Open Source Firmware in the Bare-Metal Cloud Scott Burns Senior Director of Research and Development

Total Page:16

File Type:pdf, Size:1020Kb

Open Source Firmware in the Bare-Metal Cloud Scott Burns Senior Director of Research and Development Open Source Firmware in the Bare-Metal Cloud Scott Burns Senior Director of Research and Development packet.com / @packethost Greetings, OSFC 2019! A great place to collaborate on the future of open source firmware packet.com / @packethost What is Packet? ● Packet is a bare-metal cloud computing provider packet.com / @packethost What is Packet? ● Packet is a bare-metal cloud computing provider ● Minimum unit is a full server packet.com / @packethost What is Packet? ● Packet is a bare-metal cloud computing provider ● Minimum unit is a full server ● Different server “sizes” are available packet.com / @packethost What is Packet? ● Packet is a bare-metal cloud computing provider ● Minimum unit is a full server ● Different server “sizes” are available ● Direct access to server, without virtualization packet.com / @packethost What is Packet? ● Packet is a bare-metal cloud computing provider ● Minimum unit is a full server ● Different server “sizes” are available ● Direct access to server, without virtualization ● Bring your own virtualization if you like! packet.com / @packethost What is Packet? ● Packet is a bare-metal cloud computing provider ● Minimum unit is a full server ● Different server “sizes” are available ● Direct access to server, without virtualization ● Bring your own virtualization if you like! ● Proud to support open source organizations such as Linux Foundation and Cloud Native Computing Foundation packet.com / @packethost Open Source Firmware BMC: ● OpenBMC ● u-bmc BIOS: ● Coreboot ● TianoCore ● LinuxBoot ● SeaBIOS ● TrustedFirmware.org packet.com / @packethost Open Source BMC Firmware ● OpenBMC ● u-bmc packet.com / @packethost OpenBMC ● Facebook OpenBMC ○ Prototyped in 2014 ○ Released in 2015 ○ https://github.com/facebook/openbmc packet.com / @packethost OpenBMC ● Facebook OpenBMC ○ Prototyped in 2014 ○ Released in 2015 ○ https://github.com/facebook/openbmc ● IBM OpenBMC ○ Released in 2015 ○ https://github.com/openbmc/openbmc packet.com / @packethost OpenBMC ● Facebook OpenBMC ● IBM OpenBMC ● Linux Foundation OpenBMC ○ Released in 2018 ○ Facebook, Google, IBM, Intel, Microsoft ○ https://github.com/openbmc/openbmc packet.com / @packethost u-bmc ● Released in 2018 ● Based on the Go language ● Built on u-root ● Replaces IPMI with gRPC packet.com / @packethost Replacing proprietary BMC firmware How do we replace proprietary BMC firmware with an open source image? packet.com / @packethost Physical access packet.com / @packethost Physical access SOIC clip + Raspberry Pi packet.com / @packethost Physical access SOIC clip + Raspberry Pi Fine for prototyping, but doesn’t scale packet.com / @packethost socflash (for Aspeed BMCs) ● Runs on host system ● Bypasses BMC software stack packet.com / @packethost socflash (for Aspeed BMCs) ● Runs on host system ● Bypasses BMC software stack ● Recent firmware disables this feature packet.com / @packethost Vendor image format ● Server vendors provide BMC firmware in a proprietary format packet.com / @packethost Vendor image format ● Server vendors provide BMC firmware in a proprietary format ● In most cases, the format is easy to reverse engineer packet.com / @packethost Vendor image format ● Server vendors provide BMC firmware in a proprietary format ● In most cases, the format is easy to reverse engineer ● It’s possible to modify vendor-provided firmware packet.com / @packethost Vendor image format ● Server vendors provide BMC firmware in a proprietary format ● In most cases, the format is easy to reverse engineer ● It’s possible to modify vendor-provided firmware ● Modified firmware can be used for raw flash access packet.com / @packethost Porting BMC firmware ● Many servers use the same BMC SOC, but they connect it in different ways packet.com / @packethost Porting BMC firmware ● Many servers use the same BMC SOC, but they connect it in different ways ● To port to a new model, we need to know the device tree and sensor list packet.com / @packethost Porting BMC firmware ● Many servers use the same BMC SOC, but they connect it in different ways ● To port to a new model, we need to know the device tree and sensor list ● Many of these details can be extracted from the vendor’s firmware image packet.com / @packethost Open Source BIOS ● Coreboot ● TianoCore ● LinuxBoot ● SeaBIOS ● TrustedFirmware.org packet.com / @packethost Coreboot ● Basic hardware initialization only ● Load a payload for more advanced functionality packet.com / @packethost TianoCore ● Most UEFI implementations are based on TianoCore EDK2 ● Works as Coreboot payload packet.com / @packethost LinuxBoot ● Partial UEFI implementation on Linux kernel ● Works as Coreboot payload packet.com / @packethost SeaBIOS ● Legacy x86 BIOS implementation ● Works as Coreboot payload packet.com / @packethost TrustedFirmware.org ● Open Source reference implementation for Arm secure world ● Contributed by Arm ● Maintained by Linaro ● Can be integrated with Coreboot packet.com / @packethost Flexible boot ● Initialize hardware with Coreboot ● Load appropriate payload on-demand ● Coordinate with BMC to select payload packet.com / @packethost Benefits of open source BIOS for bare metal ● Check option ROM and UEFI driver hash before loading ● Ignore unneeded option ROMs and UEFI drivers ● Fast! Boot in seconds instead of minutes ● Ability to add custom system management interrupt handlers ● Integration with open source BMC firmware ● Anything we can think of! packet.com / @packethost System Management Mode ● “Ring -2” on x86 ● Higher privilege than OS (ring 0) or even hypervisor (ring -1) ● OS/hypervisor can’t access SMM memory ● OS/hypervisor can’t disable System Management Interrupts ● Originally used for power management ● Can be used for security features packet.com / @packethost Flash monitoring with System Management Mode ● Configure chipset to generate SMI on flash access ● SMI handler installed by Coreboot (or later payload) ● Combine with open source BMC to send real-time alert packet.com / @packethost Open hardware ● Improved security is possible with additional hardware ● Security controller can protect firmware for CPU, BMC, NIC, etc. ● Hold system in reset until early firmware is verified ● Provide multiple SPI bus lines for devices ● Emulate multiple flash chips while sharing just one ● Compression: firmware images often waste a lot of space ● Could build on Microsoft Project Cerberus ● Packet prototype design based on small, non-volatile FPGA packet.com / @packethost Bonus topics ● SmartNIC firmware ● Easier hardware access for firmware developers ● Collaboration with server vendors packet.com / @packethost Special thanks to Packet colleagues Manny Mendez Carl Perry My Truong packet.com / @packethost Questions? Scott Burns Senior Director of R&D [email protected] packet.com / @packethost .
Recommended publications
  • Status Update on PCI Express Support in Qemu
    Status Update on PCI Express Support in QEmu Isaku Yamahata, VA Linux Systems Japan K.K. <[email protected]> Xen Summit North America April 28, 2010 Agenda ● Introduction ● Usage and Example ● Implementation Details ● Future Work ● Considerations on further development issues Introduction From http://en.wikipedia.org/wiki/PCI_Express PCI Express native Hotplug Electro Mechanical Lock(EMI) Slot Number From http://docs.hp.com/ Eventual Goal Dom0 qemu-dm interrupt root DomU Inject the error up Virtual PCIe Bus down Interrupt to notify the error Xen VMM hardware PCI express bus PCI Express root port PCI Express upstream port PCI Express Error Message native passthrough PCI Express downstream port With native hot plug support Error PCI Express device Eventual Goal ● More PCI features/PCI express features – The current emulated chipset(I440FX/PIIX3) is too old. – So new Chipset emulator is wanted. ● Xen PCI Express support – PCI Express native hotplug – PCI Express native passthourgh ● When error is detected via AER(Advanced Error Reporting), inject the error into the guest. ● these require several steps, so the first step is... First Phase Goal ● Make Qemu PCI Express ready – Introduce new chipset emulator(Q35) ● PCI Express native hot plug ● Implement PCI Express port emulators, and make it possible to inject errors into guest Current status Qemu/PCI express ● PCIe MMCONFIG Merged. the qemu/guest Q35 chipset base working PCIe portemulator working PCIe native hotplug working firmware PCIe AER WIP PCIe error injection WIP VBE paravirtualization working enhancement is seabios mcfg working almost done. e820 working host bridge initiazatlin working ● pci io/memory The next step is space initialization working passing acpi table outside qemu working qemu upstream vgabios VBE paravirtualization working merge.
    [Show full text]
  • Bringing the Openbmc for Platform Manage- Ment System in Telco Cloud
    Rongqiang Zhang Bringing the OpenBMC for Platform Manage- ment System in Telco Cloud Helsinki Metropolia University of Applied Sciences Master of Engineering Information Technology Master’s Thesis 30 Apr 2019 Abstract Rongqiang Zhang Author(s) Bringing the OpenBMC for Platform Man-agement System in Title Telco Cloud Number of Pages 88 pages + 0 appendices Date 30 Apr 2019 Degree Master of Engineering Degree Programme Information Technology Specialisation option Networking and Services Ville Jääskeläinen, Head of Degree Program Instructor(s) Zinaida Grabovskaia, PhL, Senior Lecturer Antti Koivumäki, Senior Lecturer Ari Helminen, Business Manager The current platform management system in Telco cloud infrastructure is based on closed firmware stack. With the upcoming 5G, this closed firmware stack has created several tech- nology and business problems. The major problems are hardware-software vendor lock-in, long lead time for feature development and bug fixing, and security risks. The objective of this study is to evaluate the possibility to bring an Open Source software stack for platform management system and baseboard management controller in Telco cloud. The study was divided into 3 parts. First part is to analyse the current state and project specification. Second part is to introduce and evaluate the OpenBMC, an open source soft- ware stack for the objective of this study. Third part is Proof of Concept to run OpenBMC on Telco. Keywords BMC, 5G, NFV, Redfish, Security Table of Contents Abstract List of Abbreviations 1 Introduction
    [Show full text]
  • CS3210: Booting and X86
    1 CS3210: Booting and x86 Taesoo Kim 2 What is an operating system? • e.g. OSX, Windows, Linux, FreeBSD, etc. • What does an OS do for you? • Abstract the hardware for convenience and portability • Multiplex the hardware among multiple applications • Isolate applications to contain bugs • Allow sharing among applications 3 Example: Intel i386 4 Example: IBM T42 5 Abstract model (Wikipedia) 6 Abstract model: CPU, Memory, and I/O • CPU: execute instruction, IP → next IP • Memory: read/write, address → data • I/O: talk to external world, memory-mapped I/O or port I/O I/O: input and output, IP: instruction pointer 7 Today: Bootstrapping • CPU → what's first instruction? • Memory → what's initial code/data? • I/O → whom to talk to? 8 What happens after power on? • High-level: Firmware → Bootloader → OS kernel • e.g., jos: BIOS → boot/* → kern/* • e.g., xv6: BIOS → bootblock → kernel • e.g., Linux: BIOS/UEFI → LILO/GRUB/syslinux → vmlinuz • Why three steps? • What are the handover protocols? 9 BIOS: Basic Input/Output System • QEMU uses an opensource BIOS, called SeaBIOS • e.g., try to run, qemu (with no arguments) 10 From power-on to BIOS in x86 (miniboot) • Set IP → 4GB - 16B (0xfffffff0) • e.g., 80286: 1MB - 16B (0xffff0) • e.g., SPARCS v8: 0x00 (reset vector) DEMO : x86 initial state on QEMU 11 The first instruction • To understand, we first need to understand: 1. x86 state (e.g., registers) 2. Memory referencing model (e.g,. segmentation) 3. BIOS features (e.g., memory aliasing) (gdb) x/1i 0xfffffff0 0xfffffff0: ljmp $0xf000,$0xe05b 12 x86
    [Show full text]
  • Server Base Manageability Requirements 1.0 Platform Design Document Non-Confidential
    Arm® Server Base Manageability Requirements 1.0 Platform Design Document Non-confidential Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Document number: DEN0069B Server Base Manageability Requirements Server Base Manageability Requirements Copyright © 2020 Arm Limited or its affiliates. All rights reserved. Release inormation The Change History table lists the changes made to this document. Table 1-1 Change history Date Issue Confidentiality Change 30 January 2020 A Non-Confidential Initial release, SBMR 1.0 15 June 2020 B Non-Confidential License LES-PRE-21585 Page 2 of 45 Copyright © 2020 Arm Limited or its affiliates. All rights reserved. DEN0069B 1.0 Server Base Manageability Requirements Arm Non-Confidential Document Licence (“Licence”) This Licence is a legal agreement between you and Arm Limited (“Arm”) for the use of the document accompanying this Licence (“Document”). Arm is only willing to license the Document to you on condition that you agree to the terms of this Licence. By using or copying the Document you indicate that you agree to be bound by the terms of this Licence. If you do not agree to the terms of this Licence, Arm is unwilling to license this Document to you and you may not use or copy the Document. “Subsidiary” means any company the majority of whose voting shares is now or hereafter owner or controlled, directly or indirectly, by you. A company shall be a Subsidiary only for the period during which such control exists. This Document is NON-CONFIDENTIAL and any use by you and your Subsidiaries (“Licensee”) is subject to the terms of this Licence between you and Arm.
    [Show full text]
  • OCP's Rack Manager Controller Subproject (Openrmc)
    OSF-OpenRMC OCP's Rack Manager Controller subproject (OpenRMC) John Leung, Principle Engineer Intel Corporation Han Wang, Senior Architect Inspur OpenRMC Overview OpenRMC OPENRMC • Goals and Motivation • Logistics and meetings Specifications Status • Reviewed of existing rack management implementations Embedded • Specifying interface and requirements Software • Received Code Contributions RMC for openEdge Platform to DC The OpenRMC Goals manager Specify the Rack Manager Controller service RMC Client interfaces • Northbound interface to datacenter manager (spec) Redfish • Southbound interface requirements to OCP Northbound Interface platforms in the rack Rack Manager Controller Deliver a Rack Manager implementation Service • Available as open source Southbound Interface OCP compliant hardware designs I2C IPMI Redfish • Handled by other OCP projects to OCP platforms Motivation for OpenRMC RMC Rack Mgr Service Controller 1. System Firmware (BIOS) 3 In-band • OCP System Firmware project SW OS 2. BMC Firmware Agent Out-of-band • OpenBMC governed by Linux Foundation (Redfish) 3. Rack Manager Software/Firmware BIOS CPU NIC 1 • OCP OpenRMC NC-SI BMC FW BMC 2 • With OpenBMC, the industry unified the various repositories in 2018 device other • With rack manager, OCP will provide a device source repository and prevent splintering Server The RMC can be hosted in various locations OpenRACK EIA, OpenRACK Olympus (within power shelf) (within switch) (standalone) Switch RMC FW Switch w/ RMC FW Switch Power Shelf w/ RMC FW Server Server Server Server
    [Show full text]
  • Openbmc Overview
    Andrew Geissler [email protected] What is a BMC? ▶ BMC – Baseboard Management Controller ▶ Separate uproc (eg. AST 2500) with dedicated RAM and Flash ▶ Provides ▶ System Power/thermal control ▶ Out of Band management ▶ IPMI, REST, etc ▶ Data collection ▶ Debug ▶ GUI and Command line ▶ Interfaces to Host/OCC ▶ System error logging ▶ Based on OpenEmbedded technologies built via Yocto ▶ Embedded Linux stack ▶ Linux Kernel 4.10….4.18, Yocto 2.3…2.6, python, SSH ▶ Applications communicate via D-Bus ▶ Users communicate via REST, IPMI and GUI ▶ Reports externally to management entity ▶ No customer network functional interaction What is the OpenBMC Project Free open source software management Linux distribution designed for the embedded environment … OpenPOWER Eco-system Enablement Industry Collaboration Quality Solutions Reduce Redundant Effort Openness -- provides proof of security Part of Linux Foundation What is OpenBMC ▶ 100% compatible with OpenPOWER Hostboot/Opal/OCC ▶ Aka BIOS ▶ https://github.com/open-power/op-build ▶ Can simply be a reference implementation ▶ Currently runs on… ▶ Barreleye, S822LC, S822LC For HPC, P8 Reference ▶ Witherspoon -- P9 AC922LC Power AI and CORAL ▶ P9 reference boards ▶ AST2400 and AST2500 BMC hardware Core Infrastructure of the OpenBMC Project Control the Functions in your OpenBMC… ▶ Built on Yocto-Linux ▶ YAML/XML input for system configuration Infrastructure at the ready ▶ Process management Systemd ▶ IPC via D-Bus ▶ External Interfaces via REST, IPMI, GUI ▶ Journaling for Trace/debug ▶ Code update ▶ Code
    [Show full text]
  • Kshot: Live Kernel Patching with SMM and SGX
    KShot: Live Kernel Patching with SMM and SGX Lei Zhou∗y, Fengwei Zhang∗, Jinghui Liaoz, Zhengyu Ning∗, Jidong Xiaox Kevin Leach{, Westley Weimer{ and Guojun Wangk ∗Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China, zhoul2019,zhangfw,ningzy2019 @sustech.edu.cn f g ySchool of Computer Science and Engineering, Central South University, Changsha, China zDepartment of Computer Science, Wayne State University, Detroit, USA, [email protected] xDepartment of Computer Science, Boise State University, Boise, USA, [email protected] Department of Computer Science and Engineering, University of Michigan, Ann Arbor, USA, kjleach,weimerw @umich.edu { f g kSchool of Computer Science and Cyber Engineering, Guangzhou University, Guangzhou, China, [email protected] Abstract—Live kernel patching is an increasingly common kernel vulnerabilities also merit patching. Organizations often trend in operating system distributions, enabling dynamic up- use rolling upgrades [3], [6], in which patches are designed dates to include new features or to fix vulnerabilities without to affect small subsystems that minimize unplanned whole- having to reboot the system. Patching the kernel at runtime lowers downtime and reduces the loss of useful state from running system downtime, to update and patch whole server systems. applications. However, existing kernel live patching techniques However, rolling upgrades do not altogether obviate the need (1) rely on specific support from the target operating system, to restart software or reboot systems; instead, dynamic hot and (2) admit patch failures resulting from kernel faults. We patching (live patching) approaches [7]–[9] aim to apply present KSHOT, a kernel live patching mechanism based on patches to running software without having to restart it.
    [Show full text]
  • QEMU Version 4.2.0 User Documentation I
    QEMU version 4.2.0 User Documentation i Table of Contents 1 Introduction ::::::::::::::::::::::::::::::::::::: 1 1.1 Features :::::::::::::::::::::::::::::::::::::::::::::::::::::::: 1 2 QEMU PC System emulator ::::::::::::::::::: 2 2.1 Introduction :::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.2 Quick Start::::::::::::::::::::::::::::::::::::::::::::::::::::: 2 2.3 Invocation :::::::::::::::::::::::::::::::::::::::::::::::::::::: 3 2.3.1 Standard options :::::::::::::::::::::::::::::::::::::::::: 3 2.3.2 Block device options :::::::::::::::::::::::::::::::::::::: 12 2.3.3 USB options:::::::::::::::::::::::::::::::::::::::::::::: 23 2.3.4 Display options ::::::::::::::::::::::::::::::::::::::::::: 23 2.3.5 i386 target only::::::::::::::::::::::::::::::::::::::::::: 30 2.3.6 Network options :::::::::::::::::::::::::::::::::::::::::: 31 2.3.7 Character device options:::::::::::::::::::::::::::::::::: 38 2.3.8 Bluetooth(R) options ::::::::::::::::::::::::::::::::::::: 42 2.3.9 TPM device options :::::::::::::::::::::::::::::::::::::: 43 2.3.10 Linux/Multiboot boot specific ::::::::::::::::::::::::::: 44 2.3.11 Debug/Expert options ::::::::::::::::::::::::::::::::::: 45 2.3.12 Generic object creation :::::::::::::::::::::::::::::::::: 54 2.3.13 Device URL Syntax ::::::::::::::::::::::::::::::::::::: 66 2.4 Keys in the graphical frontends :::::::::::::::::::::::::::::::: 69 2.5 Keys in the character backend multiplexer ::::::::::::::::::::: 69 2.6 QEMU Monitor ::::::::::::::::::::::::::::::::::::::::::::::: 70 2.6.1 Commands :::::::::::::::::::::::::::::::::::::::::::::::
    [Show full text]
  • Openbmc Update
    OpenBMC Update Gunnar Mills IBM OpenBMC Overview OpenBMC Today Release Content Agenda Redfish on OpenBMC Community Forums Get Involved • Open Source Baseboard Management Controller (BMC) firmware • Linux Foundation Project • Companies with layers include: Arm, Aspeed, Facebook, Google, OpenBMC IBM, Intel, Inspur, Lenovo, Mellanox, Microsoft, Nuvoton, Qualcomm, Yado • Underlying technologies • Yocto Project • D-Bus • Systemd • 2014 - Out of a Facebook hackathon an open BMC firmware stack named OpenBMC History • 2015 - IBM collaborates with Rackspace on an open BMC firmware stack also named OpenBMC • These projects were similar in name and concept only • March 2018 - OpenBMC becomes a Linux Foundation Project converging • Technical steering committee formed to guide the project • Agreed upon path to a unified OpenBMC community Project Charter and Linux Foundation • Lightweight, flexible charter (five pages) • Apache 2.0 license for code contributions (with clause for exceptions) • CC BY 4.0 license for documentation • Requires execution of corporate or individual contributor license agreement to contribute • https://www.openbmc.org/wp- content/uploads/sites/62/2018/03/charter_op enbmc_02142018.pdf • Linux Foundation owns project trademarks, DNS registrant, and GitHub organization owner • Members • Brad Bishop (IBM) • Sai Dasari (Facebook) • Sagar Dharia (Microsoft) • James Mihm (Intel) Technical Steering • Supreeth Venkatesh (Arm) Committee • Nancy Yuen (Google) • Community contributions drive project direction • Provide resolution at last
    [Show full text]
  • Master's Thesis
    Graphics processing on HPC virtual applications Graphics performance of Windows applications running on Unix systems Master of Science Thesis Compurer Systems and Networks Roi Costas Fiel Department of Computer Science and Engineering Chalmers University of Technology Gothenburg, Sweden, September 2014 The Author grants to Chalmers University of Technology and University of Gothenburg the non-exclusive right to publish the Work electronically and in a non-commercial purpose make it accessible on the Internet. The Author warrants that he/she is the author to the Work, and warrants that the Work does not contain text, pictures or other material that violates copyright law. The Author shall, when transferring the rights of the Work to a third party (for example a publisher or a company), acknowledge the third party about this agreement. If the Author has signed a copyright agreement with a third party regarding the Work, the Author warrants hereby that he/she has obtained any necessary permission from this third party to let Chalmers University of Technology and University of Gothenburg store the Work electronically and make it accessible on the Internet. Graphics processing on HPC virtual applications Graphics performance of Windows applications running on Unix systems Roi Costas Fiel Examiner: Marina Papatriantafilou Department of Computer Science and Engineering Chalmers University of Technology SE4412 96 G¨oteborg Sweden Telephone + 46 (0)314772 1000 Abstract Simulation, graphic design and other applications with high graphic processing needs have been taking advantage of high performance computing systems in order to deal with complex computations and massive volumes of data. These systems are usually built on top of a single operating system and rely on virtualization in order to run appli- cations compiled for different ones.
    [Show full text]
  • Flatbed Design Specification DRAFT Revision 0.07 Author: Scott Mccauley (​[email protected]​) Author: Nate Klein (​Nxk@G
    Flatbed Design Specification DRAFT Revision 0.07 Author: Scott McCauley ([email protected]) ​ ​ Author: Nate Klein ([email protected]) ​ ​ Author: Bill Barry ([email protected]) ​ ​ Open Compute Project Flatbed Design Specification DRAFT ​•​ ​ 1. License Contributions to this Specification are made under the terms and conditions set forth in Open Web Foundation Contributor License Agreement (“OWF CLA 1.0”) by: Google, Inc. ​ You can review the signed copies of the applicable Contributor License(s) for this Specification on the OCP website at http://www.opencompute.org/products/specsanddesign ​ ​ Usage of this Specification is governed by the terms and conditions set forth in Open Web Foundation Final Specification Agreement (“OWFa 1.0”). You can review the applicable Specification License(s) executed by the above referenced contributors to this Specification on the OCP website at http://www.opencompute.org/participate/legal-documents/ Note: The following clarifications, which distinguish technology licensed in the Contribution License ​ and/or Specification License from those technologies merely referenced (but not licensed), were accepted by the Incubation Committee of the OCP: CONTRIBUTORS AND LICENSORS OF THIS SPECIFICATION MAY HAVE MENTIONED CERTAIN TECHNOLOGIES THAT ARE MERELY REFERENCED WITHIN THIS SPECIFICATION AND NOT LICENSED UNDER THE OWF CLA OR OWFa. THE FOLLOWING IS A LIST OF MERELY REFERENCED TECHNOLOGY: INTELLIGENT PLATFORM MANAGEMENT INTERFACE (IPMI) I2C TRADEMARK OF PHILLIPS SEMICONDUCTOR. SMBus OpenBMC REST API NC-SI ATX EPS12V MAX31790 (Maxim IC) TM4C129 (Texas Instruments) ISO1540 (Texas Instruments) PCA9548 (Texas Instruments, Phillips Semiconductor) TCA9555 (Texas Instruments, Phillips Semiconductor) LTC4316 (Linear Technology) ADUM1250 (Analog Devices) 24C04 EEPROM Molex Minifit Molex Microfit Tyco Connectivity 5499910-1 Molex 90130-1210 Samtec HW-TH series IMPLEMENTATION OF THESE TECHNOLOGIES MAY BE SUBJECT TO THEIR OWN LEGAL TERMS.
    [Show full text]
  • Redfish on Openbmc
    Redfish on OpenBMC Gunnar Mills IBM What is Redfish Getting Started with Redfish OpenBMC’s Redfish Implementation Agenda OpenBMC Releases Redfish Data Model Redfish Sessions Redfish Major Collections • Open industry standard specification for hardware management • Definition community-driven • Distributed Management Task Force (DMTF) • History • Redfish Forum created in 2014 • First Redfish specification Aug 2015 • Latest 2019.2 (3Q 2019) • 30 companies • Broadcom Inc., Cisco, Dell Inc., Ericsson AB, Hewlett Packard Enterprise, Intel Corporation, Lenovo, Supermicro, Vertiv, VMware Inc. What is • American Megatrends, Inc., ARM, Inc, Artesyn Embedded Technologies, Atosm, Cray, Inc., Eaton, Fujitsu, Google LLC, Huawei, IBM, Insyde Software Corp., Mellanox Technologies, Microchip Technology Inc., NetApp, New H3C Technologies Co., OSIsoft, LLC, Quanta Computer Inc, Solarflare Redfish? Communications, Toshiba Memory Corporation, Western Digital Corporation • First release focused on Servers • Intended to meet OCP Remote Machine Management requirement • Full server category: Rackmount, Blades, HPC, Racks, Etc • Replacement for IPMI-over-LAN • New specification every 4 months • Working with SNIA to cover more advanced Storage (Swordfish) • Working with The Green Grid & ASHRAE to cover Facilities (Power/Cooling) • Working with the IETF to cover some level of Ethernet Switching Redfish • RESTful API, HTTPS, JSON • Don’t invent anything new if robust solutions exist • Schema-backed but human-readable • OData (Open Data Protocol) • Usable by Apps,
    [Show full text]