The Effect of Non-Static Metrics on Observables

Total Page:16

File Type:pdf, Size:1020Kb

The Effect of Non-Static Metrics on Observables Radboud University Master thesis The effect of non-static metrics on observables Renz Bakx Supervisor: Prof. Dr. Wim Beenakker High Energy Physics Contents 1 Theory 5 1.1 The metric and its dynamics . .5 1.2 The Einstein equations . .6 1.3 Komar integrals . .7 2 Dark Matter and MOND 9 2.1 In a nutshell . .9 2.2 The Schwarzschild metric . 12 2.2.1 Dynamics . 13 2.2.2 An extra term . 15 2.2.3 The weak field limit . 17 2.3 Matos et al. 19 3 Pure General Relativity 23 3.1 Frame Dragging . 23 3.2 Cooperstock and Tieu . 25 3.2.1 The method . 25 3.2.2 Criticism . 30 3.3 Rotating Dust . 37 3.3.1 Obtaining the metric . 37 3.3.2 The Newtonian limit . 43 3.3.3 A constant solution . 47 4 Conclusion and Outlook 52 A Integrals for the Ernst Potential 54 B Integrals for the Newtonian seed 58 C Documentation 62 C.1 metric . 62 C.2 calculation funcs . 64 C.3 calculate Ynu . 65 C.4 calculate ErnstPot . 66 1 Introduction For a long time, Newton's theory of mechanics has been an effective tool to describe the motion of all kinds of objects. From small things like apples falling from trees to planets moving around the sun. There are things however, that cannot be explained by this theory. The precession of the orbit of Mercury or the physics of a black hole, for example. In these cases, we need the theory of General Relativity devised by Einstein. (a) (b) Figure 1: The rotation curves of the planets in our solar system (a) and of galaxy NGC 6503 (b) [1]. Another problem that Newtonian physics cannot solve is the motion of stars in galaxies. The theory predicts that the velocity should fall of like r−1=2, which works for the planets in our solar system. This agreement can be seen in figure 1a. However, measurements indicate that the velocity becomes more or less constant at larger radial distance to the center of the galaxy. This can be seen in figure 1b, where the velocity of the matter in the galaxy NGC 6503 is plotted. The \extra gravity" mentioned in figures 1a and 1b refers to the unexplained 2 forces that are needed to correct the theoretical velocity. A common explana- tion is that there is more matter within galaxies than can be observed: Dark Matter [2]. Our telescopes can only see the stars and luminous gas present in NGC 6503, so perhaps there is more than meets the eye in this galaxy. This Dark Matter may consist of large objects like dead stars or exotic particles that we have yet to discover. Another explanation is given by Modified Newtonian Dynamics (MOND), which states that Newtonian physics behaves differently for low accelerations than for large accelerations, given some reference acceleration [3]. In this case no extra dust or exotic particles are needed, we simply adjust Newtonian physics at low accelerations so that the velocities it predicts match the ones we observe. It is commonly assumed that the weakness of the gravitational field of galaxies (especially in the outer regions) allows for a Newtonian approach when calcu- lating the angular velocities of the stars within the galaxy. This approach works well enough within our own solar system, where the sun is by far the heaviest object around. In this case the structure of the spacetime is dominated by the curvature generated by the sun. However, in galaxies the spacetime curvature is not dominated by some giant source in the center. It is generated by vast amounts of smaller objects rotating around the center. This combined move- ment of all the stars within a galactic disk might have a measurable effect on the dynamics of the system. If this effect is big enough, it may help to solve the issue with the rotation curves. That is precisely the topic of this thesis. Our goal is to find out if the Newtonian approach is valid in this regime, or if relativistic effects do have to be taken into account. This thesis is meant as a comprehensive toolbox, in which all the techniques and literature that can be used to achieve our goal are gathered. We will first show methods to obtain the dynamics of a relativistic space-time and will treat Dark Matter and MOND in this context. After that we will discuss the theory of Cooperstock and Tieu, who claim they can explain rotation curves without resorting to Dark Matter or MOND [4]. Finally, we will attempt to model a galaxy using a flat disk of dust. In order to do this we follow the method described by Ansorg [5] to build our own computer program which can calculate the metric of such a disk. Conventions We will use a few conventions in this thesis, which will be listed here. Firstly, we will use geometrized units unless mentioned otherwise. These units are char- acterized by setting G = c = 1, meaning all observables will have a dimension of a power of length. We will also use a metric signature (−; +; +; +), and adopt the Einstein sum- mation convention when using greek indices: 3 µ 0 1 2 3 x xµ = x x0 + x x1 + x x2 + x x3 (1) As for the coordinate systems used in this thesis: (t; r; θ; ') are used when we assume spherical symmetry and (t; ρ, ζ; ') are used in a system with axial symmetry (with θ 2 [0; π] and ' 2 [0; 2π]). Lastly, partial derivatives will @ sometimes be written as @x = @x, in order to save space. 4 Chapter 1 Theory In this chapter we will briefly go over some of the aspects of General Relativity that are used in this thesis. The material in this chapter was obtained from books written by Sean Carroll [6] and Robert Wald [7]. 1.1 The metric and its dynamics A metric gµν is usually given by its line element: 2 µ ν ds = gµν dx dx : (1.1) To study the dynamics of a spacetime generated by such a metric we will look at geodesics. These are the paths of shortest distance between two points, the curved spacetime equivalent of a straight line. A definition of these paths that works in General Relativity is that if a path xµ(λ) is a geodesic, it parallel- d µ transports its own tangent vector dλ x (λ). Parallel transport means that the covariant derivative of the tangent vector along the path vanishes. This is an important requirement, because it ensures that the norm and orthogonality of vectors is preserved along the path. For this demand to be satisfied, the path xµ(λ) needs to obey the geodesic equation: d2xµ dxρ dxσ + Γµ = 0: (1.2) dλ2 ρσ dλ dλ 5 µ In the geodesic equation the Christoffel symbols Γρσ are given by: 1 Γµ = gµν (@ g + @ g − @ g ) (1.3) ρσ 2 ρ σν σ ρν ν ρσ µρ µ with g gρν = δ ν (1.4) µ Here δ ν is the Kronecker-delta. In order to satisfy the geodesic equation λ needs to be an affine parameter. This means that λ = aτ +b for some constants a and b, where τ is the proper time. The proper time can be obtained from the line element: dτ 2 = −ds2. Usually we pick λ = τ, so that trajectories are parameterised by the proper time. When using an affine parameter the four-velocity is normalised, meaning: µ ν ( µ dx dx −1 for massive particles UµU = gµν = (1.5) dτ dτ 0 for massless particles This normalisation condition and the geodesic equations can be combined into a set of differential equations for the path xµ(λ). When there are symmetries present in the metric, conserved quantities can be obtained through Killing vectors that can make solving these differential equations much easier. A Killing vector is the vector in the direction of the symmetry. For example, if a metric has a time-translation symmetry, Kµ = (1; 0; 0; 0) is the appropriate Killing vector. The conserved quantity associated with this symmetry is energy, which can be derived from the following equation. For any Killing vector: dxν dxν K = g Kµ = const: (1.6) ν dλ µν dλ The equations above will aid us in finding the dynamics of any system we might wish to describe, in particular when we look at the angular velocity and the orbits of the metrics we are going to study. 1.2 The Einstein equations Of course, we cannot just pick any function for the line element. To make sure that the metric describes a system where mass and energy are the source of the curvature of spacetime, it has to obey the Einstein field equations. For these equations we first need the Riemann tensor: ρ ρ ρ ρ λ ρ λ Rσµν = @µΓνσ − @ν Γµσ + ΓµλΓνσ − ΓνλΓµσ: (1.7) We can internally contract indices to obtain the Ricci tensor and Ricci scalar, respectively: λ µ µν Rµν = Rµλν and R = R µ = g Rµν (1.8) The Einstein equations can then be written as 6 1 R = 8πG T − T g : (1.9) µν µν 2 µν In these equations G is Newton's constant of gravitation (which will be set to 1), µν Tµν is the energy-momentum tensor and T = g Tµν is its trace. This tensor contains all the information of the matter content of the system we want to describe. We will use it later to describe a flat disk of dust, but it could also be used to represent for example a vacuum.
Recommended publications
  • Primordial Black Hole Evaporation and Spontaneous Dimensional Reduction
    Physics Faculty Works Seaver College of Science and Engineering 9-17-2012 Primordial Black Hole Evaporation And Spontaneous Dimensional Reduction Jonas R. Mureika Loyola Marymount University, [email protected] Follow this and additional works at: https://digitalcommons.lmu.edu/phys_fac Part of the Physics Commons Recommended Citation Mureika J. Primordial black hole evaporation and spontaneous dimensional reduction. Physics Letters B. 2012;716:171-175. This Article is brought to you for free and open access by the Seaver College of Science and Engineering at Digital Commons @ Loyola Marymount University and Loyola Law School. It has been accepted for inclusion in Physics Faculty Works by an authorized administrator of Digital Commons@Loyola Marymount University and Loyola Law School. For more information, please contact [email protected]. Physics Letters B 716 (2012) 171–175 Contents lists available at SciVerse ScienceDirect Physics Letters B www.elsevier.com/locate/physletb Primordial black hole evaporation and spontaneous dimensional reduction J.R. Mureika Department of Physics, Loyola Marymount University, Los Angeles, CA 90045, United States article info abstract Article history: Several different approaches to quantum gravity suggest the effective dimension of spacetime reduces Received 15 May 2012 from four to two near the Planck scale. In light of such evidence, this Letter re-examines the Received in revised form 6 August 2012 thermodynamics of primordial black holes (PBHs) in specific lower-dimensional gravitational models. Accepted 15 August 2012 Unlike in four dimensions, (1 + 1)-D black holes radiate with power P ∼ M2 , while it is known no Available online 17 August 2012 BH (2 + 1)-D (BTZ) black holes can exist in a non-anti-de Sitter universe.
    [Show full text]
  • The Emergence of Gravitational Wave Science: 100 Years of Development of Mathematical Theory, Detectors, Numerical Algorithms, and Data Analysis Tools
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 53, Number 4, October 2016, Pages 513–554 http://dx.doi.org/10.1090/bull/1544 Article electronically published on August 2, 2016 THE EMERGENCE OF GRAVITATIONAL WAVE SCIENCE: 100 YEARS OF DEVELOPMENT OF MATHEMATICAL THEORY, DETECTORS, NUMERICAL ALGORITHMS, AND DATA ANALYSIS TOOLS MICHAEL HOLST, OLIVIER SARBACH, MANUEL TIGLIO, AND MICHELE VALLISNERI In memory of Sergio Dain Abstract. On September 14, 2015, the newly upgraded Laser Interferometer Gravitational-wave Observatory (LIGO) recorded a loud gravitational-wave (GW) signal, emitted a billion light-years away by a coalescing binary of two stellar-mass black holes. The detection was announced in February 2016, in time for the hundredth anniversary of Einstein’s prediction of GWs within the theory of general relativity (GR). The signal represents the first direct detec- tion of GWs, the first observation of a black-hole binary, and the first test of GR in its strong-field, high-velocity, nonlinear regime. In the remainder of its first observing run, LIGO observed two more signals from black-hole bina- ries, one moderately loud, another at the boundary of statistical significance. The detections mark the end of a decades-long quest and the beginning of GW astronomy: finally, we are able to probe the unseen, electromagnetically dark Universe by listening to it. In this article, we present a short historical overview of GW science: this young discipline combines GR, arguably the crowning achievement of classical physics, with record-setting, ultra-low-noise laser interferometry, and with some of the most powerful developments in the theory of differential geometry, partial differential equations, high-performance computation, numerical analysis, signal processing, statistical inference, and data science.
    [Show full text]
  • Generalizations of the Kerr-Newman Solution
    Generalizations of the Kerr-Newman solution Contents 1 Topics 1035 1.1 ICRANetParticipants. 1035 1.2 Ongoingcollaborations. 1035 1.3 Students ............................... 1035 2 Brief description 1037 3 Introduction 1039 4 Thegeneralstaticvacuumsolution 1041 4.1 Line element and field equations . 1041 4.2 Staticsolution ............................ 1043 5 Stationary generalization 1045 5.1 Ernst representation . 1045 5.2 Representation as a nonlinear sigma model . 1046 5.3 Representation as a generalized harmonic map . 1048 5.4 Dimensional extension . 1052 5.5 Thegeneralsolution . 1055 6 Tidal indicators in the spacetime of a rotating deformed mass 1059 6.1 Introduction ............................. 1059 6.2 The gravitational field of a rotating deformed mass . 1060 6.2.1 Limitingcases. 1062 6.3 Circularorbitsonthesymmetryplane . 1064 6.4 Tidalindicators ........................... 1065 6.4.1 Super-energy density and super-Poynting vector . 1067 6.4.2 Discussion.......................... 1068 6.4.3 Limit of slow rotation and small deformation . 1069 6.5 Multipole moments, tidal Love numbers and Post-Newtonian theory................................. 1076 6.6 Concludingremarks . 1077 7 Neutrino oscillations in the field of a rotating deformed mass 1081 7.1 Introduction ............................. 1081 7.2 Stationary axisymmetric spacetimes and neutrino oscillation . 1082 7.2.1 Geodesics .......................... 1083 1033 Contents 7.2.2 Neutrinooscillations . 1084 7.3 Neutrino oscillations in the Hartle-Thorne metric . 1085 7.4 Concludingremarks . 1088 8 Gravitational field of compact objects in general relativity 1091 8.1 Introduction ............................. 1091 8.2 The Hartle-Thorne metrics . 1094 8.2.1 The interior solution . 1094 8.2.2 The Exterior Solution . 1096 8.3 The Fock’s approach . 1097 8.3.1 The interior solution .
    [Show full text]
  • Polarizable-Vacuum (PV) Representation of General Relativity
    Polarizable-Vacuum (PV) representation of general relativity H. E. Puthoff Institute for Advanced Studies at Austin 4030 W. Braker Lane, Suite 300, Austin, Texas 78759 [email protected] ABSTRACT Standard pedagogy treats topics in general relativity (GR) in terms of tensor formulations in curved space-time. Although mathematically straightforward, the curved space-time approach can seem abstruse to beginning students due to the degree of mathematical sophistication required. As a heuristic tool to provide insight into what is meant by a curved metric, we present a polarizable-vacuum (PV) representation of GR derived from a model by Dicke and related to the "THεµ" formalism used in comparative studies of gravitational theories. I. INTRODUCTION Textbook presentations treat General Relativity (GR) in terms of tensor formulations in curved space-time. Such an approach captures in a concise and elegant way the interaction between masses, and their consequent motion. "Matter tells space how to curve, and space tells matter how to move [1]." Although conceptually straightforward, the curved space-time approach can seem rather abstract to beginning students, and often lacking in intuitive appeal. During the course of development of GR over the years, however, alternative approaches have emerged that provide convenient methodologies for investigating metric changes in less abstract formalisms, and which yield heuristic insight into what is meant by a curved metric. One approach that has a long history in GR studies, and that does have intuitive appeal, is what can be called the polarizable-vacuum (PV) representation of GR. Introduced by Wilson [2] and developed further by Dicke [3], the PV approach treats metric changes in terms of equivalent changes in the permittivity and permeability constants of the vacuum, εo and µo, essentially along the lines of the so-called "THεµ" methodology used in comparative studies of gravitational theories [4-6].
    [Show full text]
  • The Newtonian Limit of Spacetimes Describing Uniformly Accelerated
    The Newtonian limit of spacetimes describing uniformly accelerated particles Ruth Lazkoz ∗ Fisika Teorikoaren eta Zientziaren Historiaren Saila Euskal Herriko Unibertsitatea 644 Posta Kutxatila 48080 Bilbao, Spain Juan Antonio Valiente Kroon †‡ Max-Planck Institut f¨ur Gravitationsphysik, Albert Einstein Institut, Am M¨uhlenberg 1, 14476 Golm, Germany. October 30, 2018 Abstract We discuss the Newtonian limit of boost-rotation symmetric spacetimes by means of the Ehlers’ frame theory. Conditions for the existence of such a limit are given and, in particular, we show that asymptotic flatness is an essential requirement. Consequently, generalized boost-rotation symmetric spacetimes describing particles moving in uniform fields will not possess such a limit. In the cases where the boost-rotation symmetric spacetime is asymptotically flat and its Newtonian limit exists, then the (Newtonian) gravitational potential agrees with the potential suggested by the weak field approximation. We illustrate our discussion through some examples: the Curzon-Chazy particle solution, the generalized Bonnor-Swaminarayan solution, and the C metric. arXiv:gr-qc/0208074v2 28 May 2003 PACS: 04.20.Jb, 04.25.Nx, 04.20.Cv 1 Introduction Boost-rotation symmetric spacetimes can be thought of as describing uniformly accelerated parti- cles. The uniform acceleration can in some cases be interpreted as due to an external field, and in other cases as the outcome of self-accelerations produced by the presence of positive an negative masses, or even as the effect of a strut connecting pairs of particles. Precisely these last two types of models comprise the only known classes of exact solutions to the Einstein field equations which are locally asymptotically flat, in the sense that they possess sections of null infinity which are spherical, but null infinity is not complete because some of its generators are not complete.
    [Show full text]
  • Arxiv:Gr-Qc/0112028V3 28 May 2002
    Sergiu Vacaru and Panayiotis Stavrinos SPINORS and SPACE–TIME ANISOTROPY arXiv:gr-qc/0112028v3 28 May 2002 University of Athens, 2002 ————————————————— c Sergiu Vacaru and Panyiotis Stavrinos ii ... iii ABOUT THE BOOK This is the first monograph on the geometry of anisotropic spinor spaces and its applications in modern physics. The main subjects are the theory of grav- ity and matter fields in spaces provided with off–diagonal metrics and asso- ciated anholonomic frames and nonlinear connection structures, the algebra and geometry of distinguished anisotropic Clifford and spinor spaces, their extension to spaces of higher order anisotropy and the geometry of gravity and gauge theories with anisotropic spinor variables. The book summarizes the authors’ results and can be also considered as a pedagogical survey on the mentioned subjects. iv - v ABOUT THE AUTHORS Sergiu Ion Vacaru was born in 1958 in the Republic of Moldova. He was educated at the Universities of the former URSS (in Tomsk, Moscow, Dubna and Kiev) and reveived his PhD in theoretical physics in 1994 at ”Al. I. Cuza” University, Ia¸si, Romania. He was employed as principal senior researcher, as- sociate and full professor and obtained a number of NATO/UNESCO grants and fellowships at various academic institutions in R. Moldova, Romania, Germany, United Kingdom, Italy, Portugal and USA. He has published in English two scientific monographs, a university text–book and more than hundred scientific works (in English, Russian and Romanian) on (super) gravity and string theories, extra–dimension and brane gravity, black hole physics and cosmolgy, exact solutions of Einstein equations, spinors and twistors, anistoropic stochastic and kinetic processes and thermodynamics in curved spaces, generalized Finsler (super) geometry and gauge gravity, quantum field and geometric methods in condensed matter physics.
    [Show full text]
  • The Newtonian Limit of General Relativity
    The Newtonian Limit of General Relativity Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften an der Fakult¨atMathematik und Physik der Eberhard-Karls-Universit¨atT¨ubingen vorgelegt von Maren Reimold aus N¨ordlingen Unterst¨utztdurch das Evangelische Studienwerk Villigst e.V. T¨ubingen,September 3, 2010 Contents Deutsche Zusammenfassung 3 Introduction 5 0.1 Transitions from tangent and cotangent space and induced connections 8 0.2 Concepts of curvature . 9 0.3 Newton's theory of gravitation and Einstein's theory of relativity . 13 1 Frame theory 19 1.1 The structure of the frame theory . 19 1.2 Linear Algebra . 23 1.3 Transfer to the frame theory . 30 1.4 The case λ =0 ............................. 34 2 The Newtonian limit: definition and existence 63 2.1 Definition of the Newtonian limit . 63 2.2 Extension of spacetimes . 66 2.3 Examples . 66 2.4 Existence of a limit . 75 2.5 Static and spherically symmetric spacetimes . 82 3 Existence of genuine Newtonian limits 95 3.1 Transformation of coordinates . 96 3.2 Conditions for the curvature tensor . 103 3.3 Asymptotically flat spacetimes . 106 A Appendix 121 A.1 The Schwarzschild spacetime . 121 A.2 The Kerr spacetime . 128 Index 151 Bibliography 153 1 Deutsche Zusammenfassung So lange es die Allgemeine Relativit¨atstheoriegibt, so lange gibt es auch die zugeh¨origeFrage, inwieweit man die Newtonsche Gravitationstheorie als einen Spezialfall oder doch wenigstens als eine Grenzlage der Allgemeinen Relativit¨ats- theorie auffassen kann. Schon am 18. November 1915, eine Woche bevor
    [Show full text]
  • General Relativity 2020–2021 1 Overview
    N I V E R U S E I T H Y T PHYS11010: General Relativity 2020–2021 O H F G E R D John Peacock I N B U Room C20, Royal Observatory; [email protected] http://www.roe.ac.uk/japwww/teaching/gr.html Textbooks These notes are intended to be self-contained, but there are many excellent textbooks on the subject. The following are especially recommended for background reading: Hobson, Efstathiou & Lasenby (Cambridge): General Relativity: An introduction for Physi- • cists. This is fairly close in level and approach to this course. Ohanian & Ruffini (Cambridge): Gravitation and Spacetime (3rd edition). A similar level • to Hobson et al. with some interesting insights on the electromagnetic analogy. Cheng (Oxford): Relativity, Gravitation and Cosmology: A Basic Introduction. Not that • ‘basic’, but another good match to this course. D’Inverno (Oxford): Introducing Einstein’s Relativity. A more mathematical approach, • without being intimidating. Weinberg (Wiley): Gravitation and Cosmology. A classic advanced textbook with some • unique insights. Downplays the geometrical aspect of GR. Misner, Thorne & Wheeler (Princeton): Gravitation. The classic antiparticle to Weinberg: • heavily geometrical and full of deep insights. Rather overwhelming until you have a reason- able grasp of the material. It may also be useful to consult background reading on some mathematical aspects, especially tensors and the variational principle. Two good references for mathematical methods are: Riley, Hobson and Bence (Cambridge; RHB): Mathematical Methods for Physics and Engi- • neering Arfken (Academic Press): Mathematical Methods for Physicists • 1 Overview General Relativity (GR) has an unfortunate reputation as a difficult subject, going back to the early days when the media liked to claim that only three people in the world understood Einstein’s theory.
    [Show full text]
  • A Festschrift for Thomas Erber
    Physics:Doing A Festschrift For Thomas Erber Edited by Porter Wear Johnson GC(2251)_PhysicsBookCvr10.indd 1 9/15/10 10:33 AM Doing Physics: A Festschrift for Tom Erber Edited by Porter Wear Johnson Illinois Institute of Technology IIT Press Doing Physics: A Festschrift For Thomas Erber edited by Porter Wear Johnson Published by: IIT Press 3300 S. Federal St., 301MB Chicago, IL 60616 Copyright °c 2010 IIT Press All rights reserved. No part of this book, including interior design, cover design, and icons, may be reproduced or transmitted in any form, by any means (electronic, photo- copying, recording, or otherwise) without the prior written permission of the publisher. ISBN: 1-61597-000-2 Series Editor: Technical Editor: Sudhakar Nair Julia Chase Editorial Board David Arditi Roya Ayman Krishna Erramilli Porter Wear Johnson Harry Francis Mallgrave Mickie Piatt Katherine Riley Keiicho Sato Vincent Turitto Geo®rey Williamson Doing Physics: A Festschrift for Tom Erber Preface \Au¼ertenÄ wir oben, da¼ die Geschichte des Menschen den Menschen darstelle, so lÄa¼tsich hier auch wohl behaupten, da¼ die Geschichte der Wissenschaft die Wissenschaft selbst sei." Goethe, Zur Farbenlehre: Vorwort (1808) It is widely asserted that the great physicists who grasped the full unity of physics are all dead, having been replaced in this age of specialization by sci- entists who have a deep understanding only for issues of rather limited scope. Indeed, it is di±cult to refute such a viewpoint today, at the end of the ¯rst decade of the twenty-¯rst century. The unifying principles of the quantum the- ory and relativity are part of the ethos of physics, but fragmented development in various disjointed areas has characterized the past several decades of progress.
    [Show full text]
  • Axisymmetric Spacetimes in Relativity
    9, tr' Axisymmetric Spacetimes in Relativity S. P. Drake Department of Physics and Mathematical Physics îåäi,î31 tÏfåi" Australia 22 July 1998 ACKNO\MTEDGEMENTS It is an unfortunate fact that only my name Soes on this thesis' This is not the work of one person, it is an accumulation of the labor of many' AII those who have helped me in ways that none of us could image should be acknowledged, but how. None of this would have been possible were it not for the wisdom and guidance of my supervisor Peter Szekeres. I have often pondered over the difficulty of supervising students. It must be heart-bleaking to watch as students make necessary mistakes. Patience I'm sure must be the key' So for his wisdom, patience and kindness I am deeply indebted to Peter Szekeres. Without the love and support of my family this thesis would never have begun, much less been completed, to them I owe my life, and all that comes with it. It would take too long to write the names of all those I wish to thank. Those who are special to me, have helped me through so much over the years will receive the thanks in Person. I would like to the department of physics here at Adelaide where most of my thesis work was done. I would like to thank the department of physics at Melbourne university, where I did my undergraduate degree and began my PhD. I would like to thank the university of Padova for there hospitality dur- ing my stay there.
    [Show full text]
  • Simultaneous Determination of Mass Parameter and Radial Marker
    Simultaneous determination of mass parameter and radial marker in Schwarzschild geometry Victor Varela∗ [email protected] Lorenzo Leal Centro de F´ısica Te´orica y Computacional, Facultad de Ciencias, Universidad Central de Venezuela, Caracas, Venezuela [email protected], lleal@fisica.ciens.ucv.ve June 1, 2021 Abstract We show that mass parameter and radial coordinate values can be indirectly measured in thought experiments performed in Schwarzschild spacetime, without using the New- tonian limit of general relativity or approximations based on Euclidean geometry. Our approach involves different proper time quantifications as well as solutions to systems of algebraic equations, and aims to strengthen the conceptual independence of general relativity from Newtonian gravity. 1 Introduction The static, spherically symmetric Schwarzschild metric is the most fundamental exact solu- tion to Einstein’s equations beyond flat spacetime. Its physical applications often require arXiv:2105.11349v2 [gr-qc] 31 May 2021 knowledge of the mass parameter m and the radial marker r of one or more events. General relativity textbooks usually implement the Newtonian limit to identify m with Newtonian gravitational mass M multiplied by known constants. Specifically, it is noticed that the approximate, relativistic (geodesic) equation of motion of slow test particles in a weak, non-rotating gravitational field resembles Newton’s equation of motion [1]. This suggests an asymptotic association of the Schwarzschild solution with the geometry of pre- relativistic physics1. However, the Schwarzschild metric approaches the Minkowski line el- ement in faraway spatial regions, so the light cone structure persists and the spacetime of Newtonian physics does not emerge as a limiting case.
    [Show full text]
  • Lecture Notes on General Relativity Sean M
    Lecture Notes on General Relativity Sean M. Carroll Institute for Theoretical Physics University of California Santa Barbara, CA 93106 [email protected] December 1997 Abstract These notes represent approximately one semester’s worth of lectures on intro- ductory general relativity for beginning graduate students in physics. Topics include manifolds, Riemannian geometry, Einstein’s equations, and three applications: grav- itational radiation, black holes, and cosmology. Individual chapters, and potentially updated versions, can be found at http://itp.ucsb.edu/~carroll/notes/. arXiv:gr-qc/9712019v1 3 Dec 1997 NSF-ITP/97-147 gr-qc/9712019 i Table of Contents 0. Introduction table of contents — preface — bibliography 1. Special Relativity and Flat Spacetime the spacetime interval — the metric — Lorentz transformations — spacetime diagrams — vectors — the tangent space — dual vectors — tensors — tensor products — the Levi-Civita tensor — index manipulation — electromagnetism — differential forms — Hodge duality — worldlines — proper time — energy-momentum vector — energy- momentum tensor — perfect fluids — energy-momentum conservation 2. Manifolds examples — non-examples — maps — continuity — the chain rule — open sets — charts and atlases — manifolds — examples of charts — differentiation — vectors as derivatives — coordinate bases — the tensor transformation law — partial derivatives are not tensors — the metric again — canonical form of the metric — Riemann normal coordinates — tensor densities — volume forms and integration 3. Curvature
    [Show full text]