Toxicological Profile for Uranium
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Extensive Interest in Nuclear Fuel Cycle Technologies
Institute for Science and International Security ISIS REPORT March 19, 2012 Department 70 and the Physics Research Center: Extensive Interest in Nuclear Fuel Cycle Technologies By David Albright, Paul Brannan, Mark Gorwitz, and Andrew Ortendahl On February 23, 2012, ISIS released the report, The Physics Research Center and Iran’s Parallel Military Nuclear Program, in which ISIS evaluated a set of 1,600 telexes outlining a set of departments or buying centers of the former Physics Research Center (PHRC). These departments appeared to be purchasing a variety of goods for specific nuclear technologies, including gas centrifuges, uranium conversion, uranium exploration and perhaps mining, and heavy water production. Figure 1 is a list of the purposes of these departments. The telexes are evaluated in more depth in the February 23, 2012 ISIS report and support that, contrary to Iran’s statements to the International Atomic Energy Agency (IAEA), the PHRC ran a parallel military nuclear program in the 1990s. In the telexes, ISIS identified a department called Department 70 that is linked to the PHRC. This department tried to procure or obtained technical publications and reports from a document center, relevant know-how from suppliers, catalogues from suppliers about particular goods, and a mini- computer from the Digital Equipment Corporation. Department 70 appears to have had personnel highly knowledgeable about the existing literature on a variety of fuel cycle technologies, particularly gas centrifuges. Orders to a British document center reveal many technical publications about gas centrifuges, atomic laser isotope enrichment, the production of uranium compounds including uranium tetrafluoride and uranium hexafluoride (and precursors such as hydrofluoric acid), nuclear grade graphite, and the production of heavy water. -
A Protein Engineered to Bind Uranyl Selectively and with Femtomolar Affinity
ARTICLES PUBLISHED ONLINE: 26 JANUARY 2014 | DOI: 10.1038/NCHEM.1856 A protein engineered to bind uranyl selectively and with femtomolar affinity Lu Zhou1†, Mike Bosscher1†, Changsheng Zhang2,3†,SalihO¨ zc¸ubukc¸u1, Liang Zhang1, Wen Zhang1, Charles J. Li1, Jianzhao Liu1, Mark P. Jensen4, Luhua Lai2,3* and Chuan He1* 21 ∼ Uranyl (UO2 ), the predominant aerobic form of uranium, is present in the ocean at a concentration of 3.2 parts per 109 (13.7 nM); however, the successful enrichment of uranyl from this vast resource has been limited by the high concentrations of metal ions of similar size and charge, which makes it difficult to design a binding motif that is selective for uranyl. Here we report the design and rational development of a uranyl-binding protein using a computational screening process in the initial search for potential uranyl-binding sites. The engineered protein is thermally stable and offers very high affinity and selectivity for uranyl with a Kd of 7.4 femtomolar (fM) and >10,000-fold selectivity over other metal ions. We also demonstrated that the uranyl-binding protein can repeatedly sequester 30–60% of the uranyl in synthetic sea water. The chemical strategy employed here may be applied to engineer other selective metal-binding proteins for biotechnology and remediation applications. ranium is the key element for nuclear-energy production and Through billions of years of evolution nature has produced is important in many other applications. The most stable and strategies to recognize beneficial or toxic metal ions with high Urelevant uranium ion in aerobic environments is the uranyl sensitivity and selectivity. -
Hierarchically-Structured Metalloprotein Composite
ARTICLE There are amendments to this paper https://doi.org/10.1038/s41467-020-14709-y OPEN Hierarchically-structured metalloprotein composite coatings biofabricated from co-existing condensed liquid phases ✉ Franziska Jehle 1, Elena Macías-Sánchez1, Sanja Sviben1, Peter Fratzl1, Luca Bertinetti 1 & ✉ Matthew J. Harrington 1,2 1234567890():,; Complex hierarchical structure governs emergent properties in biopolymeric materials; yet, the material processing involved remains poorly understood. Here, we investigated the multi- scale structure and composition of the mussel byssus cuticle before, during and after for- mation to gain insight into the processing of this hard, yet extensible metal cross-linked protein composite. Our findings reveal that the granular substructure crucial to the cuticle’s function as a wear-resistant coating of an extensible polymer fiber is pre-organized in con- densed liquid phase secretory vesicles. These are phase-separated into DOPA-rich proto- granules enveloped in a sulfur-rich proto-matrix which fuses during secretion, forming the sub-structure of the cuticle. Metal ions are added subsequently in a site-specific way, with iron contained in the sulfur-rich matrix and vanadium coordinated by DOPA-catechol in the granule. We posit that this hierarchical structure self-organizes via phase separation of specific amphiphilic proteins within secretory vesicles, resulting in a meso-scale structuring that governs cuticle function. 1 Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, -
FACT SHEET Office of Public Affairs
FACT SHEET Office of Public Affairs Phone: 301-415-8200 Email: [email protected] Uranium Recovery Background The production of fuel for nuclear power plants starts with taking uranium ore from the ground and then purifying and processing it through a series of steps. Uranium recovery focuses on extracting natural uranium ore from the earth and concentrating (or milling) that ore. These recovery operations produce a product, called "yellowcake," which is then transported to a succession of fuel cycle facilities where the yellowcake is transformed into fuel for nuclear power reactors. In addition to yellowcake, uranium recovery operations generate waste products, called byproduct materials, that contain low levels of radioactivity. The NRC does not regulate uranium mining or mining exploration, but does have authority over milling of mined materials and in situ processes used to recover uranium, as well as mill tailings. Today’s conventional uranium mills and in situ recovery (ISR) facilities are operating safely and in a manner that is protective of the environment. The NRC regulates these facilities in close coordination with other Federal agencies and State and Tribal governments and provides technical support and guidance to those Agreement States that have authority over uranium recovery activities. Discussion The NRC becomes involved in uranium recovery operations when the ore is processed and physically or chemically altered. This happens either in a conventional, heap leach uranium mill, or ISR. For that reason, the NRC regulates ISR facilities as well as uranium mills and the disposal of liquid and solid wastes from uranium recovery operations (including mill tailings). -
Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides Received: 22 January 2018 Batikan Koroglu1, Scott Wagnon 1, Zurong Dai1, Jonathan C
www.nature.com/scientificreports OPEN Gas Phase Chemical Evolution of Uranium, Aluminum, and Iron Oxides Received: 22 January 2018 Batikan Koroglu1, Scott Wagnon 1, Zurong Dai1, Jonathan C. Crowhurst1, Accepted: 19 June 2018 Michael R. Armstrong1, David Weisz1, Marco Mehl1,2, Joseph M. Zaug1, Harry B. Radousky1 & Published: xx xx xxxx Timothy P. Rose1 We use a recently developed plasma-fow reactor to experimentally investigate the formation of oxide nanoparticles from gas phase metal atoms during oxidation, homogeneous nucleation, condensation, and agglomeration processes. Gas phase uranium, aluminum, and iron atoms were cooled from 5000 K to 1000 K over short-time scales (∆t < 30 ms) at atmospheric pressures in the presence of excess oxygen. In-situ emission spectroscopy is used to measure the variation in monoxide/atomic emission intensity ratios as a function of temperature and oxygen fugacity. Condensed oxide nanoparticles are collected inside the reactor for ex-situ analyses using scanning and transmission electron microscopy (SEM, TEM) to determine their structural compositions and sizes. A chemical kinetics model is also developed to describe the gas phase reactions of iron and aluminum metals. The resulting sizes and forms of the crystalline nanoparticles (FeO-wustite, eta-Al2O3, UO2, and alpha-UO3) depend on the thermodynamic properties, kinetically-limited gas phase chemical reactions, and local redox conditions. This work shows the nucleation and growth of metal oxide particles in rapidly-cooling gas is closely coupled to the kinetically-controlled chemical pathways for vapor-phase oxide formation. Gas phase nucleation and growth of metal oxide nanoparticles is an important topic for many areas of chemistry, physics, material science, and engineering1–6. -
Implementing Safeguards-By-Design at Natural Uranium Conversion Plants
NIS Office of Nuclear Safeguards and Security Safeguards-By-Design Facility Guidance Series (NGSI-SBD-002) August 2012 Implementing Safeguards-by-design at Natural Uranium Conversion Plants U.S. DEPARTMENT OF ENERG National Nuclear Security AdministrationY IMPLEMENTING SAFEGUARDS-BY-DESIGN AT NATURAL URANIUM CONVERSION PLANTS Lisa Loden John Begovich Date Published: July 2012 iii CONTENTS Page CONTENTS ......................................................................................................................................... IV 1. INTRODUCTION AND PURPOSE ................................................................................................. 1 2. KEY DEFINITIONS ......................................................................................................................... 2 3. SAFEGUARDS AT NUCPS ............................................................................................................. 7 3.1 SAFEGUARDS OBJECTIVES ................................................................................................. 7 3.2 TRADITIONAL AND INTEGRATED SAFEGUARDS ......................................................... 7 3.3 SAFEGUARDS RESPONSIBILITIES ..................................................................................... 8 3.3.1 STATE REGULATORY AUTHORITY RESPONSIBILITIES ..................................... 8 3.3.2 IAEA RESPONSIBILITIES ............................................................................................ 9 4. ELEMENTS OF FACILITY DESIGN THAT ARE RELEVANT -
The Role of Pe, Ph, and Carbonate on the Solubility of UO2 and Uraninite Under Nominally Reducing Conditions
Geochimica et Cosmochimica Acta, Vol. 62, No. 13, pp. 2223–2231, 1998 Copyright © 1998 Elsevier Science Ltd Pergamon Printed in the USA. All rights reserved 0016-7037/98 $19.00 1 .00 PII S0016-7037(98)00140-9 The role of pe, pH, and carbonate on the solubility of UO2 and uraninite under nominally reducing conditions 1 1 1 1 2 2 3, IGNASI CASAS, JOAN DE PABLO, JAVIER GIMENEZ´ , M. ELENA TORRERO, JORDI BRUNO, ESTHER CERA, ROBERT J. FINCH, * and 3,† RODNEY C. EWING 1Department of Chemical Engineering, Polytechnic University of Catalunya, Barcelona 08028, Spain 2QuantiSci SL, Parc Tecnolo`gic del Valle`s, Cerdanyola 08290, Spain 3Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA (Received August 14, 1997; accepted in revised form March 26, 1998) Abstract—Experimental data obtained from uranium dioxide solubility studies as a function of pH and under nominally reducing conditions in a 0.008 mol dm23 perchlorate medium and in a 1 mol dm23 chloride solution are presented. The solubility of extensively characterized uraninite samples from Cigar Lake (Canada), Jachymov (Czech Republic), and Oklo (Gabon) was determined in a solution matching the composition of a groundwater associated with granitic terrain. The redox potential of the test solution was monitored throughout the experimental period. The results obtained were modeled using aqueous formation constants compiled by the NEA, using stability constants corrected to appropriate ionic strengths. The solubility curves have been adjusted by calculating the 1 N value of Ks4 (UO2(s) 2H2O U(OH)4(aq)) that gave the best fit with the experimental data. -
Depleted Uranium Hexafluoride: Waste Or Resource?
UCRGJC-120397 PREPRINT Depleted Uranium Hexafluoride: Waste or Resource? N. Schwertz J. Zoller R Rosen S. Patton C. Bradley A. Murray This paper was prepared for submittal to the Global ‘95 International Conference on Evaluation of Emerging Nuclear Fuel Cycle Systems Versailles, France September 11-14,1995 July 1995 This isa preprint of apaper intended for publication in a jaurnal orproceedings. Since changes may be made before publication, this preprint is made available with the understanding that it will not be cited or reproduced without the permiasion of the anthor. DISCLAIMER This document was prepared as an account of work sponsored by an agency of the United Stat= Government. Neither theunited States Governmentmor theuniversity of California nor any oftheir employees, makes any warranty, express or implied, or assumesanylegalliabilityorrespomibility forthe accuracy,completeness,orusefuin~ of any information, apparatus, pduct, or process disdosed, or represents that its use wouldnotinfringe privatelyowned rights. Referencehemin to anyspe&c commercial prodocis, proms, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constituteor imply its endorsement, reconunendation, or favoring by the United States Government or the University of California. The views and opinions of authors expressed herein do not necessady state or reflect those of the United States Government or the University of California, and shall not be used for adveltising or product endorsement purposes. DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document . DEPLETED URANIUM HEXAFLUORIDE: WASTE OR RESOURCE? N. Schwertz, J. Zoller, R. Rosen, S. Patton LAWRENCE LIVERMORE NATIONAL LABORATORY P. -
Measurement of Uranium Dioxide Thermophysical Properties by the Laser Flash Method
2009 International Nuclear Atlantic Conference - INAC 2009 Rio de Janeiro,RJ, Brazil, September27 to October 2, 2009 ASSOCIAÇÃO BRASILEIRA DE ENERGIA NUCLEAR - ABEN ISBN: 978-85-99141-03-8 MEASUREMENT OF URANIUM DIOXIDE THERMOPHYSICAL PROPERTIES BY THE LASER FLASH METHOD Pablo Andrade Grossi 1, Ricardo Alberto Neto Ferreira 2, Denise das Mercês Camarano 3, Roberto Márcio de Andrade 4 1,2,3 Centro de Desenvolvimento da Tecnologia Nuclear-CDTN Comissão Nacional de Energia Nuclear-CNEN Av. Presidente Antônio Carlos 6627 Cidade Universitária-Pampulha-Caixa Postal 941 CEP: 31.161-970 Belo Horizonte, MG 1 [email protected] 2 [email protected] 3 [email protected] 4 Departamento de Engenharia Mecânica Escola de Engenharia da Universidade Federal de Minas Gerais Av. Presidente Antônio Carlos 6627-Cidade Universitária-Pampulha CEP: 31.270-901 - Belo Horizonte – MG - Brasil 4 [email protected] ABSTRACT The evaluation of the thermophysical properties of uranium dioxide (UO 2), including a reliable uncertainty assessment, are required by the nuclear reactor design. These important informations are used by thermohydraulic codes to define operational aspects and to assure the safety, when analyzing various potential situations of accident. The Laser Flash Method had become the most popular method to measure the thermophysical properties of materials. Despite its several advantages, some experimental obstacles have been found due to the difficulty to obtain experimentally the ideals initial and boundary conditions required by the original method. An experimental apparatus and a methodology for estimating uncertainties of thermal diffusivity, thermal conductivity and specific heat measurements based on the Laser Flash Method are presented. A stochastic thermal diffusion modeling has been developed and validated by Standard Samples. -
Molecular Characterization of Uranium(VI) Sorption Complexes on Iron(III)-Rich Acid Mine Water Colloids
Geochimica et Cosmochimica Acta 70 (2006) 5469–5487 www.elsevier.com/locate/gca Molecular characterization of uranium(VI) sorption complexes on iron(III)-rich acid mine water colloids Kai-Uwe Ulrich a,*, Andre´ Rossberg a,b, Harald Foerstendorf a, Harald Za¨nker a, Andreas C. Scheinost a,b a Institute of Radiochemistry, FZ Rossendorf e.V., P.O. Box 510119, D-01314 Dresden, Germany b Rossendorf Beamline at ESRF, B.P. 220, F-38043 Grenoble, France Received 7 November 2005; accepted in revised form 21 August 2006 Abstract A mixing of metal-loaded acid mine drainage with shallow groundwater or surface waters usually initiates oxidation and/or hydrolysis of dissolved metals such as iron (Fe) and aluminum (Al). Colloidal particles may appear and agglomerate with increasing pH. Likewise chemical conditions may occur while flooding abandoned uranium mines. Here, the risk assessment of hazards requires reliable knowl- edge on the mobility of uranium (U). A flooding process was simulated at mesocosm scale by mixing U-contaminated acid mine water with near-neutral groundwater under oxic conditions. The mechanism of U-uptake by fresh precipitates and the molecular structure of U bonding were determined to estimate the mobility of U(VI). Analytical and spectroscopic methods such as Extended X-ray Absorption Fine-Structure (EXAFS) spectroscopy at the Fe K-edge and the U LIII-edge, and Attenuated Total Reflectance Fourier Transform Infra- red (ATR-FTIR) spectroscopy were employed. The freshly formed precipitate was identified as colloidal two-line ferrihydrite. It removed U(VI) from solution by sorption processes, while surface precipitation or structural incorporation of U was not observed. -
Depleted Uranium Technical Brief
Disclaimer - For assistance accessing this document or additional information,please contact [email protected]. Depleted Uranium Technical Brief United States Office of Air and Radiation EPA-402-R-06-011 Environmental Protection Agency Washington, DC 20460 December 2006 Depleted Uranium Technical Brief EPA 402-R-06-011 December 2006 Project Officer Brian Littleton U.S. Environmental Protection Agency Office of Radiation and Indoor Air Radiation Protection Division ii iii FOREWARD The Depleted Uranium Technical Brief is designed to convey available information and knowledge about depleted uranium to EPA Remedial Project Managers, On-Scene Coordinators, contractors, and other Agency managers involved with the remediation of sites contaminated with this material. It addresses relative questions regarding the chemical and radiological health concerns involved with depleted uranium in the environment. This technical brief was developed to address the common misconception that depleted uranium represents only a radiological health hazard. It provides accepted data and references to additional sources for both the radiological and chemical characteristics, health risk as well as references for both the monitoring and measurement and applicable treatment techniques for depleted uranium. Please Note: This document has been changed from the original publication dated December 2006. This version corrects references in Appendix 1 that improperly identified the content of Appendix 3 and Appendix 4. The document also clarifies the content of Appendix 4. iv Acknowledgments This technical bulletin is based, in part, on an engineering bulletin that was prepared by the U.S. Environmental Protection Agency, Office of Radiation and Indoor Air (ORIA), with the assistance of Trinity Engineering Associates, Inc. -
ORGANOMETAT,T,TC CHEMISTRY of URANIUM a Thesis Submitted By
ORGANOMETAT,T,TC CHEMISTRY OF URANIUM A thesis submitted by R1TN R. SIGURDSON, B.Sc. for the DEGREE of DOCTOR of PHILOSOPHY of the UNIVERSITY of LONDON Royal College of Science Imperial College of Science and Technology London, SW7 ?AY August 1976 TO MY PARENTS 3 ACKNOWLEDGEMENTS I would like to express my gratitude to Professor Geoffrey Wilkinson, F.R.S. for his guidance and enthusiastic support throughout the course of this work. Many thanks are also extended to Drs. Dick Andersen, Ernesto Carmona-Guzman and David Cole-Hamilton for their suggestionS, encouragement and advice, and to Dr. Kostas Mertis for his patient help during the first months. I am indebted to the Canadian Research Council of Canada for financial support during the past three years. 4 CONTENTS ABSTRACT 6 INTRODUCTION I. The Chemistry of Uranium(IV) 8 .II. The Chemistry of Uranium(V) 15 III. The Chemistry of Uranium(VI) 16 CHAPTER I. DILITHIUMHEXAALKYLURANATE(IV) COMPLEXES I. Introduction 19 II. Results and Discussion 27 III. Experimental 35 CHAPTER II. TRILITHIUMOCTAALKYLURANATE(V) COMPLEXES I. Introduction 54 II. Results and Discussion 55 III. Experimental 60 CHAPTER III. ADDITION COMPOUNDS OF URANIUM(VI) HEXAISO-PROPDXIDE WITH LITHIUM, MAGNESIUM AND ALUMINIUM ALKYLS I. Introduction 70 II. Results and Discussion 71 III. Experimental 77 CHAPTER IV. ORGANOMETALLIC CHEMISTRY OF ADAMANTANE I. Introduction 84 II. Results and Discussion 85 III. Experimental 87 REFERENCES 92 5 ABBREVIATIONS Me - methyl Et - ethyl Prn- normal-propyl Pri- iso-propyl Bun- normal-butyl But- iso-butyl But- tertiary-butyl Ph - phenyl CP cyclopentadienyl DME - dimethoxyethane tmed - N,N,NI,N'-tetramethylethylenediamine pmdt - N,N,Nt,N",N"-pentamethyldiethylenetriamine g.l.c.