Algebraic Systems, Spring 2014, January, 2014 Edition Gabriel Kerr

Total Page:16

File Type:pdf, Size:1020Kb

Algebraic Systems, Spring 2014, January, 2014 Edition Gabriel Kerr Algebraic Systems, Spring 2014, January, 2014 Edition Gabriel Kerr Contents Chapter 0. Peano Axioms for Natural Numbers - An Introduction to Proofs 5 0.1. Sets and Logic 5 Exercises 7 0.2. Peano Axioms 8 Exercises 15 0.3. Relations 15 Exercises 19 Chapter 1. Basic Arithmetic 21 1.1. The set Z 21 Exercises 23 1.2. The ring Z 23 Exercises 27 1.3. Factoring integers, part I 27 Exercises 30 1.4. Factoring integers, part II 30 Exercises 32 1.5. Modular Arithmetic 32 Exercises 34 1.6. The fields Q and R 34 Exercises 39 1.7. The field C 39 Exercises 40 3 CHAPTER 0 Peano Axioms for Natural Numbers - An Introduction to Proofs We begin this course with the construction of the natural number system. The Peano Axioms form the heart of much of mathematics and lay the foundation for algebra and analysis. Every attempt will be made to stay away from unnecessary abstraction. This should be a guiding principle when working out the exercises as well! 0.1. Sets and Logic This section should serve as a very short introduction to 20th century mathe- matics. That is, it is an introduction to proofs involving sets. Set theory is in fact a subject within itself that was initiated and studied by many in the early 20th century. This was in response to several paradoxes that had come up. For us, a set is a collection of things, called elements. For example, Atoms could be the set of all atoms in the universe while Adams could be the set of all people named Adam in your family. You say there is no Adam in your family? Then Adams is known as the empty set which is the set that contains no elements at all. The notation for this important set is Adams = ;: Unfortunately, this is just the beginning of new notation. Now that we know what sets are, we need a slew of symbols to describe how they work and interact with each other. First, we often write a set with only a few elements by enclosing the elements inside curly brackets. For example, if we wanted to write the set S of letters in the alphabet that occur before g we would write S = fa; b; c; d; e; fg: If you have a set with a lot of elements that are ordered, you can use the dot-dot- dot notation... For example the set of integers T between 3 and 600 and the set of integers T 0 greater than 5 can be written T = f3; 4; :::; 600g T 0 = f6; 7;:::g: In general, we will be interested in stating whether something is or is not an element of a given set. If a is in A (which is the same thing as saying a is an element of A), we write a 2 A while if it is not, we write a 62 A. For the above examples we could say a 2 S but a 62 T and 5 2 T but 5 62 T 0. Sometimes we want to define a set that has elements in another set which satisfy a property. For example, if we want to consider atoms H that have only one proton we can write H = fa 2 Atoms : a has one proton g: 5 6 0. PEANO AXIOMS FOR NATURAL NUMBERS - AN INTRODUCTION TO PROOFS It is clear that any element of the set H is also an element of Atoms, after all, that was how H was defined. This is precisely what it means for H to be a subset of Atoms. To express this relationship we write H ⊆ Atoms: If we have two sets A and B, we can define a whole lot of new sets. We will sum many of these constructions (and one property) up in the following definition. Definition 0.1.1. Suppose A and B are sets. (1) The set A \ B is the intersection of A and B. It consists of elements c such that c 2 A and c 2 B. (2) Two sets A and B are called disjoint if A \ B = ;. (3) The set A [ B is the union of A and B. It consists of elements c such that c 2 A or c 2 B. (4) The set A × B is the Cartesian product of A and B. It consists of elements c = (a; b) where a 2 A and b 2 B. Enough of the definitions. Let's try proving something algebraic. Proposition 0.1.1 (Commutativity of intersection). If A and B are sets then A \ B = B \ A You may think about this a second and say \What's the big deal? Of course this is true!", but us mathematicians really need something better than \of course"... we need a proof! The way to prove a statement like this is to go back to the definition and methodically show that the definitions force the statement to be correct. This way of proving something is called a direct proof. Proof. Suppose c 2 A \ B. Then, by definition, c 2 A and c 2 B which implies that c 2 B and c 2 A. But this means, again by definition, that c 2 B \ A. Thus A \ B ⊆ B \ A. Conversely, suppose c 2 B \ A. Then, by definition, c 2 B and c 2 A which implies that c 2 A and c 2 B. Again by definition, we get that c 2 A \ B. Thus B \ A ⊆ A \ B. So every element in A \ B is an element of B \ A and vice-versa. This means that these two sets consist of the same elements and are therefore equal. What should not be lost in this discussion is that a new term was introduced in the title of the proposition, namely commutativity. It simply means that a combined with b equals b combined with a for some way of combining things. It is one of the key ideas in algebra that can sometimes fail, and will come up repeatedly in the course. Leaving this fascinating stuff for later, let us return to sets. If you are generous and have a set that you would like to share with others, then you may be tempted to break it up into subsets and pass those subsets around. In fact, the idea of breaking up a set into subsets is a precise and important notion in mathematics whose definition is given below. Definition 0.1.2. A partition P of a set A is a collection of non-empty subsets, P = fAigi2I indexed by I such that (1) For any element a 2 A, there is an i 2 I such that a 2 Ai. 0 (2) For any two distinct elements i; i 2 I, the Ai and Ai0 are disjoint. EXERCISES 7 In this definition, the indexing set is arbitrary could be called J or pπ or S 2 anything you want. The important thing is that you have a set P of subsets of Asatisfying (1) and (2). We will encounter many partitions as we progress through this course, but for now, let's look at a simple example. Example 0.1.1. For our set Atoms, we can form the partition P = fAngn2f1;:::;103g where An = fatoms with n protonsg. Now let's return back to relationships between sets. One way of relating two sets is by defining a function or a map from one to another. Here is the mathematical definition. Definition 0.1.3. Suppose A and B are sets. A function f from A to B is a subset f ⊂ A × B such that for every a 2 A there exists exactly one element c = (a; b) 2 f. A function can be denoted f : A ! B There is a lot of notation that comes along with a function. For example, we write f(a) as the unique element b for which (a; b) 2 f. We also call A the domain of f and B the codomain. This latter term should be prevalent in secondary school but is frequently confused with the different notion of range. The range of f is defined as the subset range(f) = fb 2 B : there is an a 2 A such that (a; b) 2 fg: Connection 0.1.1. Most middle and high school texts (and too many college texts) content themselves with saying 'a function is an assignment'. This is a good description of what a function does, but perhaps not what a function is. Neverthe- less, a teacher can usually pull off this type of definition and use it successfully at the high school and early college level. A worse situation occurs when high school students are taught that functions always send real numbers to real numbers. This is a sad injustice that no student of Math 511 will perpetuate! However, a question from this type of thinking arises. Why does the vertical line test for graphs mean that a graph is defined by a function? Functions are most useful when they are combined and compared. The most common way of combining two functions f : A ! B and g : B ! C is by compo- sition. Definition 0.1.4. If f : A ! B and g : B ! C are functions then g◦f : A ! C is defined as the set g ◦ f = f(a; g(f(a))) : a 2 Ag: Exercises (1) Using the notation developed, write the set of vowels V and the set of integers I between −100 and 100.
Recommended publications
  • Comultiplication on Monoids
    Internat. J. Math. & Math. Sci. 803 VOL. 20 NO. 4 (1997) 803-812 COMULTIPLICATION ON MONOIDS MARTIN ARKOWITZ Mathematics Department Dartmouth College Hanover, NH 03755 E-mail address: [email protected] MAURIClO GUTIERREZ Mathematics Department Tufts University Medford, MA 02155 E-mail address: [email protected] (Received April 14, 1997) ABSTRACT. A comultiplication on a monoid S is a homomorphism rn: S S S (the free product of S with itself) whose composition with each projection is the identity homomorphism. We investigate how the existence of a comultiplication on S restricts the structure of S. We show that a monoid which satisfies the inverse property and has a comultiplication is cancellative and equidivisible. Our main result is that a monoid S which satisfies the inverse property admits a comultiplication if and only if S is the free product of a free monoid and a free group. We call these monoids semi-free and we study different comultiplications on them. KEY WORDS AND PHRASES: Monoid, free product, comultiplication, inverse property. cancellative monoid, equidivisibility, semi-free monoid. 1991 AMS SUBJECT CLASSIFICATION CODES: Primary: 20M05, 20M10 Secondary: 20M99, 20N99. 1. INTRODUCTION Comultiplications can be defined for objects in any category with coproducts and zero mor- phisms. Given such an object X, a comultiplication is a morphism m X X II X (the coproduct of X with itself), such that the composition of rn with either projection X t X X is the identity morphism. The general theory has been surveyed in [1], and in [3] it is specialized to algebraic systems. In [2], [5] and [6], comultiplications on groups have been studied.
    [Show full text]
  • Comultiplication on Monoids
    Internat. J. Math. & Math. Sci. 803 VOL. 20 NO. 4 (1997) 803-812 COMULTIPLICATION ON MONOIDS MARTIN ARKOWITZ Mathematics Department Dartmouth College Hanover, NH 03755 E-mail address: [email protected] MAURIClO GUTIERREZ Mathematics Department Tufts University Medford, MA 02155 E-mail address: [email protected] (Received April 14, 1997) ABSTRACT. A comultiplication on a monoid S is a homomorphism rn: S S S (the free product of S with itself) whose composition with each projection is the identity homomorphism. We investigate how the existence of a comultiplication on S restricts the structure of S. We show that a monoid which satisfies the inverse property and has a comultiplication is cancellative and equidivisible. Our main result is that a monoid S which satisfies the inverse property admits a comultiplication if and only if S is the free product of a free monoid and a free group. We call these monoids semi-free and we study different comultiplications on them. KEY WORDS AND PHRASES: Monoid, free product, comultiplication, inverse property. cancellative monoid, equidivisibility, semi-free monoid. 1991 AMS SUBJECT CLASSIFICATION CODES: Primary: 20M05, 20M10 Secondary: 20M99, 20N99. 1. INTRODUCTION Comultiplications can be defined for objects in any category with coproducts and zero mor- phisms. Given such an object X, a comultiplication is a morphism m X X II X (the coproduct of X with itself), such that the composition of rn with either projection X t X X is the identity morphism. The general theory has been surveyed in [1], and in [3] it is specialized to algebraic systems. In [2], [5] and [6], comultiplications on groups have been studied.
    [Show full text]
  • Introduction to Groups, Rings and Fields
    Introduction to Groups, Rings and Fields HT and TT 2011 H. A. Priestley 0. Familiar algebraic systems: review and a look ahead. GRF is an ALGEBRA course, and specifically a course about algebraic structures. This introduc- tory section revisits ideas met in the early part of Analysis I and in Linear Algebra I, to set the scene and provide motivation. 0.1 Familiar number systems Consider the traditional number systems N = 0, 1, 2,... the natural numbers { } Z = m n m, n N the integers { − | ∈ } Q = m/n m, n Z, n = 0 the rational numbers { | ∈ } R the real numbers C the complex numbers for which we have N Z Q R C. ⊂ ⊂ ⊂ ⊂ These come equipped with the familiar arithmetic operations of sum and product. The real numbers: Analysis I built on the real numbers. Right at the start of that course you were given a set of assumptions about R, falling under three headings: (1) Algebraic properties (laws of arithmetic), (2) order properties, (3) Completeness Axiom; summarised as saying the real numbers form a complete ordered field. (1) The algebraic properties of R You were told in Analysis I: Addition: for each pair of real numbers a and b there exists a unique real number a + b such that + is a commutative and associative operation; • there exists in R a zero, 0, for addition: a +0=0+ a = a for all a R; • ∈ for each a R there exists an additive inverse a R such that a+( a)=( a)+a = 0. • ∈ − ∈ − − Multiplication: for each pair of real numbers a and b there exists a unique real number a b such that · is a commutative and associative operation; • · there exists in R an identity, 1, for multiplication: a 1 = 1 a = a for all a R; • · · ∈ for each a R with a = 0 there exists an additive inverse a−1 R such that a a−1 = • a−1 a = 1.∈ ∈ · · Addition and multiplication together: forall a,b,c R, we have the distributive law a (b + c)= a b + a c.
    [Show full text]
  • Homomorphisms of C*-Algebras and Their K-Theory 3
    HOMOMORPHISMS OF C*-ALGEBRAS AND THEIR K-THEORY PARASTOO NADERI AND JAMAL ROOIN Abstract. Let A and B be C*-algebras and ϕ: A → B be a ∗-homomorphism. We discuss the properties of the kernel and (co-)image of the induced map K0(ϕ): K0(A) → K0(B) on the level of K-theory. In particular, we are inter- ested in the case that the co-image is torsion free, and show that it holds when A and B are commutative and unital, B has real rank zero, and ϕ is unital and injective. We also show that A is embeddable in B if K0(ϕ) is injective and A has stable rank one and real rank zero. 1. Introduction and Main Results K-theory is a powerful tool in operator algebras and their aplications. It has been used in the classification of certain C*-algebras, starting from AF algebras [6] and now extending to larger classes [13, 16]. Although, it has been used to study homomorphisms between C*-algebras [5], it seems that the main focus has been on the use of K-theory to understand the structure of the objects of the category of C*-algebras rather than the morphisms. Consider a ∗-homomorphism ϕ: A → B between C*-algebras A and B. A natural question is that can we determine properties of ϕ (such as injectivity, surjectivity, unitality, and so on) by looking at its lift K0(ϕ): K0(A) → K0(B), or vice-versa? (One may also consider K1(ϕ) and Cu(ϕ).) In this paper we investigate such a relation between properties of a morphism in the level of C*-algebras and those of its lift to the level of K-theory.
    [Show full text]
  • M373K, Homework #8
    M373K, Homework #8 April 3, 2013 From the book, please work out: x3.2 #1 (a + b)(c + d) = ac + ad + bc + bd. The point to this problem is that multiplication is non-commutative. So bc does not necessarily equal cb, for example. x3.2 #6 Let D be an integral domain with finite characteristic m. Recall that this means ma = 0 for every a 2 D (and m is a positive integer). Wlog we can assume that m is the smallest positive integer for which this holds. Suppose j; k are positive integers and jk = m. Then for any a; b 2 D,(ja)(kb) = jkab = 0 (by the previous problem). However, D is an integral domain, so it has no zero divisors. So either ja = 0 or kb = 0. In particular, by setting a = b we see that either ja = 0 for every a 2 R or ka = 0 for every a 2 R. So if m is not prime then we can choose j; k so that both j and k are smaller than m. But this contradicts our choice of m. So m must be prime. x3.2 #10 Let D be an integral domain and a; b; c 2 D with ab = ac and a 6= 0. Then ab − ac = 0 so a(b − c) = 0. Because a 6= 0 and D has no zero divisors, this implies b − c = 0 which implies b = c. On the other hand, suppose that D is a commutative ring which satisfies the cancellation property: for every a; b; c 2 D with a 6= 0 and ab = ac, we must have b = c.
    [Show full text]
  • Notes on Ring Theory
    Notes on Ring Theory S. F. Ellermeyer Department of Mathematics Kennesaw State University January 15, 2016 Abstract These notes contain an outline of essential definitions and theorems from Ring Theory but only contain a minimal number of examples. Many examples are presented in class and thus it is important to come to class. Also of utmost importance is that the student put alot of effort into doing the assigned homework exercises.The material in these notes is outlined in the order of Chapters 17—33 of Charles Pinter’s “A Book of Abstract Algebra”, which is the textbook we are using in the course. 1Rings A ring is a non—empty set, , along with two operations called addition (usually denoted by the symbol +) and multiplication (usually denoted by the symbol or by no symbol) such that · 1. is an abelian group under addition. (The additive identity element of is usually denoted by 0.) 2. The multiplication operation is associative. 3. Multiplication is distributive over addition, meaning that for all and in we have ( + )= + · · · 1 and ( + ) = + . · · · Letuslookatafewexamplesofrings. Example 1 The trivial ring is the one—element set = 0 with addition operation defined by 0+0 = 0 and multiplication operation de{fi}ned by 0 0=0. · Example 2 The set of integers, , with the standard operations of addition and multiplication is a ring. The set of real numbers, , with the standard operations of addition and multiplication is a ring. The set of rational num- bers, , with the standard operations of addition and multiplication is a ring. The set of complex numbers, , with the standard operations of addition and multiplication is a ring.
    [Show full text]
  • The Varieties of One-Sided Loops of Bol-Moufang Type 1. Introduction
    The Varieties of One-Sided Loops of Bol-Moufang Type Rachel R. Aldrich and Sarah J. Drummond Abstract. We show that there are 20 different varieties of one-sided loops of Bol-Moufang type. We also show all inclusions between these varieties and give all necessary counterexamples. This work extends the research done by Phillips and Vojt˘echovsk´ywhich found the relationships among 26 different varieties of quasigroups and 14 different varieties of loops of Bol-Moufang type. We then show which varieties of one-sided loops of Bol-Moufang type have left and right inverse properties. The proofs and counterexamples are aided by the automated theorem prover, Prover9, and the finite model builder, Mace4. 1. Introduction Bol-Moufang Identities Let ∗ be a binary operation on a set G. Let La : G ! G be defined by La(x) = a ∗ x and let Ra : G ! G be defined by Ra(x) = x ∗ a. Definition 1. (G; ·) is called a quasigroup if La and Ra are bijective. Quasigroups have the cancellation property. Let (G; ·) be a quasigroup with x; y; z 2 G. Then if x ∗ z = y ∗ z, we have x = y, and if z ∗ x = z ∗ y, we have x = y. Definition 2. A loop is a quasigroup (G; ·) for which ∗ has a two-sided identity element e, such that e ∗ x = x ∗ e = x. A left loop is a quasigroup (G; ·) for which ∗ has a left identity element, and a right loop is a quasigroup (G; ·) for which ∗ has a right identity element. An identity is said to be of Bol-Moufang type if there are three variables on each side, with one of the variables occurring twice, and the other two occurring once.
    [Show full text]
  • 3. the Players: Rings, Fields, Etc
    3. The players: rings, fields, etc. 3.1 Rings, fields 3.2 Ring homomorphisms 3.3 Vector spaces, modules, algebras 3.4 Polynomial rings I Here we introduce some basic terminology, and give a sample of a modern construction of a universal object, namely a polynomial ring in one variable. 1. Rings, fields The idea of ring generalizes the idea of collection of numbers, among other things, so maybe it is a little more intuitive than the idea of group.A ring R is a set with two operations, + and ·, and with a special element 0 (additive identity) with most of the usual properties we expect or demand of addition and multiplication: • R with its addition and with 0 is an abelian group. [1] • The multiplication is associative: a(bc) = (ab)c for all a; b; c 2 R. • The multiplication and addition have left and right distributive properties: a(b + c) = ab + ac and (b + c)a = ba + ca for all a; b; c 2 R. Often the multiplication is written just as juxtaposition ab = a · b Very often, a particular ring has some additional special features or properties: • If there is an element 1 in a ring with 1 · a = a · 1 for all a 2 R, then 1 is said to be the (multiplicative) [1] This is a compressed way to say that 0 behaves as an additive identity, that there are additive inverses, and that addition is associative. 51 52 The players: rings, fields, etc. identity or the unit [2] in the ring, and the ring is said to have an identity or have a unit or be a ring with unit.
    [Show full text]
  • 97-01-007.Pdf
    Circuits and Expressions with Non-Associative Gates Joshua Berman Arthur Drisko Francois Lemieux Cristopher Moore Denis Therien SFI WORKING PAPER: 1997-01-007 SFI Working Papers contain accounts of scientific work of the author(s) and do not necessarily represent the views of the Santa Fe Institute. We accept papers intended for publication in peer-reviewed journals or proceedings volumes, but not papers that have already appeared in print. Except for papers by our external faculty, papers must be based on work done at SFI, inspired by an invited visit to or collaboration at SFI, or funded by an SFI grant. ©NOTICE: This working paper is included by permission of the contributing author(s) as a means to ensure timely distribution of the scholarly and technical work on a non-commercial basis. Copyright and all rights therein are maintained by the author(s). It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may be reposted only with the explicit permission of the copyright holder. www.santafe.edu SANTA FE INSTITUTE Circuits and Expressions with NonAsso ciative Gates Joshua Berman Arthur Drisko Francois Lemieux Cristopher Mo ore and Denis Therien State UniversityofNewYork at Binghamton National Security AgencyUSA McGill UniversityMontreal Queb ec The Santa Fe Institute Santa Fe New Mexico corresp onding author Abstract We consider circuits and expressions whose gates carry out multiplication in a nonasso ciative algebra such as a quasigroup
    [Show full text]
  • Rings with Internal Cancellation
    Journal of Algebra 284 (2005) 203–235 www.elsevier.com/locate/jalgebra Rings with internal cancellation Dinesh Khurana a,T.Y.Lamb,∗ a Department of Mathematics, Panjab University, Chandigarh-160014, India b Department of Mathematics, University of California, Berkeley, CA 94720, USA Received 1 June 2004 Available online 6 October 2004 Communicated by Susan Montgomery Abstract In this paper, we study the class of rings that satisfy internal direct sum cancellation with respect to their 1-sided ideals. These are known to be precisely the rings in which regular elements are unit- regular. Further characterizations for such “IC rings” are given, in terms of suitable versions of stable range conditions, and unique generator properties of idempotent generated right ideals. This approach leads to a uniform treatment of many of the known characterizations for an exchange ring to have stable range 1. Rings whose matrix rings are IC turn out to be precisely those rings whose finitely generated projective modules satisfy cancellation. We also offer a couple of “hidden” characteriza- tions of unit-regular elements in rings that shed some new light on the relation between similarity and pseudo-similarity—in monoids as well as in rings. The paper concludes with a treatment of ideals for which idempotents lift modulo all 1-sided subideals. An appendix by R.G. Swan1on the failure of cancellation for finitely generated projective modules over complex group algebras shows that such algebras are in general not IC. 2004 Elsevier Inc. All rights reserved. * Corresponding author. E-mail addresses: [email protected] (D. Khurana), [email protected] (T.Y.
    [Show full text]
  • On Birkhoff's Quasigroup Axioms
    On Birkhoff's Quasigroup Axioms J.D. Phillips∗,a, D.I. Pushkashub, A.V. Shcherbacovc, V.A. Shcherbacovb aNorthern Michigan University, Department of Mathematics and Computer Science, Marquette, Michigan bInstitute of Mathematics and Computer Science Academy of Sciences of Moldova Academiei str. 5, MD-2028, Chi¸sin˘au,Moldova cTheoretical Lyceum \C.Sibirschi," Lech Kaczyski str. 4, MD-2028, Chi¸sin˘au,Moldova Abstract Birkhoff defined a quasigroup as an algebra (Q; ·; n; =) that satisfies the fol- lowing six identities: x · (xny) = y,(y=x) · x = y, xn(x · y) = y,(y · x)=x = y, x=(ynx) = y, and (x=y)nx = y . We investigate triples and tetrads of identi- ties composed of these six, emphasizing those that axiomatize the variety of quasigroups. Key words: (left) quasigroup, (equational) quasigroup, division groupoid, cancellation groupoid 2000 MSC: 20N05 1 1. Introduction and Terminology 2 A binary groupoid,(G; A), is a non-empty set G, together with a binary 3 operation A. It is customary to omit the adjective \binary" and to refer to 4 these simply as \groupoids." We will include the adjective \binary" in those 5 instances where we wish to emphasize it. 6 Moufang [9, 18] defined a quasigroup as a groupoid (Q; ◦) in which, for 7 all a; b 2 Q, there exist unique solutions x; y 2 Q to the equations x ◦ a = 8 b and a ◦ y = b. Moufang also included two of the laws that eventually 9 came to be called \the Moufang laws" in her definition of quasigroup, viz. 10 (x·y)·(z ·x) = x·((y ·z)·x).
    [Show full text]
  • Mathematical Reasoning & Proofs
    Mathematical Reasoning & Proofs MAT 1362 Fall 2021 Alistair Savage Department of Mathematics and Statistics University of Ottawa This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License Contents Preface 4 1 Integers 5 1.1 Axioms.......................................5 1.2 First consequences of the axioms........................6 1.3 Subtraction.................................... 13 2 Natural numbers and induction 15 2.1 Natural numbers................................. 15 2.2 Ordering the integers............................... 16 2.3 Induction..................................... 20 2.4 The well-ordering principle............................ 24 3 Logic 27 3.1 Quantifiers..................................... 27 3.2 Implications.................................... 29 3.3 Negations..................................... 31 4 Finite series and strong induction 34 4.1 Preliminaries................................... 34 4.2 Finite series.................................... 36 4.3 The Binomial Theorem............................. 40 4.4 Strong induction................................. 43 5 Naive set theory 46 5.1 Subsets and equality............................... 46 5.2 Intersections and unions............................. 49 5.3 Cartesian products................................ 53 5.4 Functions..................................... 54 5.5 Russell's paradox and axiomatic set theory................... 55 6 Equivalence relations and modular arithmetic 57 6.1 Equivalence relations..............................
    [Show full text]