Marine Ecology Progress Series 578:117
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Energetics of Free-Ranging Seabirds
University of San Diego Digital USD Biology: Faculty Scholarship Department of Biology 2002 Energetics of Free-Ranging Seabirds Hugh I. Ellis University of San Diego Geir Wing Gabrielsen Follow this and additional works at: https://digital.sandiego.edu/biology_facpub Part of the Biology Commons, Ecology and Evolutionary Biology Commons, Ornithology Commons, and the Physiology Commons Digital USD Citation Ellis, Hugh I. and Gabrielsen, Geir Wing, "Energetics of Free-Ranging Seabirds" (2002). Biology: Faculty Scholarship. 20. https://digital.sandiego.edu/biology_facpub/20 This Book Chapter is brought to you for free and open access by the Department of Biology at Digital USD. It has been accepted for inclusion in Biology: Faculty Scholarship by an authorized administrator of Digital USD. For more information, please contact [email protected]. Energetics of Free-Ranging Seabirds Disciplines Biology | Ecology and Evolutionary Biology | Ornithology | Physiology Notes Original publication information: Ellis, H.I. and G.W. Gabrielsen. 2002. Energetics of free-ranging seabirds. Pp. 359-407 in Biology of Marine Birds (B.A. Schreiber and J. Burger, eds.), CRC Press, Boca Raton, FL. This book chapter is available at Digital USD: https://digital.sandiego.edu/biology_facpub/20 Energetics of Free-Ranging 11 Seabirds Hugh I. Ellis and Geir W. Gabrielsen CONTENTS 11.1 Introduction...........................................................................................................................360 11.2 Basal Metabolic Rate in Seabirds........................................................................................360 -
Hemosporidian Blood Parasites in Seabirds—A Comparative Genetic Study of Species from Antarctic to Tropical Habitats
Naturwissenschaften (2010) 97:809–817 DOI 10.1007/s00114-010-0698-3 ORIGINAL PAPER Hemosporidian blood parasites in seabirds—a comparative genetic study of species from Antarctic to tropical habitats Petra Quillfeldt & Javier Martínez & Janos Hennicke & Katrin Ludynia & Anja Gladbach & Juan F. Masello & Samuel Riou & Santiago Merino Received: 21 May 2010 /Revised: 7 July 2010 /Accepted: 7 July 2010 /Published online: 23 July 2010 # The Author(s) 2010. This article is published with open access at Springerlink.com Abstract Whereas some bird species are heavily affected by ranging from Antarctica to the tropical Indian Ocean. We did blood parasites in the wild, others reportedly are not. Seabirds, not detect parasites in 11 of these species, including one in particular, are often free from blood parasites, even in the Antarctic, four subantarctic, two temperate, and four tropical presence of potential vectors. By means of polymerase chain species. On the other hand, two subantarctic species, thin- reaction, we amplified a DNA fragment from the cytochrome billed prions Pachyptila belcheri and dolphin gulls Larus b gene to detect parasites of the genera Plasmodium, scoresbii, were found infected. One of 28 thin-billed prions Leucocytozoon,andHaemoproteus in 14 seabird species, had a Plasmodium infection whose DNA sequence was identical to lineage P22 of Plasmodium relictum, and one of 20 dolphin gulls was infected with a Haemoproteus lineage which appears phylogenetically clustered with parasites P. Quillfeldt (*) : K. Ludynia : A. Gladbach : J. F. Masello Max-Planck-Institut für Ornithologie, Vogelwarte Radolfzell, species isolated from passeriform birds such as Haemopro- Schlossallee 2, teus lanii, Haemoproteus magnus, Haemoproteus fringillae, 78315 Radolfzell, Germany Haemoproteus sylvae, Haemoproteus payevskyi,andHae- e-mail: [email protected] moproteus belopolskyi. -
Imperial Shag (Heard Island)
RECOVERY OUTLINE Imperial Shag (Heard Island) 1 Family Phalacrocoracidae 2 Scientific name Leucocarbo atriceps nivalis Falla, 1937 3 Common name Imperial Shag (Heard Island) 4 Conservation status Vulnerable: D1+2 5 Reasons for listing The subspecies has a small population (Vulnerable: D1) found at a single location (D2). Estimate Reliability Extent of occurrence 60 km2 high trend stable high Area of occupancy 3 km2 high trend stable high No. of breeding birds 500 medium trend fluctuating medium No. of sub-populations 1 high Generation time 15 years low 10 Threats 6 Infraspecific taxa The species is considered threatened because the L. a. purpurascens (Macquarie I.) is also Vulnerable. The population is small and variable. However, fluctuations other 6 subspecies on remote subantarctic islands are in population size and breeding success can be more numerous and widespread. Globally, the species attributed to frequently inclement weather (Pemberton is Least Concern. and Gales, 1987) or cycles of abundance over resource availability (E. Woehler). The subspecies could be 7 Past range and abundance adversely affected by offshore fishing or the effects of Endemic to Heard I. and not recorded from nearby climate change on sea temperature and food supply. McDonald or Shag Is. Breeding confined to three sites on north-western coast, Stephenson Lagoon, Saddle 11 Information required Point and Sydney Cove. Roosting sites are more None. widespread (Pemberton and Gales, 1987, Woehler, 1991, Green, 1997a). Population has varied between 12 Recovery objectives 40 and 100 breeding pairs over the last 40 years 12.1 Persistence of existing population. (Woehler, 1991, Green, 1997b, Green and Williams, 1997). -
Parasites of the Neotropic Cormorant Nannopterum (Phalacrocorax) Brasilianus (Aves, Phalacrocoracidae) in Chile
Original Article ISSN 1984-2961 (Electronic) www.cbpv.org.br/rbpv Parasites of the Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) in Chile Parasitos da biguá Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) do Chile Daniel González-Acuña1* ; Sebastián Llanos-Soto1,2; Pablo Oyarzún-Ruiz1 ; John Mike Kinsella3; Carlos Barrientos4; Richard Thomas1; Armando Cicchino5; Lucila Moreno6 1 Laboratorio de Parásitos y Enfermedades de Fauna Silvestre, Departamento de Ciencia Animal, Facultad de Medicina Veterinaria, Universidad de Concepción, Chillán, Chile 2 Laboratorio de Vida Silvestre, Departamento de Ciencia Animal, Facultad de Medicina Veterinaria, Universidad de Concepción, Chillán, Chile 3 Helm West Lab, Missoula, MT, USA 4 Escuela de Medicina Veterinaria, Universidad Santo Tomás, Concepción, Chile 5 Universidad Nacional de Mar del Plata, Mar del Plata, Argentina 6 Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, Concepción, Chile How to cite: González-Acuña D, Llanos-Soto S, Oyarzún-Ruiz P, Kinsella JM, Barrientos C, Thomas R, et al. Parasites of the Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Aves, Phalacrocoracidae) in Chile. Braz J Vet Parasitol 2020; 29(3): e003920. https://doi.org/10.1590/S1984-29612020049 Abstract The Neotropic cormorant Nannopterum (Phalacrocorax) brasilianus (Suliformes: Phalacrocoracidae) is widely distributed in Central and South America. In Chile, information about parasites for this species is limited to helminths and nematodes, and little is known about other parasite groups. This study documents the parasitic fauna present in 80 Neotropic cormorants’ carcasses collected from 2001 to 2008 in Antofagasta, Biobío, and Ñuble regions. Birds were externally inspected for ectoparasites and necropsies were performed to examine digestive and respiratory organs in search of endoparasites. -
Phylogenetic Patterns of Size and Shape of the Nasal Gland Depression in Phalacrocoracidae
PHYLOGENETIC PATTERNS OF SIZE AND SHAPE OF THE NASAL GLAND DEPRESSION IN PHALACROCORACIDAE DOUGLAS SIEGEL-CAUSEY Museumof NaturalHistory and Department of Systematicsand Ecology, University of Kansas, Lawrence, Kansas 66045-2454 USA ABSTRACT.--Nasalglands in Pelecaniformesare situatedwithin the orbit in closelyfitting depressions.Generally, the depressionsare bilobedand small,but in Phalacrocoracidaethey are more diversein shapeand size. Cormorants(Phalacrocoracinae) have small depressions typical of the order; shags(Leucocarboninae) have large, single-lobeddepressions that extend almost the entire length of the frontal. In all PhalacrocoracidaeI examined, shape of the nasalgland depressiondid not vary betweenfreshwater and marine populations.A general linear model detectedstrongly significant effectsof speciesidentity and gender on size of the gland depression.The effectof habitat on size was complexand was detectedonly as a higher-ordereffect. Age had no effecton size or shapeof the nasalgland depression.I believe that habitat and diet are proximateeffects. The ultimate factorthat determinessize and shape of the nasalgland within Phalacrocoracidaeis phylogenetichistory. Received 28 February1989, accepted1 August1989. THE FIRSTinvestigations of the nasal glands mon (e.g.Technau 1936, Zaks and Sokolova1961, of water birds indicated that theseglands were Thomson and Morley 1966), and only a few more developed in species living in marine studies have focused on the cranial structure habitats than in species living in freshwater associatedwith the nasal gland (Marpies 1932; habitats (Heinroth and Heinroth 1927, Marpies Bock 1958, 1963; Staaland 1967; Watson and Di- 1932). Schildmacher (1932), Technau (1936), and voky 1971; Lavery 1972). othersshowed that the degree of development Unlike most other birds, Pelecaniformes have among specieswas associatedwith habitat. Lat- nasal glands situated in depressionsfound in er experimental studies (reviewed by Holmes the anteromedialroof of the orbit (Siegel-Cau- and Phillips 1985) established the role of the sey 1988). -
An Assessment for Fisheries Operating in South Georgia and South Sandwich Islands
FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands by Nigel Varty, Ben Sullivan and Andy Black BirdLife International Global Seabird Programme Cover photo – Fishery Patrol Vessel (FPV) Pharos SG in Cumberland Bay, South Georgia This document should be cited as: Varty, N., Sullivan, B. J. and Black, A. D. (2008). FAO International Plan of Action-Seabirds: An assessment for fisheries operating in South Georgia and South Sandwich Islands. BirdLife International Global Seabird Programme. Royal Society for the Protection of Birds, The Lodge, Sandy, Bedfordshire, UK. 2 Executive Summary As a result of international concern over the cause and level of seabird mortality in longline fisheries, the United Nations Food and Agricultural Organisation (FAO) Committee of Fisheries (COFI) developed an International Plan of Action-Seabirds. The IPOA-Seabirds stipulates that countries with longline fisheries (conducted by their own or foreign vessels) or a fleet that fishes elsewhere should carry out an assessment of these fisheries to determine if a bycatch problem exists and, if so, to determine its extent and nature. If a problem is identified, countries should adopt a National Plan of Action – Seabirds for reducing the incidental catch of seabirds in their fisheries. South Georgia and the South Sandwich Islands (SGSSI) are a United Kingdom Overseas Territory and the combined area covered by the Territorial Sea and Maritime Zone of South Georgia is referred to as the South Georgia Maritime Zone (SGMZ) and fisheries within the SGMZ are managed by the Government of South Georgia and South Sandwich Islands (GSGSSI) within the framework of the Convention on the Conservation of Antarctic Marine Living (CCAMLR). -
Rapid Radiation of Southern Ocean Shags in Response to Receding Sea Ice 2 3 Running Title: Blue-Eyed Shag Phylogeography 4 5 Nicolas J
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.18.456742; this version posted August 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Rapid radiation of Southern Ocean shags in response to receding sea ice 2 3 Running title: Blue-eyed shag phylogeography 4 5 Nicolas J. Rawlence1, *, Alexander T. Salis1, 2, Hamish G. Spencer1, Jonathan M. Waters1, 6 Lachie Scarsbrook1, Richard A. Phillips3, Luciano Calderón4, Timothée R. Cook5, Charles- 7 André Bost6, Ludovic Dutoit1, Tania M. King1, Juan F. Masello7, Lisa J. Nupen8, Petra 8 Quillfeldt7, Norman Ratcliffe3, Peter G. Ryan5, Charlotte E. Till1, 9, Martyn Kennedy1,* 9 1 Department of Zoology, University of Otago, Dunedin, New Zealand. 10 2 Australian Centre for Ancient DNA, University of Adelaide, South Australia, Australia. 11 3 British Antarctic Survey, Natural Environment Research Council, United Kingdom. 12 4 Instituto de Biología Agrícola de Mendoza (IBAM, CONICET-UNCuyo), Argentina. 13 5 FitzPatrick Institute of African Ornithology, Department of Biological Sciences, University 14 of Cape Town, South Africa. 15 6 CEBC-CNRS, UMR 7372, 405 Route de Prissé la Charrière, 79360 Villiers en Bois, 16 France. 17 7 Justus Liebig University, Giessen, Germany. 18 8 Organisation for Tropical Studies, Skukuza, South Africa. 19 9 School of Human Evolution and Social Change, Arizona State University, Arizona, USA. 20 21 Prepared for submission as a research article to Journal of Biogeography 22 23 * Corresponding authors: [email protected]; [email protected] 24 25 ACKNOWLEDGEMENTS 26 This work was supported with funding from the University of Otago. -
Shags in Antarctica: Their Feeding Behaviour and Ecological Role in the Marine Food Web
Antarctic Science 18 (1), 3-14 (2006) ©Antarctic Science Ltd Printed in the UK DOI: 10.1017/S0954102006000010 Review Shags in Antarctica: their feeding behaviour and ecological role in the marine food web RICARDO CASAUX1* and ESTEBAN BARRERA-ORO12 1 Instituto Antártico Argentino, Cerrito 1248, (1010) Buenos Aires, Argentina and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917, (1033) Buenos Aires, Argentina 2 Museo Argentino de Ciencias Naturales "Bernardino Rivadavia ", División Ictiología, Angel Gallardo 470, C1405DJR Buenos Aires, Argentina * Present address: Laboratorio de Investigaciones en Ecología y Sistemática Animal (LIESA), Universidad Nacional de la Patagonia, Ruta 259 km 5, 9200 Esquel, Chubut, Argentina [email protected]. ar Abstract: Feeding behaviour, ecological role in the marine food web and population trends of the Antarctic shag Phalacrocorax bransfieldensis and the South Georgia shag P. georgianus in Antarctica are analysed. The diving depths and duration recorded for these shags are the deepest and longest among all flying birds in Antarctica and match deep dives performed by small Antarctic penguins. Individual shags of both sexes partition foraging depths and food resources, which might diminish intra-specific competition. Like other sub-Antarctic shags, P. bransfieldensis and P. georgianus are bottom feeders that prey predominantly on demersal fish. In the southern Scotia Arc and west Antarctic Peninsula, nototheniids, mainlyNotothenia coriiceps, constitute their main prey. Shag partners alternate the time at sea and, as the energy requirements at the nest increase, they increase the number but reduce the duration of the feeding trips. A steady declining trend in the number of breeding pairs of both species has been observed in the last decade at several Antarctic localities; this phenomenon at the South Shetland Islands might be at least partially explained by the effect of the commercial fishery on their prey. -
Appendix 1. Literature Review of Stable Isotope Ratios, in Relation to Sexual Size Dimorphism in Seabirds and Trophic/Spatial Segregation, During
Appendix 1. Literature review of stable isotope ratios, in relation to sexual size dimorphism in seabirds and trophic/spatial segregation, during the breeding season. D = dimorphism, M = monomorphism, T = tropical, NT = No tropical, B= blood, F = feather, M = muscle, P = plasma. Order: Cha = Charadriiformes, Pha = Phaethontiformes, Pro = Procellariiformes, Sph = Sphenisciformes, Sul = Suliformes, * = segregation only by δ13C values. Common name Scientific name Order SSD SI Dif sex Region Tissue Area References Razorbill Alca torda Cha M yes NT B Gulf of St. Lawrence, Canada Lavoie et al. (2012) Dovekie Alle alle Cha D no NT B Spitsbergen, Norway Harding et al. (2008) Dovekie Alle alle Cha D no NT M Northwater Polynya, Canada Hobson and Bond (2012) Fernando de Noronha Archipelago, Black noddy Anous minutus Cha M no T B This study Brazil São Pedro and São Paulo Black noddy Anous minutus Cha M no T B This study Archipelago Brown noddy Anous stolidus Cha M no T B Abrolhos Archipelago, Brazil This study Brown noddy Anous stolidus Cha M no T B Atol das Rocas, Brazil This study São Pedro and São Paulo Brown noddy Anous stolidus Cha D no T B This study Archipelago Marble murrelet Brachyramphus Cha M no NT F Monterey Bay, USA Becker et al. (2007) marmoratus Catharacta a. Brown skua Cha D no NT B South Georgia Is. Anderson et al. (2008) lonnbergi Black guillemot Cepphus grylle Cha M yes NT M Northwater Polynya, Canada Hobson and Bond (2012) Tufted puffin Fratercula cirrhata Cha D no NT B Kodiak Is., Alaska Williams et al. (2008) Herring gull Larus argentatus Cha D yes NT B Gulf of St. -
No Evidence of Extra-Pair Paternity Or Intraspecific Brood Parasitism in The
J Ornithol (2012) 153:399–404 DOI 10.1007/s10336-011-0754-6 ORIGINAL ARTICLE No evidence of extra-pair paternity or intraspecific brood parasitism in the Imperial Shag Phalacrocorax atriceps Luciano Caldero´n • Walter S. Svagelj • Flavio Quintana • Stephen C. Lougheed • Pablo L. Tubaro Received: 24 May 2011 / Revised: 22 July 2011 / Accepted: 23 August 2011 / Published online: 9 September 2011 Ó Dt. Ornithologen-Gesellschaft e.V. 2011 Abstract In long-lived birds with significant paternal of EPP within the family, probably as consequence of care contribution, as the case of seabirds, extra-pair different copulation and courtship behaviours, mostly paternity (EPP) is an infrequent phenomenon. Intriguingly, related to male’s solicitation display and females active and in contrast to the general pattern exhibited by seabirds, search for extra pair copulations. EPP rates appear relatively high in the two species of cormorants and shags (Phalacrocoracidae family) analyzed Keywords Cormorants Á Genetic parents Á so far. We test for EPP in the Imperial Shag Phalacrocorax Microsatellites Á Phalacrocoracidae Á Seabirds atriceps, a medium-sized colonial seabird, using four DNA microsatellites originally developed for Great Cormorants Zusammenfassung P. carbo, and successfully cross-amplified in our focal species. We assessed the parentage of 110 chicks from 37 Keine Belege fu¨r Fremdvaterschaft oder intraspezifis- broods sampled at Punta Leo´n, Argentina, during the 2004 chen Brutparasitismus bei der Blauaugenscharbe and 2005 breeding seasons. We found no evidence of EPP Phalacrocorax atriceps or intraspecific brood parasitism (IBP). Given our sample sizes, the upper 95% confidence limits for both EPP and Bei langlebigen Arten, bei denen die Ma¨nnchen signifi- IBP were estimated at 3.3% for the chicks and 8.4% for the kant zur Brutpflege beitragen, wie es bei Seevo¨geln der Fall broods. -
Lousy Chicks: Chewing Lice from the Imperial Shag, Leucocarbo Atriceps
International Journal for Parasitology: Parasites and Wildlife 6 (2017) 229e232 Contents lists available at ScienceDirect International Journal for Parasitology: Parasites and Wildlife journal homepage: www.elsevier.com/locate/ijppaw Lousy chicks: Chewing lice from the Imperial Shag, Leucocarbo atriceps * María Soledad Leonardi , Flavio Quintana Instituto de Biología de Organismos Marinos (IBIOMAR), CONICET, Boulevard Brown 2915, U9120ACD, Puerto Madryn, Chubut, Argentina article info abstract Article history: Forty-one imperial shag chicks were sampled for lice during the breeding season of 2014 in Punta Leon, Received 31 May 2017 Argentina. We found 2 lice species, Pectinopygus turbinatus infesting the body and Piagetiella capu- Received in revised form tincisum present in the oral cavity of the birds. This constitutes the first host record for P. turbinatus and 28 July 2017 the first record for the continental Argentina for P. caputincisum. Ninety-three percent of the chicks were Accepted 2 August 2017 infested by at least one lice species. P. turbinatus was present in all of the lousy chicks, while P. caputincisum infested 84.2% of them. The mean intensity was 29.5 and the range 1e129. There was no Keywords: difference in prevalence, mean intensity or mean abundance between louse species. However, we found Chewing lice Patagonia differences among the pattern of infestation of each species. Imperial shag chicks were infested by their fi Pectinopygus turbinatus parents during their rst days of life by P. turbinatus, mainly in nymphal stage and by P. caputincisum as Piagetiella caputincisum adult lice. Our results showed differences among lice species that could be related to the restrictions that Seabirds lice from seabirds faced during their life cycle. -
Trainee Bander's Diary (PDF
Trainee Banders Diary Extracted Handled Band Capture Supervising A-Class Species banded Banded Retraps Species Groups Location & Date Notes Only Only Size/Type Techniques Bander Totals Include name and Use CAVS & Common Name e.g. Large Passerines, e.g. 01AY, e.g. Mist-net, Date Location Locode Banding Authority Additional information e.g. 529: Superb Fairy-wren Shorebirds 09SS Hand Capture number Reference Lists 05 SS 10 AM 06 SS 11 AM Species Groups 07 SS 1 (BAT) Small Passerines 08 SS 2 (BAT) Large Passerines 09 SS 3 (BAT) Seabirds 10 SS Shorebirds 11 SS Species Parrots and Cockatoos 12 SS 6: Orange-footed Scrubfowl Gulls and Terns 13 SS 7: Malleefowl Pigeons and Doves 14 SS 8: Australian Brush-turkey Raptors 15 SS 9: Stubble Quail Waterbirds 16 SS 10: Brown Quail Fruit bats 17 SS 11: Tasmanian Quail Ordinary bats 20 SS 12: King Quail Other 21 SS 13: Red-backed Button-quail 22 SS 14: Painted Button-quail Trapping Methods 23 SS 15: Chestnut-backed Button-quail Mist-net 24 SS 16: Buff-breasted Button-quail By Hand 25 SS 17: Black-breasted Button-quail Hand-held Net 27 SS 18: Little Button-quail Cannon-net 28 SS 19: Red-chested Button-quail Cage Trap 31 SS 20: Plains-wanderer Funnel Trap 32 SS 21: Rose-crowned Fruit-Dove Clap Trap 33 SS 23: Superb Fruit-Dove Bal-chatri 34 SS 24: Banded Fruit-Dove Noose Carpet 35 SS 25: Wompoo Fruit-Dove Phutt-net 36 SS 26: Pied Imperial-Pigeon Rehabiliated 37 SS 27: Topknot Pigeon Harp trap 38 SS 28: White-headed Pigeon 39 SS 29: Brown Cuckoo-Dove Band Size 03 IN 30: Peaceful Dove 01 AY 04 IN 31: Diamond