Csci 556: Multiparadigm Programming Fundamental Concepts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Programming Paradigms & Object-Oriented
4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Syllabus Content: 4.3.1 Programming paradigms Show understanding of what is meant by a programming paradigm Show understanding of the characteristics of a number of programming paradigms (low- level, imperative (procedural), object-oriented, declarative) – low-level programming Demonstrate an ability to write low-level code that uses various address modes: o immediate, direct, indirect, indexed and relative (see Section 1.4.3 and Section 3.6.2) o imperative programming- see details in Section 2.3 (procedural programming) Object-oriented programming (OOP) o demonstrate an ability to solve a problem by designing appropriate classes o demonstrate an ability to write code that demonstrates the use of classes, inheritance, polymorphism and containment (aggregation) declarative programming o demonstrate an ability to solve a problem by writing appropriate facts and rules based on supplied information o demonstrate an ability to write code that can satisfy a goal using facts and rules Programming paradigms 1 4.3 (Programming Paradigms & Object-Oriented- Computer Science 9608 Programming) with Majid Tahir Programming paradigm: A programming paradigm is a set of programming concepts and is a fundamental style of programming. Each paradigm will support a different way of thinking and problem solving. Paradigms are supported by programming language features. Some programming languages support more than one paradigm. There are many different paradigms, not all mutually exclusive. Here are just a few different paradigms. Low-level programming paradigm The features of Low-level programming languages give us the ability to manipulate the contents of memory addresses and registers directly and exploit the architecture of a given processor. -
Purerl-Cookbook Documentation
purerl-cookbook Documentation Rob Ashton Jun 17, 2021 Contents 1 The build process 3 1.1 Purerl (Server) Build...........................................3 1.2 Erlang (Server) Build..........................................3 1.3 Purescript (Client) Build.........................................4 2 Editors 9 2.1 Other editors...............................................9 3 Skeleton 13 3.1 Erlang.................................................. 13 3.2 Purerl................................................... 15 3.3 Purescript................................................. 17 4 Basic OTP 19 4.1 OTP Entry Point............................................. 19 4.2 OTP Supervisor............................................. 20 4.3 OTP Gen server............................................. 22 4.4 Dynamic Supervision Trees....................................... 23 5 Web Server 25 5.1 Stetson.................................................. 25 5.2 Stetson Routing............................................. 26 5.3 Stetson Handlers............................................. 28 5.4 Stetson Websockets........................................... 29 5.5 Stetson Streaming............................................ 30 6 Logging 33 6.1 Lager................................................... 33 6.2 Logger.................................................. 34 7 Messaging 37 7.1 Subscribing to Incoming messages (pseudo-example).......................... 37 7.2 Sending Outgoing Messages (pseudo example)............................. 38 8 Interop 47 8.1 -
Marcelo Camargo (Haskell Camargo) – Résumé Projects
Marcelo Camargo (Haskell Camargo) – Résumé https://github.com/haskellcamargo [email protected] http://coderbits.com/haskellcamargo Based in Joinville / SC – Brazil Knowledge • Programming languages domain: ◦ Ada, AdvPL, BASIC, C, C++, C#, Clipper, Clojure, CoffeeScript, Common LISP, Elixir, Erlang, F#, FORTRAN, Go, Harbour, Haskell, Haxe, Hy, Java, JavaScript, Ink, LiveScript, Lua, MATLAB, Nimrod, OCaml, Pascal, PHP, PogoScript, Processing, PureScript, Python, Ruby, Rust, Self, Shell, Swift, TypeScript, VisualBasic [.NET], Whip, ZPL. • Markup, style and serialization languages: ◦ Markdown, reStructuredText, [X] HTML, XML, CSS, LESS, SASS, Stylus, Yaml, JSON, DSON. • Database management systems: ◦ Oracle, MySQL, SQL Server, IBM DB2, PostgreSQL. • Development for operating systems: ◦ Unix based, Windows (CE mobile included), Android, Firefox OS. • Parsers and compilers: ◦ Macros: ▪ Sweet.js, preprocessor directives. ◦ Parser and scanner generators: ▪ ANTLR, PEG.js, Jison, Flex, re2c, Lime. • Languages: ◦ Portuguese (native) ◦ English (native) ◦ Spanish (fluent) ◦ French (fluent) ◦ Turkish (intermediate) ◦ Chinese (mandarin) (intermediate) ◦ Esperanto (intermediate) Projects • Prelude AdvPL – a library that implements functional programming in AdvPL and extends its syntax to a more expressive one; it's a port of Haskell's Prelude; • Frida – a LISP dialect that runs on top of Node.js; • PHPP – A complete PHP preprocessor with a grammar able to identify and replace tokens and extend/modify the language syntax, meant to be implemented -
15-150 Lectures 27 and 28: Imperative Programming
15-150 Lectures 27 and 28: Imperative Programming Lectures by Dan Licata April 24 and 26, 2012 In these lectures, we will show that imperative programming is a special case of functional programming. We will also investigate the relationship between imperative programming and par- allelism, and think about what happens when the two are combined. 1 Mutable Cells Functional programming is all about transforming data into new data. Imperative programming is all about updating and changing data. To get started with imperative programming, ML provides a type 'a ref representing mutable memory cells. This type is equipped with: • A constructor ref : 'a -> 'a ref. Evaluating ref v creates and returns a new memory cell containing the value v. Pattern-matching a cell with the pattern ref p gets the contents. • An operation := : 'a ref * 'a -> unit that updates the contents of a cell. For example: val account = ref 100 val (ref cur) = account val () = account := 400 val (ref cur) = account 1. In the first line, evaluating ref 100 creates a new memory cell containing the value 100, which we will write as a box: 100 and binds the variable account to this cell. 2. The next line pattern-matches account as ref cur, which binds cur to the value currently in the box, in this case 100. 3. The next line updates the box to contain the value 400. 4. The final line reads the current value in the box, in this case 400. 1 It's important to note that, with mutation, the same program can have different results if it is evaluated multiple times. -
Functional and Imperative Object-Oriented Programming in Theory and Practice
Uppsala universitet Inst. för informatik och media Functional and Imperative Object-Oriented Programming in Theory and Practice A Study of Online Discussions in the Programming Community Per Jernlund & Martin Stenberg Kurs: Examensarbete Nivå: C Termin: VT-19 Datum: 14-06-2019 Abstract Functional programming (FP) has progressively become more prevalent and techniques from the FP paradigm has been implemented in many different Imperative object-oriented programming (OOP) languages. However, there is no indication that OOP is going out of style. Nevertheless the increased popularity in FP has sparked new discussions across the Internet between the FP and OOP communities regarding a multitude of related aspects. These discussions could provide insights into the questions and challenges faced by programmers today. This thesis investigates these online discussions in a small and contemporary scale in order to identify the most discussed aspect of FP and OOP. Once identified the statements and claims made by various discussion participants were selected and compared to literature relating to the aspects and the theory behind the paradigms in order to determine whether there was any discrepancies between practitioners and theory. It was done in order to investigate whether the practitioners had different ideas in the form of best practices that could influence theories. The most discussed aspect within FP and OOP was immutability and state relating primarily to the aspects of concurrency and performance. This thesis presents a selection of representative quotes that illustrate the different points of view held by groups in the community and then addresses those claims by investigating what is said in literature. -
Unit 2 — Imperative and Object-Oriented Paradigm
Programming Paradigms Unit 2 — Imperative and Object-oriented Paradigm J. Gamper Free University of Bozen-Bolzano Faculty of Computer Science IDSE PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 1/38 Outline 1 Imperative Programming Paradigm 2 Abstract Data Types 3 Object-oriented Approach PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 2/38 Imperative Programming Paradigm Outline 1 Imperative Programming Paradigm 2 Abstract Data Types 3 Object-oriented Approach PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 3/38 Imperative Programming Paradigm Imperative Paradigm/1 The imperative paradigm is the oldest and most popular paradigm Based on the von Neumann architecture of computers Imperative programs define sequences of commands/statements for the computer that change a program state (i.e., set of variables) Commands are stored in memory and executed in the order found Commands retrieve data, perform a computation, and assign the result to a memory location Data ←→ Memory CPU (Data and Address Program) ←→ The hardware implementation of almost all Machine code computers is imperative 8B542408 83FA0077 06B80000 Machine code, which is native to the C9010000 008D0419 83FA0376 computer, and written in the imperative style B84AEBF1 5BC3 PP 2018/19 Unit 2 – Imperative and Object-oriented Paradigm 4/38 Imperative Programming Paradigm Imperative Paradigm/2 Central elements of imperative paradigm: Assigment statement: assigns values to memory locations and changes the current state of a program Variables refer -
Education Social
Jens Krause Hamburg Area - Germany | http://jkrause.io | [email protected] Independent Software Developer with ~20 years of experiences in the industry. Today focused on building software in the crypto and blockchain space by using Functional Programming (Haskell, PureScript, Rust etc). Contract work (Detailed portfolio: http://jkrause.io/arbeiten/) 2016 - 2019 Blockchain development LNX Senior Blockchain Architect Seoul / South Korea - Prepare DAG part to work with Substrate May 2019 – August 2019 - p2p handling of DAG nodes independently of Substrate (libp2p, Rust) (contract + remote work) - e2e / unit tests (Rust) - Basic architecture of LNX wallet (Vue.js, Vuex, polkadot.js, TypeScript) FOAM Senior Blockchain Developer New York / USA - Front- and backend development of a TCR (Ethereum) based world map April 2018 – April 2019 http://map.foam.space (PureScript, Haskell) (contract + remote work) - PoC of Plasma MVP implementation with Cosmos (Go, PureScript) - Misc. (e2e, unit tests, Solidity) IOHK Cardano SL Developer – Team Haskell Hong Kong - Front- and backend development of Cardano‘s blockchain explorer Dec. 2016 – April 2018 https://cardanoexplorer.com (PureScript, Haskell) (contract + remote work) - Re-write of Daedalus wallet API (Haskell) - Developing API layer to bridge Daedalus wallet (PureScript) - Testing and re-factoring of Cardano-SL (Haskell) - Misc. PoC‘s (e.g. type generator Haskell to PureScript) 2012 - 2016 Web-, Mobile development Misc. projects / clients Senior Developer Cellular, SinnerSchrader, - Web / Mobile applications (Angular, Backbone, Ionic, Knockout, React, misc. startups, Volkswagen, React Native, RxJS, TypeScript, CoffeeScript, ES 6/7, RubyMotion) ZDF, TUI, etc. - Backend development (NodeJS, PHP, Zend, RabbitMQ, Ruby) - TDD / BDD / E2E (Karma, Istanbul, Mocha, Sinon, Enzyme, Webdriver, CucumberJS) 1999 - 2012 Web-, Desktop-, Mobile development Misc. -
Curriculum Vitae
Diogo Castro Curriculum Vitae Summary I’m a Software Engineer based in Belfast, United Kingdom. My professional journey began as a C# developer, but Functional Programming (FP) soon piqued my interest and led me to learn Scala, Haskell, PureScript and even a bit of Idris. I love building robust, reliable and maintainable applications. I also like teaching and I’m a big believer in "paying it forward". I’ve learned so much from many inspiring people, so I make it a point to share what I’ve learned with others. To that end, I’m currently in charge of training new team members in Scala and FP, do occasional presentations at work and aim to do more public speaking. I blog about FP and Haskell at https://diogocastro.com/blog. Experience Nov 2017-Present Principal Software Engineer, SpotX, Belfast, UK. Senior Software Engineer, SpotX, Belfast, UK. Developed RESTful web services in Scala, using the cats/cats-effect framework and Akka HTTP. Used Apache Kafka for publishing of events, and Prometheus/Grafana for monitor- ing. Worked on a service that aimed to augment Apache Druid, a timeseries database, with features such as access control, a safer and simpler query DSL, and automatic conversion of monetary metrics to multiple currencies. Authored a Scala library for calculating the delta of any two values of a given type using Shapeless, a library for generic programming. Taught a weekly internal Scala/FP course, with the goal of preparing our engineers to be productive in Scala whilst building an intuition of how to program with functions and equational reasoning. -
Comparative Studies of Programming Languages; Course Lecture Notes
Comparative Studies of Programming Languages, COMP6411 Lecture Notes, Revision 1.9 Joey Paquet Serguei A. Mokhov (Eds.) August 5, 2010 arXiv:1007.2123v6 [cs.PL] 4 Aug 2010 2 Preface Lecture notes for the Comparative Studies of Programming Languages course, COMP6411, taught at the Department of Computer Science and Software Engineering, Faculty of Engineering and Computer Science, Concordia University, Montreal, QC, Canada. These notes include a compiled book of primarily related articles from the Wikipedia, the Free Encyclopedia [24], as well as Comparative Programming Languages book [7] and other resources, including our own. The original notes were compiled by Dr. Paquet [14] 3 4 Contents 1 Brief History and Genealogy of Programming Languages 7 1.1 Introduction . 7 1.1.1 Subreferences . 7 1.2 History . 7 1.2.1 Pre-computer era . 7 1.2.2 Subreferences . 8 1.2.3 Early computer era . 8 1.2.4 Subreferences . 8 1.2.5 Modern/Structured programming languages . 9 1.3 References . 19 2 Programming Paradigms 21 2.1 Introduction . 21 2.2 History . 21 2.2.1 Low-level: binary, assembly . 21 2.2.2 Procedural programming . 22 2.2.3 Object-oriented programming . 23 2.2.4 Declarative programming . 27 3 Program Evaluation 33 3.1 Program analysis and translation phases . 33 3.1.1 Front end . 33 3.1.2 Back end . 34 3.2 Compilation vs. interpretation . 34 3.2.1 Compilation . 34 3.2.2 Interpretation . 36 3.2.3 Subreferences . 37 3.3 Type System . 38 3.3.1 Type checking . 38 3.4 Memory management . -
Communication-Safe Web Programming in Typescript with Routed Multiparty Session Types
Communication-Safe Web Programming in TypeScript with Routed Multiparty Session Types Anson Miu Francisco Ferreira Imperial College London and Bloomberg Imperial College London United Kingdom United Kingdom Nobuko Yoshida Fangyi Zhou Imperial College London Imperial College London United Kingdom United Kingdom Abstract ACM Reference Format: Modern web programming involves coordinating interac- Anson Miu, Francisco Ferreira, Nobuko Yoshida, and Fangyi Zhou. tions between browser clients and a server. Typically, the 2021. Communication-Safe Web Programming in TypeScript with Routed Multiparty Session Types. In Proceedings of the 30th ACM interactions in web-based distributed systems are informally SIGPLAN International Conference on Compiler Construction (CC ’21), described, making it hard to ensure correctness, especially March 2–3, 2021, Virtual, USA. ACM, New York, NY, USA, 27 pages. communication safety, i.e. all endpoints progress without https://doi.org/10.1145/3446804.3446854 type errors or deadlocks, conforming to a specified protocol. We present STScript, a toolchain that generates TypeScript 1 Introduction APIs for communication-safe web development over Web- Web technology advancements have changed the way peo- Sockets, and RouST, a new session type theory that supports ple use computers. Many services that required standalone multiparty communications with routing mechanisms. applications, such as email, chat, video conferences, or even STScript provides developers with TypeScript APIs gen- games, are now provided in a browser. While the Hypertext erated from a communication protocol specification based Transfer Protocol (HTTP) is widely used for serving web on RouST. The generated APIs build upon TypeScript con- pages, its Request-Response model limits the communication currency practices, complement the event-driven style of patterns — the server may not send data to a client without programming in full-stack web development, and are com- the client first making a request. -
Functional Programming Functional Vs. Imperative Referential
Functional vs. Imperative Referential transparency Imperative programming concerned with “how.” The main (good) property of functional programming is Functional Programming referential transparency. Functional programming concerned with “what.” COMS W4115 Every expression denotes a single value. Based on the mathematics of the lambda calculus Prof. Stephen A. Edwards (Church as opposed to Turing). The value cannot be changed by evaluating an expression Spring 2003 or by sharing it between different parts of the program. “Programming without variables” Columbia University No references to global data; there is no global data. Department of Computer Science It is inherently concise, elegant, and difficult to create subtle bugs in. There are no side-effects, unlike in referentially opaque Original version by Prof. Simon Parsons languages. It’s a cult: once you catch the functional bug, you never escape. The Joy of Pascal Strange behavior Variables program example(output) This prints 5 then 4. At the heart of the “problem” is fact that the global data var flag: boolean; flag affects the value of f. Odd since you expect function f(n:int): int In particular begin f (1) + f (2) = f (2) + f (1) if flag then f := n flag := not flag else f := 2*n; gives the offending behavior flag := not flag Mathematical functions only depend on their inputs end They have no memory Eliminating assignments eliminates such problems. begin In functional languages, variables not names for storage. flag := true; What does this print? Instead, they’re names that refer to particular values. writeln(f(1) + f(2)); writeln(f(2) + f(1)); Think of them as not very variables. -
Tom Sydney Kerckhove [email protected] Technical Leader, Engineering Manager, Speaker
Tom Sydney Kerckhove [email protected] Technical Leader, Engineering Manager, Speaker https://cs-syd.eu Disclaimer is CV is designed to be read by recruiters, headhunters and non-technical parties. ere is also technical CV at https://cs-syd.eu/cv. Keywords and Technologies So ware, Development, Safety, Security, Back-end, Haskell, Reliability, Robustness AWS EC2, AWS S3, AWS SNS, Android, Arduino, Assembly, Azure, BLAS, Beamer, Bitbucket, C, C++, CSS, Cassius, Eifel, Emacs, FORTRAN, GPG, Git, Github, Gitlab, Go, HTML, Hadoop MapReduce, Hakyll, Hamlet, Haskell, Hledger, Hydra, Java, Javascript, Julius, Keycloak, Kubernetes, LAPACK, LaTeX, Lisp, Lua, Matlab, MySQL, Nginx, Nix, NixOps, NixOs, Octave, PHP, Pandoc, PostgreSQL, Prolog, Purescript, Python, ickCheck, ickSpec, R, Ruby, Rust, SBV, SQL, SQLite, Scala, Scikit-learn, Selenium, Servant, Shell, Spacemacs, Tamarin, Terraform, VB.Net, Vim, Yesod, Z3 Experience Technical Leader and Engineering Manager — FP Complete Remote, Zuerich, CH 2017-09 - present Founder and Consultant — CS Kerckhove Remote 2016-12 - present External examinator: OpenAPI and Stripe — HSR Rapperswil, CH 2020-02 - 2020-06 Technical Writer — Human Readable Magazine Remote 2019-12 - 2020-02 External examinator: Codepanorama — HSR Rapperswil, CH 2019-11 - 2020-01 Mentor — Google Summer of Code (volunteer) Remote, Zuerich, CH 2018-04 - 2018-08 Research Assistant; Functional Programming — ETH Zuerich Zuerich, CH 2017-06 - 2017-09 Teaching Assistant: Functional Programming — ETH Zuerich Zuerich, CH 2017-02 - 2017-04 So ware Engineering