Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos

Matilde Marcolli

MAT1845HS Winter 2020, University of Toronto M 5-6 and T 10-12 BA6180

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Some References Christensen, Erik; Ivan, Cristina; Lapidus, Michel L., Dirac operators and spectral triples for some fractal sets built on curves. Adv. Math. 217 (2008), no. 1, 42–78. Chamseddine, Ali H.; Connes, Alain, The spectral action principle. Comm. Math. Phys. 186 (1997), no. 3, 731–750. A. Ball, M. Marcolli, Spectral Action Models of Gravity on Packed Swiss Cheese Cosmology, Classical and Quantum Gravity, 33 (2016), no. 11, 115018, 39 pp. Farzad Fathizadeh, Yeorgia Kafkoulis, Matilde Marcolli, Bell polynomials and Brownian bridge in Spectral Gravity models on multifractal Robertson-Walker cosmologies, arXiv:1811.02972

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Von Neumann Algebras

H (infinite dimensional, separable, over C) algebra of bounded operators B(H) with operator norm • Commutant of M ⊂ B(H):

M0 := {T ∈ B(H): TS = ST , ∀S ∈ M}.

: M = M00 (double commutant) ⇔ weakly closed • Center: Z(M) = L∞(X , µ).

• If Z(M) = C: factor

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli C ∗-algebras • involutive (∗ anti-isomorphism) (complete in norm, kabk ≤ kak · kbk, ka∗ak = kak2) • Gel’fand–Naimark correspondence: locally compact Hausdorff topological space ⇔ commutative C ∗-algebra:

X ⇔ C0(X )

• representation of a C ∗-algebra A

π : A → B(H)

C ∗-algebra homomorphism

• state: continuous linear functional ϕ : A → C with positivity ϕ(a∗a) ≥ 0 for all a ∈ A and ϕ(1) = 1

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli GNS representation • cyclic vector ξ for a representation π : A → B(H) of a C ∗-algebra if set {π(a)ξ : a ∈ A} dense in H • state from unit norm cyclic vector ϕ(a) = hπ(a)ξ, ξi

• given a state ϕ : A → C construct a representation (GNS) where state is as above • define ha, bi = ϕ(a∗b) for a, b ∈ A •N = {a ∈ A : ϕ(a∗a) = 0} linear subspace but for C ∗-algebras also a left ideal in A •H = A/N with ha, bi = ϕ(a∗b) Hilbert space • the representation π(a)b + N = ab + N • cyclic vector ξ = 1 + N unit of A

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Spectral triple( A, H, D)

A = C∗-algebra H Hilbert space: ρ : A → B(H) D unbounded self–adjoint operator on H −1 (D − λ) , ∀λ∈ / R [D, a] , ∀a ∈ A0 ⊂ A, dense involutive subalgebra of A.

Riemannian spin manifold X : A = C(X ), H = L2-spinors, ∞ D = , A0 = C (X )

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Zeta functions • spectral triple (A, H, D) ⇒ family of zeta functions: for a ∈ A0 ∪ [D, A0]

−z X −z ζa,D (z) := Tr(a|D| ) = Tr(a Π(λ, |D|))λ λ

Dimension of a spectral triple (A, H, D)

Simpler definition: dimension n (n–summable) if |D|−n −n −1 infinitesimal of order one: λk (|D| ) = O(k ) Refined definition: dimension spectrum Σ ⊂ C: set of poles of the zeta functions ζa,D (z). (all zetas extend holomorphically to C \ Σ) in sufficiently nice cases (almost commutative geometries) poles of ζD (s) = ζ1,D (s) suffice

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Example: Fractal string

Ω bounded open in R (e.g. complement of Cantor set Λ in [0, 1]) L = {`k }k≥1 lengths of connected components of Ω with

`1 ≥ `2 ≥ `3 ≥ · · · ≥ `k ··· > 0.

Geometric zeta function (Lapidus and van Frankenhuysen)

X s ζL(s) := `k k

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Cantor set: spectral triple 3−s Λ = middle-third Cantor set: ζL(s) = 1−2·3−s algebra commutative C∗-algebra C(Λ).

Hilbert space: E = {xk,±} endpoints of intervals Jk ⊂ Ω = [0, 1] r Λ, with xk,+ > xk,− H := `2(E) action C(Λ) acts on H f · ξ(x) = f (x)ξ(x), ∀f ∈ C(Λ), ∀ξ ∈ H, ∀x ∈ E. sign operator subspace Hk of coordinates ξ(xk,+) and ξ(xk,−),  0 1  F | = . Hk 1 0 Dirac operator     ξ(xk,+) −1 ξ(xk,−) D|Hk = `k · ξ(xk,−) ξ(xk,+) Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli • verify [D, a] bounded for a ∈ A0:   (f (xk,+) − f (xk,−)) 0 1 [D, f ]|Hk = . `k −1 0 for f Lipschitz: k[D, f ]k ≤ C(f ) take dense A0 ⊂ C(Λ) to be locally constant or more generally Lipschitz functions • same for any self-similar set in R (Cantor-like) Zeta function

X 2 · 3−s Tr(|D|−s ) = 2ζ (s) = 2k 3−sk = L 1 − 2 · 3−s k≥1

Dimension spectrum

log 2 2πin  Σ = + log 3 log 3 n∈Z

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Example: AF algebras (noncommutative Cantor sets) C ∗-algebras approximated by finite dimensional algebras (direct limits of a direct system of finite dimensional algebras) determined by Bratteli diagram: Fk = fin dim algebras φk,k+1 embeddings with specified multiplicities C(Λ) = commutative AF algebra corresponding to the diagram

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Example: Fibonacci spectral triple

Fibonacci AF algebra Fn = MFn+1 ⊕ MFn , embeddings from partial embedding  1 1  1 0

Fibonacci Cantor set from the interval I = [0, 4] remove Fn+1 open n intervals Jn,j of lengths `n = 1/2 , according to the rule:

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Hilbert space E of endpoints xn,j,± of the intervals Jn,j : H = `2(E), completion of

2 3 5 C ⊕ C ⊕ C ⊕ C ⊕ C ··· 2 3 ⊕ C ⊕ C ⊕ C ⊕ C ···

Action of MFn+1 ⊕ MFn ⇒ of AF algebra Sign on subspace Hn,j spanned by ξ(xn,j,±)

 0 1  F | = . Hn,j 1 0

Dirac operator     ξ(xn,j,+) −1 ξ(xn,j,−) D|Hn,j = `n (xn,j,−) ξ(xn,j,+)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli ⇒ spectral triple with zeta function 2 Tr(|D|−s ) = 2ζ (s) = F 1 − 2−s − 4−s

P −ns geometric zeta function ζF (s) = n Fn+12 • bounded commutators condition: [D, a] bounded for a ∈ A0:     ξ(xn,j,+) −1 (An,+ − An,−)ξ(xn,j,−) [D, U]|Hn,j = `n . ξ(xn,j,−) (An,− − An,+)ξ(xn,j,+)

⇒ for U ∈ ∪k Fk (dense subalgebra) √ 1+ 5 Dimension spectrum with φ = 2 log φ 2πin   log φ 2πi(n + 1/2) + ∪ − + log 2 log 2 log 2 log 2 n∈Z n∈Z

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli The spectral action functional Ali Chamseddine, Alain Connes, The spectral action principle, Comm. Math. Phys. 186 (1997), no. 3, 731–750.

A good action functional for noncommutative geometries

Tr(f (D/Λ))

D Dirac, Λ mass scale, f > 0 even smooth function (cutoff approx) Simple dimension spectrum ⇒ expansion for Λ → ∞ Z X k −k Tr(f (D/Λ)) ∼ fk Λ − |D| + f (0) ζD (0) + o(1), k

R ∞ k−1 with fk = 0 f (v) v dv momenta of f −s where DimSp(A, H, D) = poles of ζb,D (s) = Tr(b|D| )

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Asymptotic expansion of the spectral action

−t∆ X α Tr(e ) ∼ aα t (t → 0) and the ζ function −s/2 ζD (s) = Tr(∆ )

Non-zero term aα with α < 0 ⇒ pole of ζD at −2α with 2 a Res ζ (s) = α s=−2α D Γ(−α)

No log t terms ⇒ regularity at 0 for ζD with ζD (0) = a0

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Get first statement from Z ∞ −s −s/2 1 −t∆ s/2−1 |D| = ∆ = s  e t dt Γ 2 0

R 1 α+s/2−1 −1 with 0 t dt = (α + s/2) . Second statement from 1 s s  ∼ as s → 0 Γ 2 2 contrib to ζD (0) from pole part at s = 0 of Z ∞ Tr(e−t∆) ts/2−1 dt 0

R 1 s/2−1 2 given by a0 0 t dt = a0 s

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Zeta function and (manifolds) • Mellin transform Z ∞ −s 1 −tD2 s −1 |D| = e t 2 dt Γ(s/2) 0

• heat kernel expansion

−tD2 X α Tr(e ) = t cα for t → 0 α

• zeta function expansion

X cα ζ (s) = Tr(|D|−s ) = + holomorphic D Γ(s/2)(α + s/2) α

• taking residues 2c Res ζ (s) = α s=−2α D Γ(−α)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Spectral Action as a model of Euclidean (Modified) Gravity

D X λ S = Tr(f ( )) = f ( ) Λ Λ Λ λ∈Spec(D)

D Dirac operator ∗ Λ ∈ R+ energy scale f (x) test function (smooth approximation to cutoff function) Why a model of (Euclidean) Gravity? • M compact Riemannian 4-manifold

4 2 Tr(f (D/Λ)) ∼ 2Λ f4a0 + 2Λ f2a2 + f0a4 48f Λ4 Z √ 96 f Λ2 Z √ = 4 g d 4x + 2 R g d 4x π2 24π2 f Z 11 √ + 0 ( R∗R∗ − 3C C µνρσ) g d 4x 10π2 6 µνρσ coefficients a0, a2 and a4 cosmological, Einstein–Hilbert, and Weyl curvature C µνρσ and Gauss–Bonnet R∗R∗ gravity terms Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Example spectral action of the round 3-sphere S3

X 1 S 3 (Λ) = Tr(f (D 3 /Λ)) = n(n + 1)f ((n + )/Λ) S S 2 n∈Z

• zeta function 3 1 3 ζD (s) = 2ζ(s − 2, ) − ζ(s, ) S3 2 2 2 ζ(s, q) = Hurwitz zeta function • by asymptotic expansion

3 1 S 3 (Λ) ∼ Λ f − Λf S 3 4 1

• can also compute using Poisson summation formula (Chamseddine–Connes): estimate error term O(Λ−∞)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli 3 Example: round 3-sphere Sa radius a

s 3 1 3 ζD 3 (s) = a (2ζ(s − 2, ) − ζ(s, )) Sa 2 2 2

3 1 S 3 (Λ) ∼ (Λa) f3 − (Λa)f1 Sa 4

3 ´ Example: spherical space form Y = Sa /Γ(Ca´ci´c,Marcolli, Teh) 1 SY (Λ) ∼ S 3 (Λ) #Γ Sa

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Spectral Triples on Fractals obtained by gluing smooth spaces Sierpinski gasket (treat each triangle like a smooth circle) Apollonian packings of circles higher dimensional analogs

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Spectral triple construction (Christensen, Ivan, Lapidus) Spectral triple for the model manifold (circle, sphere, etc) (A, H, D)

a copy (Hi , Di ) of Hilbert space and Dirac operator of (A, H, D) for each copy of the model manifold in the fractal

direct sum (H, D) := ⊕i (Hi , Di )

algebra is subalgebra A ⊂ ⊕i Ai of functions that agree at the points where the model manifolds are joined together to form the fractal the resulting (A, H, D) satisfies all the properties of a spectral triple

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Example: Lower Dimensional Apollonian Ford Circles Ford circles: tangent to the real line at points (k/n, 0) with centers at points (k/n, 1/(2n2))

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli 2 −1 number of circles of radius rn = (2n ) is number of integers 1 ≤ k ≤ n coprime to n: multiplicity m(rn) given by Euler totient function m(rn) = ϕ(n), Y 1 ϕ(n) = n (1 − ) p p|n product over the distinct prime numbers dividing n Dirichlet series generating function of the Euler totient function X ϕ(n) D (s) = ϕ ns n≥1

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli fractal string zeta function

X 2 −s −s X −2s −s ζL(s) = ϕ(n) (2n ) = 2 ϕ(n) n = 2 Dϕ(2s) n≥1 n≥1 using ϕ(pk ) = pk − pk−1

X 1 − p−s 1 + ϕ(pk )p−sk = 1 − p1−s k using Euler product formula

ζ(s − 1) D (s) = ϕ ζ(s) so fractal string zeta function of Ford circles

ζ(2s − 1) ζ (s) = 2−s L ζ(2s)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Zeta function of the Spectral Triple: Ford Circles Zeta function for an individual circle D = −id/dx trivial spin structure has spectrum n and eigenfunctions einx for the other non-trivial spin structure spectrum (n + 1/2) and eigenfunctions ei(n+1/2)x zeta function (non-trivial spin structure) Tr(|D|−s ) = ζ(s, 1/2) Hurwitz zeta ζ(s, 1/2) = P(n + 1/2)−s trivial spin structure with Riemann zeta (on complement of kernel) if scale circle by radius a > 0 scale zeta function by factor of as zeta function for the Ford Circles packing Dirac operator

−s −s X s −s Tr(|D| ) = Tr(⊕k |Dak | ) = ak Tr(|D| ) = ζL(s)ζD (s) k ζ(2s − 1)ζ(s, 1/2) = ζ (s)ζ(s, 1/2) = 2−s L ζ(2s) Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Apollonian sphere packings • best known and understood case: Apollonian circle packing

Configurations of mutually tanget circles in the plane, iterated on smaller scales filling a full volume region in the unit 2D ball: residual set volume zero fractal of Hausdorff dimension 1.30568... Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli • Many results (geometric, arithmetic, analytic) known about Apollonian circle packings: see for example R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks, C.H.Yan, Apollonian circle packings: number theory, J. Number Theory 100 (2003) 1–45 A. Kontorovich, H. Oh, Apollonian circle packings and closed horospheres on hyperbolic 3-manifolds, Journal of AMS, Vol 24 (2011) 603–648.

• Higher dimensional analogs of Apollonian packings: much more delicate and complicated geometry R.L. Graham, J.C. Lagarias, C.L. Mallows, A.R. Wilks, C.H.Yan, Apollonian Circle Packings: Geometry and Group Theory III. Higher Dimensions, Discrete Comput. Geom. 35 (2006) 37–72.

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Some known facts on Apollonian sphere packings • Descartes configuration in D dimensions: D + 2 mutually tangent (D − 1)-dimensional spheres • Example: start with D + 1 equal size mutually tangent SD−1 centered at the vertices of D-simplex and one more smaller sphere in the center tangent to all

4-dimensional simplex

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli • Quadratic Soddy–Gosset relation between radii ak

2 D+2 ! D+2 2 X 1 X  1  = D ak ak k=1 k=1

• curvature-center coordinates:(D + 2)-vector

kxk2 − a2 1 1 1 w = ( , , x ,..., x ) a a a 1 a D (first coordinate curvature after inversion in the unit sphere)

• Configuration space MD of all Descartes configuration in D dimensions = all solutions W to equation

 0 −4 0  t W QD W = −4 0 0  0 0 2 ID with left and a right action of Lorentz group O(D + 1, 1) Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli ⊥ • Dual Apollonian group GD generated by reflections: inversion with respect to the j-th sphere

⊥ t t Sj = ID+2 + 2 1D+2ej − 4 ej ej ej = j-th unit coordinate vector ⊥ ⊥ 2 • D 6= 3: only relations in GD are (Sj ) = 1 ⊥ •GD discrete subgroup of GL(D + 2, R) ⊥ • Apollonian packing PD = an orbit of GD on MD

⇒ iterative construction: at n-th step add spheres obtained from initial Descartes configuration via all possible

⊥ ⊥ ⊥ Sj1 Sj2 ··· Sjn , jk 6= jk+1, ∀k there are Nn spheres in the n-th level

n−1 Nn = (D + 2)(D + 1)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli iterative construction of sphere packings

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli • Length spectrum: radii of spheres in packing PD

n−1 L = L(PD ) = {an,k : n ∈ N, 1 ≤ k ≤ (D + 2)(D + 1) } radii of spheres SD−1 an,k • Melzak’s packing constant σD (PD ) exponent of convergence of series ∞ (D+2)(D+1)n−1 X X s ζL(s) = an,k n=1 k=1 • Residual set: R(P ) = BD ∪ BD with D r n,k an,k ∂BD = SD−1 ∈ P an,k an,k D P D • Packing ⇒ VolD (R(PD )) = 0 ⇒ L an,k < ∞ ⇒ σD (PD ) ≤ D • packing constant and Hausdorff dimension:

dimH (R(PD )) ≤ σD (PD ) for Apollonian circles known to be same Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli • Sphere counting function: spheres with given curvature bound

N (P ) = #{SD−1 ∈ P : a ≥ α} α D an,k D n,k

−1 −1 curvatures cn,k = an,k ≤ α • for Apollonian circles power law (Kontorovich–Oh)

− dimH (R(P2)) Nα(P2) ∼α→0 α

• for higher dimensions (Boyd): packing constant

log Nα(PD ) lim sup − = σD (PD ) α→0 log α

−(σ (P )+o(1)) if limit exists Nα(PD ) ∼α→0 α D D

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Screens and Windows

• in general ζLD (s) need not have analytic continuation to meromorphic on whole C • ∃ screen S: curve S(t) + it with S : R → (−∞, σD (PD )] • window W = region to the right of screen S where analytic continuation

M.L. Lapidus, M. van Frankenhuijsen, Fractal geometry, complex dimensions and zeta functions. Geometry and spectra of fractal strings, Second edition. Springer Monographs in Mathematics. Springer, 2013.

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Screens and windows

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Some additional assumptions • Definition: Apollonian packing PD of (D − 1)-spheres is analytic if

1 ζL(s) has analytic to meromorphic function on a region W containing R+ 2 ζL(s) has only one pole on R+ at s = σD (PD ). 3 pole at s = σD (PD ) is simple

log Nα(PD ) • Also assume: ∃ limα→0 − log α = σD (PD )

• Question: in general when are these satisfied for packings PD ? • focus on D = 4 cases with these conditions

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Rough estimate of the packing constant •P = P Apollonian packing of 3-spheres S3 4 an,k • at level n: average curvature

6·5n−1 γn 1 X 1 = n−1 Nn 6 · 5 an,k k=1

• estimate σ (P ) with averaged version: P N ( γn )−s 4 4 n n Nn log(6 · 5n−1) σ4,av (P) = lim n→∞ γn  log 6·5n−1

• generating function of the γn known (Mallows) ∞ X n (1 − x)(1 − 4x)u GD=4 = γn x = 1 − 22 x − 5x2 n=1 3 u = sum of the curvatures of initial Descartes configuration Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli • obtain explicitly (u = 1 case) √ √ √ √ (11 + 166)n(−64 + 9 166) + (11 − 166)n(64 + 9 166) γn = √ 3n · 10 · 166

• this gives a value

σ4,av (P) = 3.85193 ...

• in Apollonian circle case where σ(P) known this method gives larger value, so expect σ4(P) < σ4,av (P) • constraints on the packing constant:

3 < dimH (R(P)) ≤ σ4(P) < σ4,av (P) = 3.85193 ...

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Packed Swiss Cheese Cosmology Physics Motivation: a cosmological model based on Apollonian packings of spheres • Iterate construction removing more and more balls ⇒ Apollonian sphere packing of 3-dimensional spheres • Residual set of sphere packing is fractal • Proposed as explanation for possible fractal distribution of matter in galaxies, clusters, and superclusters

F. Sylos Labini, M. Montuori, L. Pietroneo, Scale-invariance of galaxy clustering, Phys. Rep. Vol. 293 (1998) N. 2-4, 61–226. J.R. Mureika, C.C. Dyer, Multifractal analysis of Packed Swiss Cheese Cosmologies, General Relativity and Gravitation, Vol.36 (2004) N.1, 151–184.

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Homogeneity versus Isotropy in Cosmology 3 • Homogeneous and isotropic: Friedmann universe R × S

2 2 2 2 2 ±dt + a(t) σ1 + σ2 + σ3

3 with round metric on S with SU(2)–invariant 1-forms {σi } satisfying relations dσi = σj ∧ σk for all cyclic permutations (i, j, k) of (1, 2, 3)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli • Homogeneous but not isotropic: 3 Bianchi IX mixmaster models R × S 2 2 2 2 σ1 σ2 σ3 F (t)(±dt + 2 + 2 + 3 ) W1 (t) W2 (t) W3 (t) with a conformal factor F (t) ∼ W1(t)W2(t)W3(t)

• Isotropic but not homogeneous? ⇒ Swiss Cheese Models

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Main Idea: • M.J. Rees, D.W. Sciama, Large-scale density inhomogeneities in the universe, Nature, Vol.217 (1968) 511–516.

Cut off 4-balls from a FRW spacetime and replace with different density smaller region outside/inside patched across boundary with vanishing Weyl curvature tensor (isotropy preserved)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Different models of Fractal (Euclidean) Spacetimes Simplified model: stationary, S1 × S3 replaced by S1 × P with S1 compactified time direction and P Apollonian packing of 3-spheres; metric Same model with non-trivial cosmic topology: another spherical space form instead of S3 (eg Poincare’ dodecahedral space, homology 3-sphere) and fractal packing 3 Better model: Robertson–Walker metrics on R × S and on R × P with Apollonian packing P; expanding/contracting universe

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Models of (Euclidean, compactified) spacetimes

1 1 3 Homogeneous Isotropic cases: Sβ × Sa

2 1 Cosmic Topology cases: Sβ × Y with Y a spherical space form S3/Γ or a flat Bieberbach manifold T 3/Γ (modulo finite groups of isometries)

3 1 Packed Swiss Cheese: Sβ × P with Apollonian packing of 3-spheres S3 an,k

4 Fractal arrangements with cosmic topology

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Fractal arrangements with cosmic topology • Example: Poincar´ehomology sphere, dodecahedral space 3 S /I120, fundamental domain dodecahedron

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli • considered a likely candidate for cosmic topology S. Caillerie, M. Lachi`eze-Rey, J.P. Luminet, R. Lehoucq, A. Riazuelo, J. Weeks, A new analysis of the Poincar´e dodecahedral space model, Astron. and Astrophys. 476 (2007) N.2, 691–696

• build a fractal model based on dodecahedral space

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Fractal configurations of dodecahedra (Sierpinski dodecahedra)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli 3 π2 3 • spherical dodecahedron has Vol(Y ) = Vol(Sa /I120) = 60 a • simpler than sphere packings because uniform scaling at each step: 20n new dodecahedra, each scaled by a factor of (2 + φ)−n log(20) dim (P ) = = 2.32958... H I120 log(2 + φ)

• close up all dodecahedra in the fractal identifying edges with I120: get fractal arrangement of Poincar´espheres Ya(2+φ)−n • zeta function has analytic continuation to all C X 1 ζ (s) = 20n (2 + φ)−ns = L 1 − 20(2 + φ)−s n

log(20) exponent of convergence σ = dimH (PI120 ) = log(2+φ) and poles 2πim σ + , m ∈ log(2 + φ) Z

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Spectral action on a fractal spacetime: 1 Sβ × P: Apollonian packing 1 Sβ × PY : fractal dodecahedral space

1 Construct a spectral triple for the geometries P and PY 2 Compute the zeta function 3 Compute the asymptotic form of the spectral action

4 1 Effect of product with Sβ

⇒ look for new terms in the spectral action (in additional to usual gravitational terms) that detect presence of fractality

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli The spectral triple of a fractal geometry • case of Sierpinski gasket: Christensen, Ivan, Lapidus

• similar case for P and PY • for D-dim packing

P = {SD−1 : n ∈ , 1 ≤ k ≤ (D + 2)(D + 1)n−1} D an,k N

(APD , HPD , DPD ) = ⊕n,k (APD , HSD−1 , DSD−1 ) an,k an,k

3 • for PY with Ya = S /I120:

(APY , HPY , DPY ) = (APY , ⊕nHYan , ⊕nDYan )

−n with an = a(2 + φ)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Zeta functions for Apollonian packing of 3-spheres: • Lengths zeta function (fractal string)

6·5n−1 X X s ζL(s) := an,k n∈N k=1 n−1 with L = L4 = {an,k | n ∈ N, k ∈ {1,..., 6 · 5 }} • zeta function of Dirac operator of the spectral triple

∞ 6·5n−1 −s X X −s Tr(|DP | ) = Tr(|DS3 | ) an,k n=1 k=1 −s s 3 1 3 each term Tr(|DS3 | ) = a (2ζ(s − 2, ) − ζ(s, )) gives an,k n,k 2 2 2  3 1 3  X Tr(|D |−s ) = 2ζ(s − 2, ) − ζ(s, ) as P 2 2 2 n,k n,k  3 1 3  = 2ζ(s − 2, ) − ζ(s, ) ζ (s) 2 2 2 L Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Spectral action for Apollonian packing of 3-spheres: (under good conditions on ζL(s)) • Positive Dimension Spectrum: Σ+ = {1, 3, σ (P)} STPSC 4 • asymptotic spectral action 1 Tr(f (D /Λ)) ∼ Λ3 ζ (3) f − Λ ζ (1) f P L 3 4 L 1 3 1 3 +Λσ (ζ(σ − 2, ) − ζ(σ, )) R f + Sosc 2 4 2 σ σ Λ

σ = σ4(P) packing constant; residue Rσ = Ress=σζL(s), and R ∞ β−1 momenta fβ = 0 v f (v)dv osc • additional term SΛ coming from series of contributions of poles of zeta function off the real line: oscillatory terms

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Oscillatory terms (fractals)

• zeta function ζL(s) on fractals in general has additional poles off the real line (position depends on Hausdorff and spectral dimension: depending on how homogeneous the fractal) 2πim • best case exact self-similarity: s = σ + log ` , m ∈ Z • heat kernel on fractals has additional log-oscillatory terms in expansion C 2π (1 + A cos( log t + φ)) + ··· tσ log ` for constants C, A, φ: series of terms for each complex pole

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Log-oscillatory terms in expansion of the spectral action:

• G.V. Dunne, Heat kernels and zeta functions on fractals, J. Phys. A 45 (2012) 374016 [22p]

• M. Eckstein, B. Iochum, A. Sitarz, Heat kernel and spectral action on the standard Podl´essphere, Comm. Math. Phys. 332 (2014) 627–668

• M. Eckstein, A. Zaja¸c, Asymptotic and exact expansion of heat traces, arXiv:1412.5100

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli 1 effect of product with Sβ (leading term without oscillations) 1 3 • case of Sβ × Sa (Chamseddine–Connes) ! 0 D 3 ⊗ 1 + i ⊗ D 1 Sa Sβ DS1 ×S3 = β a D 3 ⊗ 1 − i ⊗ D 1 0 Sa Sβ Spectral action

2 2 Tr(h(D 1 3 /Λ)) ∼ 2βΛTr(κ(D 3 /Λ)), Sβ ×Sa Sa test function h(x), and test function Z κ(x2) = h(x2 + y 2)dy R

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli 1 • Case of Sβ × P:   4 2 1 SS1 ×P (Λ) ∼ 2β Λ ζL(3) h3 − Λ ζL(1) h1 β 4

 3 1 3  +2β Λσ+1 ζ(σ − 2, ) − ζ(σ, ) R h 2 4 2 σ σ with momenta Z ∞ Z ∞ 2 3 2 h3 := π h(ρ )ρ dρ, h1 := 2π h(ρ )ρdρ 0 0 Z ∞ 2 σ hσ = 2 h(ρ )ρ dρ 0

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Interpretation: 4 3 1 2 Term 2Λ βa h3 − 2 Λ βah1, cosmological and Einstein–Hilbert terms, replaced by 1 2Λ4βζ (3)h − Λ2βζ (1)h L 3 2 L 1 zeta regularization of divergent series of spectral actions of 3-spheres of packing Additional term in gravity action functional: corrections to gravity from fractality

 3 1 3  2β Λσ+1 ζ(σ − 2, ) − ζ(σ, ) R h 2 4 2 σ σ

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Case of fractal dodecahedral space PY • Zeta functions

X n −ns ζL(PY )(s) = 20 (2 + φ) n≥0

as  3 1 3  ζD (s) = 2ζ(s − 2, ) − ζ(s, ) ζL(P )(s) PY 120 2 2 2 Y

• Spectral action:

ζ (3) ζ (1) Tr(f (D /Λ)) ∼ (Λa)3 L(PY ) f − Λa L(PY ) f PY 120 3 120 1 ζ(σ − 2, 3 ) − 1 ζ(σ, 3 ) +(Λa)σ 2 4 2 f + Sosc 120 log(2 + φ) σ Y ,Λ log(20) σ = dimH (PY ) = log(2+φ) = 2.3296...

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli 1 • on product geometry Sβ × PY ! a3ζ (3) aζ (1) 4 L(PY ) 2 L(PY ) SS1 ×P (Λ) ∼ 2β Λ h3 − Λ h1 β Y 120 120

σ 3 1 3 σ+1 a (ζ(σ − 2, 2 ) − 4 ζ(σ, 2 )) osc +2β Λ hσ + SS1 ×Y ,Λ 120 log(2 + φ) β

• Note: correction term now at different σ than Apollonian P osc • oscillatory terms SY ,Λ more explicit than in the Apollonian case

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Oscillatory terms: dodecahedral case

• zeros of zeta function ζL(s) 2πim s = σ + , m ∈ m log(2 + φ) Z with σ = log(20)/ log(2 + φ) • contribution to heat kernel expansion of non-real zeros: C (a + 2<(a t−2πi/ log(2+φ)) + ··· ) tσ 0 1 with coefficients am proportional to Γ(sm): for fixed real part σ decays exponentially fast along vertical line • oscillatory terms are small

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Slow-roll inflation potential from the spectral action • perturb the Dirac operator by a scalar field D2 + φ2 ⇒ spectral action gives potential V (φ)

• shape of V (φ) distinguishes most cosmic topologies: spherical forms and Bieberbach manifolds (Marcolli, Pierpaoli, Teh)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Fractality corrections to potential V (φ) • additional term in potential Z ∞ (σ−1)/2 Uσ(x) = u (h(u + x) − h(u))du 0 depends on σ fractal dimension • size of correction depends on (leading term)

3 1 3 (ζ(σ − 2, ) − ζ(σ, ))R 2 4 2 σ

• further corrections to Uσ come from the oscillatory terms ⇒ presence of fractality (in this spectral action model of gravity) can be read off the slow-roll potential (hence the slow-roll coefficients, which depend on V , V 0, V 00)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Robertson–Walker spacetime 3 • Topologically S × R • Metric (Euclidean) ds2 = dt2 + a(t)2dσ2 scaling factor a(t), round metric dσ2 on S3 A.H. Chamseddine, A. Connes, Spectral action for Robertson-Walker metrics, J. High Energy Phys. (2012) N.10, 101 • form of Dirac-Laplacian D2 for Robertson–Walker metric ∂ 3a0(t) 1 a0(t) D2 = −( + )2 + (γ0D )2 − γ0D ∂t 2a(t) a(t)2 3 a2(t) 3

0 3 • γ D3 = DS3 ⊕ −DS3 , Dirac operator on S • Dirac spectrum on S3 3 3 Spec(D 3 ) = {k + } multiplicities µ(k + ) = (k + 1)(k + 2) S 2 2 Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli • use basis of eigenfunctions of the Dirac operator on S3 to decompose D2 as direct sum of operators

d2 (n + 3 )2 (n + 3 )a0 H = −( − 2 + 2 ) n dt2 a2 a2 multiplicity 4(n + 1)(n + 2) • spectral action for test function f (u) = e−su

2 X Tr(f (D )) ∼ µ(n) Tr(f (Hn)) n≥0 multiplicities µ(n) = 4(n + 1)(n + 2) and operator Hn

d2 H = − + V (t), n dt2 n

(n + 3 ) 3 V (t) = 2 ((n + ) − a0(t)) n a(t)2 2

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Result of this approach (Chamseddine–Connes) • to compute the spectral action for the Robertson–Walker metric need to evaluate the trace Tr(e−sHn ) which requires computing e−sHn (t, t) (for coeffs prior to time integration) Feynman–Kac formula Z Z 1 √ −sHn 1 e (t, t) = √ exp(−s Vn(t + 2sα(u))du) D[α] 2 πs 0 D[α] Brownian bridge integrals Brownian bridge: Gaussian stochastic process characterized by the covariance

E(α(v1)α(v2)) = v1(1 − v2), 0 ≤ v1 ≤ v2 ≤ 1

Background reference for Brownian bridge and Feynman–Kac: Barry Simon, Functional Integration and Quantum Physics, Academic Press, 1979 Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Problem: technique used on Chamseddine–Connes for computing the Brownian bridge integrals becomes computationally intractable after the 10th or 12th term New Method for computing the Brownian bridge integrals more efficiently and obtain the full expansion of the spectral action Quick summary of results in our work: use this Brownian bridge computation to obtain explicit formula for all the coefficients a2n of the heat kernel expansion in terms of Bell polynomials consider isotropic non-homogeneous versions of Robertson–Walker spacetimes based on Apollonian packings of spheres (multifractal cosmologies) extend computation of the spectral action to these multifractal cases identify correction terms that detect fractality

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Brownian bridge integrals and expansion 2 • notation A(t) = 1/a(t) and B(t) = A(t) so potential Vn 2 2 0 2 0 Vn(t) = x A(t) + xA (t) = x B(t) + xA (t), with x = n + 3/2 Integral in Feynman–Kac formula becomes Z 1 √ 2 −s Vn(t + 2s α(v)) dv = −x U − xV 0 where Z 1  √  Z 1  √  U = s A2 t + 2s α(v) dv = s B t + 2s α(v) dv 0 0 Z 1  √  V = s A0 t + 2s α(v) dv 0

• in heat kernel spectral multiplicities (Dirac eigenvalues on S3) X d 2 µ(n)Tr(e−s Hn ) µ(n) = 4(n + 1)(n + 2) H = − + V (t) n dt2 n n replace sum over multiplicities by an integration of a continuous variable (Poisson summation) x = nFractals+ 3/ and2 Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli 2 1  −x2U−xV • including multiplicities: fs (x) := x − 4 e 2 ∞ √ V 2 2 Z π e 4U −U + 2U + V f (x) dx = s 5/2 −∞ 4U Generating function for the full expansion of the spectral action 2 2 √ V 2 2 V 2 2 1 π e 4U −U + 2U + V 1 e 4U −U + 2U + V √ = √ πs 4U5/2 s 4U5/2 then consider Laurent series expansion in the variable τ = s1/2 ∞ ∞ X un X vn U = τ 2 τ n and V = τ 2 τ n n! n! n=0 n=0 n ! X n u = B(n)(t) 2n/2x (α) = A(k)(t)A(n−k)(t) 2n/2 x (α) n n k n k=0 (n+1) n/2 vn = A (t)2 xn(α) Z 1 k xk (α) = α(v) dv 0 Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli resulting expansion ∞ Z 2 2 X 2M−4 Tr(exp(−τ D )) ∼ τ a2M (t) dt, M=0 Z 1 1   a (t) = C (−3/2,0) + C (−5/2,2) − C (−1/2,0) D[α] 2M 2 2M 4 2M−2 2M−2 coefficients and Bell polynomials −n+r2n+m2M−2n (r,m) X k p β k! p! C = u−n+r−k v 2n+m−p× 2M 4n n! (2M − 2n)! 0 0 0≤k,p≤2M 0≤n≤M 0≤β≤2M−2n ! Bβ,k (u1,..., uβ−k+1) B2M−2n−β, p (v1,..., v2M−2n−β−p+1)

Bell polynomials: Fa`adi Bruno derivatives of composite functions n d n X f (g(t)) = f (m)(g(t)) B (g 0(t), g 00(t),..., g (n−m+1)(t)) dtn n,m m=1 Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Structure of Brownian Bridge Integrals Step 1: integrals of monomials on the standard simplex

n n ∆ = {(v1, v2,..., vn) ∈ R : 0 ≤ v1 ≤ v2 ≤ · · · ≤ vn ≤ 1}.

k1 k2 kn monomial v1 v2 ··· vn Z k1 k2 kn v1 v2 ··· vn dv1 dv2 ··· dvn = ∆n 1 (k1 + 1)(k1 + k2 + 2) ··· (k1 + k2 + ··· + kn + n)

Similarly for 1 ≤ j1 < j2 < ··· < jk ≤ n Z j1(j2 + 1)(j3 + 2) ··· (jk + k − 1) vj1 vj2 ··· vjk dv1 dv2 ··· dvn = ∆n (n + k)!

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Step 2: Brownian Bridge and integration on the simplex • Using variance property of Brownian Bridge: 2n (v1, v2,..., v2n) ∈ ∆

Z X α(v1)α(v2) ··· α(v2n) D[α] = vi1 (1−vj1 )vi2 (1−vj2 ) ··· vin (1−vjn ) summation over indices with i1 < j1, i2 < j2, ... , in < jn, and {i1, j1, i2, j2,..., in, jn} = {1, 2,..., 2n} 2n • equivalently for (v1, v2,..., v2n) ∈ ∆ Z α(v1)α(v2) ··· α(v2n) D[α] =

X vσ(1)(1 − vσ(2))vσ(3)(1 − vσ(4)) ··· vσ(2n−1)(1 − vσ(2n)) ∗ σ∈S2n ∗ S2n set of all permutations σ in symmetric group S2n with σ(1) < σ(2), σ(3) < σ(4), . . . , σ(2n − 1) < σ(2n)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Brownian Bridge Integrals

• Notation: Jk,n = set of all k-tuples of integers J = (j1, j2,..., jk ) such ∗ that 1 ≤ j1 < j2 < ··· < jk ≤ n; for J ∈ Jk,n and σ ∈ S2n define σJ (1), σJ (2), . . . , σJ (n + k) by property that

σJ (1) < σJ (2) < ··· < σJ (n + k) and that the set of such σJ ’s is given by {σJ (1) < σJ (2) < ··· < σJ (n + k)}

= {σ(1), σ(3), . . . , σ(2n − 1), σ(2j1), . . . , σ(2jk )}

Z 1 k xk (α) = α(v) dv 0 • Brownian Bridge Integrals Z Z Z 1 2n 2n   x1(α) D[α] = α(v) dv D[α] = 0 n X X X σJ (1) (σJ (2) + 1) ··· (σJ (n + k) + n + k − 1) (2n)! (−1)k ∗ (3n + k)! σ∈S2n k=0 J∈Jk,n Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Monomial Brownian Bridge Integrals n • for (v1, v2,..., vn) ∈ ∆ and for i1, i2,..., in ∈ Z≥0 such that i1 + i2 + ··· + in ∈ 2Z≥0 Z i1 i2 in α(v1) α(v2) ··· α(vn) D[α] =

 −1 |I |/2   K1 K2 Kn n ! |I | |I |! (−1/2) X |I |/2 X X X Y i −r √ ··· (−1)rp v p p , |I | p I ( −1) (|I |/2)! km,j r1=0 r2=0 rn=0 p=1 with I = (i1, i2,..., in), first summation over non-negative integers kj,m, j, m = 1, 2,..., n such that n n X |I | X k = , (k +k ) = i for all j = 1, 2,..., n j,m 2 j,m m,j j j,m=1 m=1 and for each m = 1, 2,..., n,

m−1 X Km := km,m + (kj,m + km,j ) j=1

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Sketch of proof

 n   n  Z √ X 1 X exp −1 u α(v ) D[α] = exp − c u u  j j   2 j,m j m j=1 j,m=1 where the terms cj,m are given by

cj,m = vj (1 − vm) if j ≤ m, and cj,m = vm(1 − vj ) if m ≤ j

Expanding gives

√ ( −1)i1+i2+···+in i + i + ··· + i  Z 1 2 n i1 i2 in α(v1) α(v2) ··· α(vn) D[α] = (i1 + i2 + ··· + in)! i1, i2,..., in

  (−1/2)(i1+i2+···+in)/2 n i1 i2 in X (i1+i2+···+in)/2 Coefficient of u1 u2 ··· un in cj,muj um  ((i1 + i2 + ··· + in)/2)! j,m=1

(i1+i2+···+in)/2   n (−1/2) X (i1 + i2 + ··· + in)/2 Y kj,m = cj,m ((i1 + i2 + ··· + in)/2)! k1,1, k1,2,..., k1,n, k2,1,..., kn,n j,m=1 from which then can group terms as stated Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Shuffle Product n • for (v1, v2,..., vn) ∈ ∆ and i1, i2,..., in ∈ Z≥0 with i1 + i2 + ··· + in ∈ 2Z≥0 Z b i1 i2 in V (i1, i2,..., in) := α(v1) α(v2) ··· α(vn) D[α]

• extend V b linearly to vector space generated by all words (i1, i2,..., in) in the letters i1, i2,..., in

• Shuffle product α ¡ β of two words α = (i1, i2,..., ip) and p+q β = (j1, j2,..., jq) sum of p words obtained by interlacing letters of these two words so that in each term the order of the letters of each word is preserved

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli • 2n = m1i1 + m2i2 + ··· + mr ir even positive integer with i1, i2,..., ir distinct positive integers and m1, m2,..., mr positive integers Z m1 m2 mr xi1 (α) xi2 (α) ··· xir (α) D[α] = Z b m! V ((i1,..., i1) ¡ (i2,..., i2) ¡ ···¡(ir ,..., ir ))dv1dv2 ··· dv|m| ∆|m| | {z } | {z } | {z } m1 m2 mr

m! = (m1!)(m2!) ··· (mr !), |m| = m1 + m2 + ··· + mr . follows directly from writing Z m1 m2 mr xi1 (α) xi2 (α) ··· xir (α) D[α]

1 1 1 Z  Z m1  Z m2  Z mr i1 i2 ir = α(v1) dv1 α(v2) dv2 ··· α(vr ) dvr D[α], 0 0 0

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Brownian Bridge Integrals in the Coefficients of the Spectral Action Z (r,m) C2M D[α] =

−n+r2n+mk! p! Z X k p b ¡ ¡  n n−M V (1,..., 1) (2,..., 2) ··· dv1 ··· dvk+p 4 2 n! ∆k+p | {z } | {z } λ1+µ1 λ2+µ2

∞    (i) λi  (i+1) µi ! 2n+m−p Y λi + µi B (t) A (t) ×B(t)−n+r−k (A0(t)) λi i! i! i=1 summation is over integers 0 ≤ k, p ≤ 2M, 0 ≤ n ≤ M,

0 ≤ β ≤ 2M − 2n, and over sequences λ =(λ1, λ2,... ) and µ =(µ1, µ2,... ) of non-negative integers for each choice of k, p, n, β, such that |λ|0 = β, |λ| = k, |µ|0 = 2M − 2n − β, |µ| = p

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli coefficients of the expansion of the spectral action of Robertson–Walker metric a2M (t) =

−n−3/22n k! p! Z 1 X 0 k p b  V (1,..., 1) ¡ (2,..., 2) ¡ ··· dv1 ··· dvk+p × n n−M k+p 2 4 2 n! ∆ | {z } | {z } λ1+µ1 λ2+µ2

∞ (i) !λi (i+1) !µi !  2n−p Y λi + µi  B (t) A (t) B(t)−n−(3/2)−k A0(t) i=1 λi i! i!

1 X 00 −n − 5/22n + 2  2 −n − 1/22n  + B(t)−5/2 A0(t) − B(t)−1/2 × 4 k p k p

Z k! p! b  V (1,..., 1) ¡ (2,..., 2) ¡ ··· dv1 ··· dvk+p × n n−M k+p 4 2 n! ∆ | {z } | {z } λ1+µ1 λ2+µ2

∞ (i) !λi (i+1) !µi !  2n−p Y λi + µi  B (t) A (t) B(t)−n−k A0(t) i=1 λi i! i!

0 summation P is over all integers 0 ≤ k, p ≤ 2M, 0 ≤ n ≤ M, 0 ≤ β ≤ 2M − 2n, and sequences

λ =(λ1, λ2,... ) and µ =(µ1, µ2,... ) of non-negative integers (for each choice of k, p, n, β) such that 00 |λ|0 = β, |λ| = k, |µ|0 = 2M − 2n − β, |µ| = p; second summation P is over all integers

0 ≤ k, p ≤ 2M − 2, 0 ≤ n ≤ M − 1, 0 ≤ β ≤ 2M − 2 − 2n, over all sequences λ =(λ1, λ2,... ), µ = 0 0 (µ1, µ2,... ) of non-negative integers such that |λ| = β, |λ| = k, |µ| = 2M − 2 − 2n − β, |µ| = p Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Packed Swiss Cheese Cosmology: more refined model based on Robertson–Walker metrics P Apollonian packing of 3-spheres radii n−1 {an,k : n ∈ N, k = 1,..., 6 · 5 } iterative construction of packing: at n-th step 6 · 5n−1 spheres S3 are added an,k spacetime that are isotropic but not homogeneous

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli two possible choices of associated Robertson–Walker metrics 1 round scaling (of full 4-dim spacetime)

2 2 2 2 2 n−1 dsn,k = an,k (dt + a(t) dσ ), n ∈ N, k = 1,..., 6 · 5

2 non-round scaling (of spatial sections only)

2 2 2 2 2 n−1 dsn,k = dt + a(t) an,k dσ , n ∈ N, k = 1,..., 6 · 5 D resulting Dirac operators on × S3 n,k R an,k entire (multifractal) spacetime R × P spectral triple for R × P: A subalgebra of C0(R × P), Hilbert 2 space H = ⊕n,k Hn,k with Hn,k = L (San,k , S) and Dirac

6·5n−1 M M D = DR×P := Dn,k n∈N k=1

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Mellin Transform and Zeta Functions meromorphic function φ(z) with poles at S ⊂ C, Laurent series expansion at a pole z0 ∈ S

X k φ(z) = ck (z − z0) −N≤k

singular element at z0 ∈ S

X k S(φ, z0) := ck (z − z0) −N≤k≤0 singular expansion of φ X Sφ(z) := S(φ, z) z∈S Example: for the Gamma function X (−1)k 1 Γ(z)  k! z + k k≥0

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Mellin transform Z ∞ φ(z) = M(f )(z) = f (τ)τ z−1dτ 0 relation between asymptotic expansion at u → 0 of a function f (u) and singular expansion of its Mellin transform φ(z) = M(f )(z) small time asymptotic expansion

X α kα f (u) ∼u→0+ cα,kα u log(u) α∈S,kα coefficients cα,kα determined by singular expansion of Mellin transform

kα X (−1) kα! M(f )(z)  SM(f )(z) = cα,k α (s + α)kα+1 α∈S,kα index kα ranges over terms in singular element of φ(z) = M(f )(z) at z = α, up to order of pole at α Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Example: Packing of 4-Spheres round S4 is a Robertson–Walker metric dt2 + a(t)2dσ2 with a(t) = sin t (0 ≤ t ≤ π) and dσ2 round metric on S3 D−1 spectrum of Dirac operator on Sr radius r > 0     −1 D − 1 Spec(D D−1 ) = λ`,± = ±r + ` | l ∈ Z+ Sr 2

multiplicities   [ D−1 ] ` + D m = 2 2 . `,± `

zeta function of Dirac operator

−s X −s 4 s ζD (s) = Tr(|D 4 | ) = m`,±|λ`,±| = r (ζ(s−3)−ζ(s−1)) Sr 3 `,±

ζ(s) Riemann zeta function Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli P s fractal string zeta function ζL(s) = n,k an,k of Apollonian packing P of S3 with radii sequence L = {a } an,k n,k resulting Dirac operator DP on associated packing of 4-spheres (each 3-sphere equator in a fixed hyperplane of a corresponding 4-sphere) zeta function of Dirac DP factors as product of zetas X 4 ζ (s) = Tr(|D |−s ) = as (ζ(s − 3) − ζ(s − 1)) DP P 3 n,k n,k

= ζ (s)ζ (s) L DS4

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Mellin transform relation between the zeta function of the Dirac operator and the heat-kernel of the Dirac Laplacian Z ∞ −s 1 −tD2 s/2−1 Tr(|DP | ) = Tr(e P ) t dt Γ(s/2) 0 use to compute spectral action leading terms from zeta function: Tr(f (DP /Λ)) ∼

ζL(2) ζL(4) X ζD 4 (σ) f (0)ζ (0) + f Λ2 + f Λ4 + f Λσ S R DP 2 2 4 2 σ 2 σ σ∈S(L)

S(L) set of poles of fractal string zeta ζL(s) residues

Rσ = Ress=σζL(s)

2 4 4 ζL(2) and ζL(4) replace radii r and r for a single sphere Sr : P 2 P 4 zeta regularization of n,k an,k and n,k an,k

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli 2 2 2 2 Round scaling case: R × P with metric an,k (dt + a(t) dσ ) ∗ P −z R = {rn} sequence of rn ∈ R+ so that ζR (z) = n rn converges for <(z) > C for some C > 0 function f (τ) with small time asymptotics

X N f (τ) ∼ cN τ N associated series X gR (τ) = f (rnτ) n

then small time asymptotic expansion of gR (τ)

X N X −σ gR (τ) ∼τ→0+ cN ζR (−N) τ + RR,σ M(f )(σ) τ

N σ∈S(ζR )

with S(ζR ) poles of ζR (z)

RR,σ := Resz=σζR (z)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Sketch of proof: write associated series as X N N X N gR (τ) ∼ cN rn τ = ζR (−N)τ N,n N R ∞ z−1 Mellin transform M(g)(z) = 0 g(τ)τ dτ gives Z ∞ X −z X N+z−1 M(g)(z) = ( rn ) cN u du = ζR (z)·M(f )(z) n 0 N

asymptotic expansion of gR (τ) from Mellin transform M(gR )(z) singular expansion

X RR,σ M(f )(σ) X ζR (σ)cσ S (z) = + M(gR ) z − σ z − σ σ∈S(ζR ) σ∈S(M(f )) and from small time asymptotics of f (τ) know

X cN S (z) = M(f ) z + N N Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Feynman–Kac formula on R × P on each × S3 decompose Dirac D using operators R an,k an,k

d2 H = −a−2 + V (t) m,n,k n,k dt2 m,n,k

(m + 3 ) 3 V = 2 ((m + ) − a · a0(t) m,n,k 2 2 n,k an,k · a(t) 2 as in Chamseddine–Connes Feynman–Kac formula

τ2 d2 2 − ( +a Vm,n,k ) 2 a2 dt2 n,k e−τ Hm,n,k (t, t) = e n,k (t, t)

Z Z 1 √ an,k 2 τ = √ exp(−τ Vm,n,k (t + 2 α(u))du)D[α] 2 πτ 0 an,k

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Poisson summation to replace sum X 2 µ(m)e−τ Hm,n,k (t, t) m with multiplicities µ(m) with the integral Z ∞ fτ, n,k (x) dx −∞   1 −x2a−2U−xa−1V f (x) = x2 − e n,k n,k τ, n,k 4 with U and V as in single sphere case X 2 µ(m)e−τ Hm,n,k (t, t) = m

V 2 ! Z a e 4U n,k (−a U−1/2 + 2a3 U−3/2 + a3 V 2U−5/2) D[α] τ 4 n,k n,k n,k

V 2 ! Z 1 e 4U = (−a2 U−1/2 + a4 (2U−3/2 + V 2U−5/2)) D[α] τ 4 n,k n,k

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli same Taylor expansion method

∞ V 2 X −M−2(r+`) (r,`) 4U r ` 2(r+`) M e U V = τ an,k CM τ M=0

(r,`) 2 2 2 with CM as in single sphere case dt + a(t) dσ resulting expansion

V 2 ! 1 e 4U (−a2 U−1/2 + a4 (2U−3/2 + V 2U−5/2)) = τ 4 n,k n,k ∞ 1 X  (−5/2,2) (−1/2,0) C − C ζ (−M + 2)τ M−2 4 M M L M=0 ∞ 1 X (−3/2,0) + C ζ (−M + 4)τ M−4. 2 M L M=0

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Feynman–Kac formula for the whole R × P

X X 2 µ(m)e−τ Hm,n,k (t, t) = n,k m

∞ Z   X 1 (−3/2,0) 1 (−5/2,2) (−1/2,0) τ 2M−4ζ (−2M+4) C + (C − C ) D[α] L 2 2M 4 2M−2 2M−2 M=0 1 (−3/2,0) with only the term 2 C0 when M = 0 obtained as a series

X −1 gL(τ) = f (an,k τ) n,k Z   X 1 (−3/2,0) 1 (−5/2,2) (−1/2,0) f (τ) ∼ τ 2M−4 C + (C − C ) D[α] 2 2M 4 2M−2 2M−2 M

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Result: Spectral Action on Multifractal Robertson–Walker R × P

Tr(f (D/Λ)) ∼

∞ Z 1 1  X nM (−3/2,0) (−5/2,2) (−1/2,0) Λ fn ζL(nM ) C + (C − C ) D[α] M 2 4−nM 4 2−nM 2−nM M=0 + P f˜(σ) · f · Res ζ · Λσ σ∈SL σ z=σ L nM = 4 − 2M, set of poles SL of ζL Mellin transform f˜(z) = M(f )(z) of f (τ) = Tr(exp(−τ 2D2)) with Dirac on R × S 3 with dt2 + a(t)2dσ2 Conclusion: presence of fractality detected by two types of effects 4−2M 1 zeta regularization of coefficients ζL(4 − 2M) in terms Λ (including effective gravitational and cosmological constant in top terms) <σ 2 additional terms from non-real poles of order Λ (and log periodic) with 3 < <σ = dimH P < 4 between cosmological and Einstein–Hilbert term Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Multifractal Robertson–Walker with non-round scaling 2 2 2 2 dt + an,k a(t) dσ 2 2 2 2 2 rescaling dsa = dt + a · a(t) dσ with a > 0 gives U 7→ a−2 U and V 7→ a−1 V this gives rescaling

∞ ∞ 1 X (−5/2,2) (−1/2,0) 1 X (−3/2,0) (a3 C −a C ) τ M−2+ a3 C τ M−4 4 M M 2 M M=0 M=0

expect presence of zeta regularized coefficients ζL(3), ζL(1) to see this use a Mellin transform with respect to the “multiplicity variable” x in fs (x)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Kummer confluent hypergeometric function notation: a(n) := a(a + 1) ··· (a + n − 1) and a(0) := 1 Kummer confluent hypergeometric function defined by series

∞ X a(n)tn F (a, b, t) = 1 1 b(n)n! n=0 solution of the Kummer equation

d2f df t + (b − t) − af = 0. dt2 dt

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Mellin transform and hypergeometric function Mellin transform in the x-variable of the function

1 2 f (x) := f (x) = (x2 − )e−x U−xV s,− s 4 given by

1 2 1 M((x2 − )e−x U−xV )(z) = U−(z+3)/2× 4 8  z z 1 V 2 z + 2 1 V 2 U1/2 Γ( )(−U F ( , , ) + 2z F ( , , )) 2 1 1 2 2 4U 1 1 2 2 4U z + 1 z + 1 3 V 2 z + 3 3 V 2  +V Γ( )(U F ( , , ))−2(z+1) F ( , , )) 2 1 1 2 2 4U 1 1 2 2 4U similar expression for transform of 2 1 −x2U+xV fs,+(x) := (x − 4 )e

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli multiplicity integral Z ∞ Z ∞ Z ∞ fs (x) dx = fs,−(x) dx + fs,+(x) dx −∞ 0 0

1 2 f (x) = (x2 − )e−x U±xV s,± 4 multiplicity integral as special value at z = 1 of Mellin Z ∞ fs (x) dx = M(fs,−)(z)|z=1 + M(fs,+)(z)|z=1 −∞

Mellin transform M(fs,−)(z) + M(fs,+)(z) 2 2 1 −1− z z z 1 V z 1 V = − U 2 Γ( )(U F ( , , ) − 2z F (1 + , , )) 4 2 1 1 2 2 4U 1 1 2 2 4U value at z = 1  2 2  1 −(1+ z ) z z 1 V z 1 V − U 2 Γ( )(U F ( , , ) − 2z F (1 + , , )) | = 4 2 1 1 2 2 4U 1 1 2 2 4U z=1 √ 2 V π −1/2 −3/2 2 −5/2 e 4U (−U + 2U + V U ) 4 Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Effect of scaling notation: z V 2 H (τ, z) := U−z/2 Γ(z/2) F ( , λ, ) λ 1 1 2 4U z 1 V 2 H(τ, z) := H (τ, z) = U−z/2 Γ(z/2) F ( , , ) 1/2 1 1 2 2 4U z 1 V 2 H (τ, z) := U−z/2 ζ (z) Γ(z/2) F ( , , ) = ζ (z) H(τ, z) L L 1 1 2 2 4U L 2 2 2 2 multiplicity integral with scaling dt + an,k a(t) dσ

M(fs,n,k,−)(z) + M(fs,n,k,+)(z) =

2 1 z − z z z 1 V − a U 2 Γ( ) F ( , , ) 4 n,k 2 1 1 2 2 4U 2 z+2 1− z z z 1 V +a U 2 Γ(1 + ) F (1 + , , )) n,k 2 1 1 2 2 4U 1 − az H(τ, z) + az+2 H(τ, z + 2). 4 n,k n,k

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli multiplicity integral over the full sphere packing R × P   1 X −x2a−2 U−xa−1 V f (x) = x2 − e n,k n,k P,s 4 n,k as value of Mellin transform Z ∞ fP,s (x) dx = M(fP,s,−)(z)|z=1 + M(fP,s,+)(z)|z=1 −∞

2 P 2 −2 −1 fP,s,± = (x − 1/4) n,k exp(−x an,k U ± xan,k V ) Mellin transforms 1 M(f )(z) + M(f )(z) = − H (τ, z) + H (τ, z + 2) P,s,− P,s,+ 4 L L this shows one gets zeta regularized ζL(3) and ζL(1)

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli Sketch of how to see the log periodic terms for non-round scaling 2 2 2 2 dt + an,k a(t) dσ τ expansion

∞ ∞ X un X vn U = τ 2 τ n, V = τ 2 τ n n! n! n=0 n=0 gives expansion of confluent hypergeometric function

∞ X (z/2)n H (τ, z) = ζ (z)Γ(z/2)U−z/2 V 2nU−n L L 4n n! (1/2) n=0 n

with (a)n = a(a + 1) ··· (a + n − 1) the rising factorial the term U−z/2 contributes a term with τ z times a power series in τ, while confluent hypergeometric function contributes a power series in τ

Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli to see why τ z gives rise to log periodic terms in the spectral action consider simplified case product of the Mellin transforms M(f1)(z) ·M(f2)(z) is Mellin transform of convolution

M(f1)(z) ·M(f2)(z) = M(f1 ? f2)(z), Z ∞ x du (f1 ? f2)(x) = f1( )f2(u) 0 u u Mellin transform of a delta distribution τ z−1 = M(δ(x − τ)) Mellin transform of distribution P ΛP,τ := n,k τ an,k δ(x − τ · an,k ) X X h τ an,k δ(x − τ · an,k ), φ(x)i = τ an,k φ(τ an,k ) n,k n,k given by z X τ ζL(z) = M( τ an,k δ(x − τ · an,k )) n,k Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli given function g(x) −1 will want gγ (x) := M (Γ(z/2) 1F1(z/2, 1/2, γ))

M(ΛP,τ )(z) ·M(g)(z) = M(ΛP,τ ? g)(z)

X Z ∞ x du X x = M( τan,k δ(u − τan,k ) g( ) ) = M(g( )) u u τ · an,k n,k 0 n,k x take hz (τ) := M(g( τ )) X Lz (τ) := hz (τ · an,k ) n,k asymptotic expansion for this function through singular expansion of Mellin transform in τ

Mτ (Lz (τ))(β) = ζL(β) ·M(hz (τ))(β) contributions from poles of ζL(β) and of M(hz (τ))(β): log-periodic and zeta regularized terms as expected Fractals and Spectral Triples Introduction to Fractal Geometry and Chaos Matilde Marcolli