.) 2 Key Laboratory of Geographical Information System, Ministry of Education, Wuhan University, Luoyu Road 129, Wuhan 430079, China * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +86-27-87664557; Fax: +86-27-68778893. External Editor: Hwa-Lung Yu Received: 20 July 2014; in revised form: 31 October 2014 / Accepted: 26 November 2014 / Published: 1 December 2014 Abstract: Hubei Province is the hub of communications in central China, which directly determines its strategic position in the country’s development. Additionally, Hubei Province is well-known for its diverse landforms, including mountains, hills, mounds and plains. This area is called “The Province of Thousand Lakes” due to the abundance of water resources. Geographical names are exclusive names given to physical or anthropogenic geographic entities at specific spatial locations and are important signs by which humans understand natural and human activities. In this study, geographic information systems (GIS) technology is adopted to establish a geodatabase of geographical names with particular characteristics in Hubei Province and extract certain geomorphologic and environmental factors.
    [Show full text]
  • Supplement of a Systematic Examination of the Relationships Between CDOM and DOC in Inland Waters in China
    Supplement of Hydrol. Earth Syst. Sci., 21, 5127–5141, 2017 https://doi.org/10.5194/hess-21-5127-2017-supplement © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Supplement of A systematic examination of the relationships between CDOM and DOC in inland waters in China Kaishan Song et al. Correspondence to: Kaishan Song ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 3.0 License. Figure S1. Sampling location at three rivers for tracing the temporal variation of CDOM and DOC. The average widths at sampling stations are about 1020 m, 206m and 152 m for the Songhua River, Hunjiang River and Yalu River, respectively. Table S1 the sampling information for fresh and saline water lakes, the location information shows the central positions of the lakes. Res. is the abbreviation for reservoir; N, numbers of samples collected; Lat., latitude; Long., longitude; A, area; L, maximum length in kilometer; W, maximum width in kilometer. Water body type Sampling date N Lat. Long. A(km2) L (km) W (km) Fresh water lake Shitoukou Res. 2009.08.28 10 43.9319 125.7472 59 17 6 Songhua Lake 2015.04.29 8 43.6146 126.9492 185 55 6 Erlong Lake 2011.06.24 6 43.1785 124.8264 98 29 8 Xinlicheng Res. 2011.06.13 7 43.6300 125.3400 43 22 6 Yueliang Lake 2011.09.01 6 45.7250 123.8667 116 15 15 Nierji Res. 2015.09.16 8 48.6073 124.5693 436 83 26 Shankou Res.
    [Show full text]
  • In Koguryo Dynasty the State-Formation History Starts from B
    International Journal of Korean History(Vol.6, Dec.2004) 1 History of Koguryŏ and China’s Northeast Asian Project 1Park Kyeong-chul * Introduction The Koguryŏ Dynasty, established during the 3rd century B.C. around the Maek tribe is believed to have begun its function as a centralized entity in the Northeast Asia region. During the period between 1st century B.C. and 1st century A.D. aggressive regional expansion policy from the Koguryŏ made it possible to overcome its territorial limitations and weak economic basis. By the end of the 4th century A.D., Koguryŏ emerged as an empire that had acquired its own independent lebensraum in Northeast Asia. This research paper will delve into identifying actual founders of the Koguryŏ Dynasty and shed light on their lives prior to the actual establishment of the Dynasty. Then on, I will analyze the establishment process of Koguryŏ Dynasty. Thereafter, I will analyze the history of Koguryŏ Dynasty at three different stages: the despotic military state period, the period in which Koguryŏ emerged as an independent empire in Northeast Asia, and the era of war against the Sui and Tang dynasty. Upon completion of the above task, I will illustrate the importance of Koguryŏ history for Koreans. Finally, I attempt to unearth the real objectives why the Chinese academics are actively promoting the Northeast Asian Project. * Professor, Dept. of Liberal Arts, Kangnam University 2 History of Koguryŏ and China’s Northeast Asian Project The Yemaek tribe and their culture1 The main centers of East Asian culture in approximately 2000 B.C. were China - by this point it had already become an agrarian society - and the Mongol-Siberian region where nomadic cultures reign.
    [Show full text]
  • Mythical Image of “Queen Mother of the West” and Metaphysical Concept of Chinese Jade Worship in Classic of Mountains and Seas
    IOSR Journal Of Humanities And Social Science (IOSR-JHSS) Volume 21, Issue11, Ver. 6 (Nov. 2016) PP 39-46 e-ISSN: 2279-0837, p-ISSN: 2279-0845. www.iosrjournals.org Mythical Image of “Queen Mother of the West” and Metaphysical Concept of Chinese Jade Worship in Classic of Mountains and Seas Juan Wu1 (School of Foreign Language,Beijing Institute of Technology, China) Abstract: This paper focuses on the mythological image, the Queen Mother of the West in Classic of Mountains and Seas, to explore the hiding history and mental reality behind the fantastic literary images, to unveil the origin of jade worship, which plays an significant role in the 8000-year-old history of Eastern Asian jade culture, to elucidate the genetic mechanism of the jade worship budded in the Shang and Zhou dynasties, so that we can have an overview of the tremendous influence it has on Chinese civilization, and illustrate its psychological role in molding the national jade worship and promoting the economic value of jade business. Key words: Mythical Image, Mythological Concept, Jade Worship, Classic of Mountains and Seas I. WHITE JADE RING AND QUEEN MOTHER OF THE WEST As for the foundation and succession myths of early Chinese dynasties, Allan holds that “Ancient Chinese literature contains few myths in the traditional sense of stories of the supernatural but much history” (Allan, 1981: ix) and “history, as it appears in the major texts from the classical period of early China (fifth-first centuries B.C.),has come to function like myth” (Allan, 1981: 10). While “the problem of myth for Western philosophers is a problem of interpreting the meaning of myths and the phenomenon of myth-making” as Allan remarks, “the problem of myth for the sinologist is one of finding any myths to interpret and of explaining why there are so few.” (Allen, 1991: 19) To decode why white jade enjoys a prominent position in the Chinese culture, the underlying conceptual structure and unique culture genes should be investigated.
    [Show full text]
  • Shanghai, China Overview Introduction
    Shanghai, China Overview Introduction The name Shanghai still conjures images of romance, mystery and adventure, but for decades it was an austere backwater. After the success of Mao Zedong's communist revolution in 1949, the authorities clamped down hard on Shanghai, castigating China's second city for its prewar status as a playground of gangsters and colonial adventurers. And so it was. In its heyday, the 1920s and '30s, cosmopolitan Shanghai was a dynamic melting pot for people, ideas and money from all over the planet. Business boomed, fortunes were made, and everything seemed possible. It was a time of breakneck industrial progress, swaggering confidence and smoky jazz venues. Thanks to economic reforms implemented in the 1980s by Deng Xiaoping, Shanghai's commercial potential has reemerged and is flourishing again. Stand today on the historic Bund and look across the Huangpu River. The soaring 1,614-ft/492-m Shanghai World Financial Center tower looms over the ambitious skyline of the Pudong financial district. Alongside it are other key landmarks: the glittering, 88- story Jinmao Building; the rocket-shaped Oriental Pearl TV Tower; and the Shanghai Stock Exchange. The 128-story Shanghai Tower is the tallest building in China (and, after the Burj Khalifa in Dubai, the second-tallest in the world). Glass-and-steel skyscrapers reach for the clouds, Mercedes sedans cruise the neon-lit streets, luxury- brand boutiques stock all the stylish trappings available in New York, and the restaurant, bar and clubbing scene pulsates with an energy all its own. Perhaps more than any other city in Asia, Shanghai has the confidence and sheer determination to forge a glittering future as one of the world's most important commercial centers.
    [Show full text]
  • Evaluation and Validation of Cryosat-2-Derived Water Levels Using in Situ Lake Data from China
    remote sensing Article Evaluation and Validation of CryoSat-2-Derived Water Levels Using In Situ Lake Data from China Zhaofei Liu * , Zhijun Yao and Rui Wang Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; [email protected] (Z.Y.); [email protected] (R.W.) * Correspondence: zfl[email protected]; Tel.: +86-10-6488-9527 Received: 7 April 2019; Accepted: 11 April 2019; Published: 13 April 2019 Abstract: CryoSat-2 altimetry has become a valuable tool for monitoring the water level of lakes. In this study, a concentrated probability density function (PDF) method was proposed for preprocessing CryoSat-2 Geophysical Data Record (GDR) data. CryoSat-2 altimetry water levels were preprocessed and evaluated by in situ gauge data from 12 lakes in China. Results showed that the accuracy of the raw GDR data was limited due to outliers in most of the along-track segments. The outliers were generally significantly lower than the in situ values by several meters, and some by more than 30 m. Outlier detection, therefore, improves upon the accuracy of CryoSat-2 measurements. The concentrated PDF method was able to greatly improve the accuracy of CryoSat-2 measurements. The preprocessed CryoSat-2 measurements were able to observe lake levels with a high accuracy at nine of the twelve lakes, with an absolute mean difference of 0.09 m, an absolute standard deviation difference of 0.04 m, a mean root mean square error of 0.27 m, and a mean correlation coefficient of 0.84. Overall, the accuracy of CryoSat-2-derived lake levels was validated in China.
    [Show full text]
  • Korean War Timeline America's Forgotten War by Kallie Szczepanski, About.Com Guide
    Korean War Timeline America's Forgotten War By Kallie Szczepanski, About.com Guide At the close of World War II, the victorious Allied Powers did not know what to do with the Korean Peninsula. Korea had been a Japanese colony since the late nineteenth century, so westerners thought the country incapable of self-rule. The Korean people, however, were eager to re-establish an independent nation of Korea. Background to the Korean War: July 1945 - June 1950 Library of Congress Potsdam Conference, Russians invade Manchuria and Korea, US accepts Japanese surrender, North Korean People's Army activated, U.S. withdraws from Korea, Republic of Korea founded, North Korea claims entire peninsula, Secretary of State Acheson puts Korea outside U.S. security cordon, North Korea fires on South, North Korea declares war July 24, 1945- President Truman asks for Russian aid against Japan, Potsdam Aug. 8, 1945- 120,000 Russian troops invade Manchuria and Korea Sept. 9, 1945- U.S. accept surrender of Japanese south of 38th Parallel Feb. 8, 1948- North Korean People's Army (NKA) activated April 8, 1948- U.S. troops withdraw from Korea Aug. 15, 1948- Republic of Korea founded. Syngman Rhee elected president. Sept. 9, 1948- Democratic People's Republic (N. Korea) claims entire peninsula Jan. 12, 1950- Sec. of State Acheson says Korea is outside US security cordon June 25, 1950- 4 am, North Korea opens fire on South Korea over 38th Parallel June 25, 1950- 11 am, North Korea declares war on South Korea North Korea's Ground Assault Begins: June - July 1950 Department of Defense / National Archives UN Security Council calls for ceasefire, South Korean President flees Seoul, UN Security Council pledges military help for South Korea, U.S.
    [Show full text]
  • To Increase the Benefits of Water Investment for Regional and National Development ---A Case Study of Shaanxi Province
    Global Water Partnership(China) WACDEP Work Package Three Outcome Report To increase the Benefits of Water Investment For Regional and National Development ---A case study of Shaanxi Province Research Office of Shaanxi Provincial People’s Congress Shaanxi Provincial Water Resources Department Xi’an Jiaotong University Copyright @ 2016 by GWP China Abstract Water is not only the indispensable and irreplaceable natural resources for human survival and development, but also very important strategic resources. Water is the infrastructure and the basic industry of the national economic and social development. With the economic growth, the pressure on scarce resources and ecological environment protection is highlighted. The need for government at all levels to speed up the water investment and improve people's welfare is pressing. Therefore, a comprehensive assessment of water investment in Shaanxi Province is of great practical significance. Relatively speaking, Shaanxi Province is short of water resources with less total amount and per capita share. In addition, the spatial distribution of water resources is also extremely unreasonable: the southern part of Shaanxi Province which is part of the Yangtze River basin takes up over 70% while the northern part which is highly populated with fast industrial development only shares 30% of it. The conflict between the demand for water resources and the distribution, to some extent, restrict the social and economic development. The Shaanxi Provincial Government has put the water sector in an important place. It is even so from 2010 to now with a dramatic increase on investment, reaching a total investment amount of 22.408 billion RMB in 2013.
    [Show full text]
  • Effects of Taxonomy, Sediment, and Water Column on C:N:P Stoichiometry of Submerged Macrophytes in Yangtze Floodplain Shallow Lakes, China
    Environ Sci Pollut Res (2016) 23:22577–22585 DOI 10.1007/s11356-016-7435-1 RESEARCH ARTICLE Effects of taxonomy, sediment, and water column on C:N:P stoichiometry of submerged macrophytes in Yangtze floodplain shallow lakes, China Haojie Su1,2 & Yao Wu 1,2 & Ping Xie1 & Jun Chen1 & Te Cao 1 & Wulai Xia 1,2 Received: 4 April 2016 /Accepted: 8 August 2016 /Published online: 24 August 2016 # Springer-Verlag Berlin Heidelberg 2016 Abstract Carbon (C), nitrogen (N) and phosphorus (P) are Introduction the three most important essential elements limiting growth of primary producers. Submerged macrophytes generally absorb Carbon (C):nitrogen (N):phosphorous (P) stoichiometry pro- nutrients from sediments by root uptake. However, the C:N:P vides a very powerful way to enhance our understanding of stoichiometric signatures of plant tissue are affected by many primary production, nutrient cycling, and population dynam- additional factors such as taxonomy, nutrient availability, and ics in freshwater and terrestrial ecosystems (Andersen et al. light availability. We first revealed the relative importance of 2004;ElserandUrabe1999; Evans-White and Lamberti taxonomy, sediment, and water column on plant C:N:P stoi- 2006; Sterner and Hessen 2003). C, N and P are three essential chiometry using variance partitioning based on partial redun- elements of organisms and have strong interactions in bio- dancy analyses. Results showed that taxonomy was the most chemical functioning (Agren 2008). Many ecological process- important factor in determining C:N:P stoichiometry, then the es such as photosynthesis (Elser et al. 2000; Reich et al. 1997), water column and finally the sediment.
    [Show full text]
  • Report on the State of the Environment in China 2016
    2016 The 2016 Report on the State of the Environment in China is hereby announced in accordance with the Environmental Protection Law of the People ’s Republic of China. Minister of Ministry of Environmental Protection, the People’s Republic of China May 31, 2017 2016 Summary.................................................................................................1 Atmospheric Environment....................................................................7 Freshwater Environment....................................................................17 Marine Environment...........................................................................31 Land Environment...............................................................................35 Natural and Ecological Environment.................................................36 Acoustic Environment.........................................................................41 Radiation Environment.......................................................................43 Transport and Energy.........................................................................46 Climate and Natural Disasters............................................................48 Data Sources and Explanations for Assessment ...............................52 2016 On January 18, 2016, the seminar for the studying of the spirit of the Sixth Plenary Session of the Eighteenth CPC Central Committee was opened in Party School of the CPC Central Committee, and it was oriented for leaders and cadres at provincial and ministerial
    [Show full text]