Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Multiband Counterparts of Two Eclipsing Ultraluminous X-Ray Sources in M 51
MNRAS 000,1{16 (2017) Preprint 5 November 2018 Compiled using MNRAS LATEX style file v3.0 Multiband counterparts of two eclipsing ultraluminous X-ray sources in M 51 R. Urquhart,1? R. Soria,2;1;3 H.M. Johnston,3 M.W. Pakull,4 C. Motch,4 A. Schwope,5 J.C.A. Miller-Jones1 and G.E. Anderson1 1International Centre for Radio Astronomy Research, Curtin University, GPO Box U1987, Perth, WA 6845, Australia 2National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China 3Sydney Institute for Astronomy, School of Physics A28, The University of Sydney, Sydney, NSW 2006, Australia 4Observatoire astronomique, Universit´ede Strasbourg, CNRS, UMR 7550, 11 rue de l'Universit´e,67000, Strasbourg, France 5Leibniz-Institut f¨urAstrophysik Potsdam, An der Sternwarte 16, 14482, Potsdam, Germany Accepted XXX. Received YYY; in original form ZZZ ABSTRACT We present the discovery and interpretation of ionized nebulae around two ultra- luminous X-ray sources in M 51; both sources share the rare property of show- ing X-ray eclipses by their companion stars, and are therefore prime targets for follow-up studies. Using archival Hubble Space Telescope images, we found an elon- gated, 100-pc-long emission-line structure associated with one X-ray source (CXOM51 J132940.0+471237; ULX-1 for simplicity), and a more circular, ionized nebula at the location of the second source (CXOM51 J132939.5+471244; ULX-2 for simplicity). We observed both nebulae with the Large Binocular Telescope's Multi-Object Double Spectrograph. From our analysis of the optical spectra, we argue that the gas in the ULX-1 bubble is shock-ionized, consistent with the effect of a jet with a kinetic power of ≈2 ×1039 erg s−1. -
The Faint Globular Cluster in the Dwarf Galaxy Andromeda I
Publications of the Astronomical Society of Australia (PASA), Vol. 34, e039, 4 pages (2017). © Astronomical Society of Australia 2017; published by Cambridge University Press. doi:10.1017/pasa.2017.35 The Faint Globular Cluster in the Dwarf Galaxy Andromeda I Nelson Caldwell1, Jay Strader2,7, David J. Sand3,4, Beth Willman5 and Anil C. Seth6 1Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 2Center for Data Intensive and Time Domain Astronomy, Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA 3Department of Physics and Astronomy, Texas Tech University, PO Box 41051, Lubbock, TX 79409, USA 4Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ, 85721, USA 5LSST and Steward Observatory, 933 North Cherry Avenue, Tucson, AZ 85721, USA 6Department of Physics and Astronomy, University of Utah, 115 South 1400 East, Salt Lake City, Utah 84112, USA 7Email: [email protected] (RECEIVED July 7, 2017; ACCEPTED August 10, 2017) Abstract Observations of globular clusters in dwarf galaxies can be used to study a variety of topics, including the structure of dark matter halos and the history of vigorous star formation in low-mass galaxies. We report on the properties of the faint globular cluster (MV ∼−3.4) in the M31 dwarf galaxy Andromeda I. This object adds to the growing population of low-luminosity Local Group galaxies that host single globular clusters. Keywords: galaxies: individual: Andromeda I – globular clusters: general 1 INTRODUCTION a standard cuspy halo were present, the GC would have been very unlikely to have survived to the present day. -
Unusual Orbits in the Andromeda Galaxy Post-16
Unusual orbits in the Andromeda galaxy Post-16 Topics covered: spectra, Doppler effect, Newton’s law of gravitation, galaxy rotation curves, arc lengths, cosmological units, dark matter Teacher’s Notes In this activity students will use real scientific data to plot the rotation curve of M31 (Andromeda), our neighbouring spiral galaxy. They will use Kepler’s third law to predict the motion of stars around the centre of M31. They will then measure the wavelengths of hydrogen emission spectra taken at a range of radii. The Doppler equation will be used to determine whether these spectra come from the approaching or receding limb of the galaxy and the velocity of rotation at that point. They will plot a velocity vs radius graph and compare it with their predicted result. A flat rotation curve indicates the presence of dark matter within Andromeda. Equipment: calculator, ruler, graph paper (if needed) Questions to ask the class before the activity: What is the Universe composed of? Answer: energy, luminous matter, dark matter, dark energy. What is a spectrum and how so we get spectral lines? Answer: a ‘fingerprint’ of an object made of light. The spectrum of visible light is composed of the colours of the rainbow. Absorption lines arise from electrons absorbing photons of light and jumping an energy level or levels; emission lines occur when electrons fall down to a lower energy level and emit a photon in the process. What can a spectrum tell us? Answer: the composition of an object such as a star, its temperature, its pressure, the abundance of elements in the star, its motion (velocity). -
198 7Apj. . .312L. .11J the Astrophysical Journal, 312:L11-L15
.11J The Astrophysical Journal, 312:L11-L15,1987 January 1 .312L. © 1987. The American Astronomical Society. All rights reserved. Printed in U.S.A. 7ApJ. 198 INTERSTELLAR DUST IN SHAPLEY-AMES ELLIPTICAL GALAXIES M. Jura and D. W. Kim Department of Astronomy, University of California, Los Angeles AND G. R. Knapp and P. Guhathakurta Princeton University Observatory Received 1986 August 11; accepted 1986 September 30 ABSTRACT We have co-added the IRAS survey data at the positions of the brightest elliptical galaxies in the Revised Shapley-Ames Catalog to increase the sensitivity over that of the IRAS Point Source Catalog. More than half of 7 8 the galaxies (with Bj< \\ mag) are detected at 100 /xm with flux levels indicating, typically, 10 or 10 M0 of cold interstellar matter. The presence of cold gas in ellipticals thus appears to be the rule rather than the exception. Subject headings: galaxies: general — infrared: sources I. INTRODUCTION infrared emission from the elliptical galaxy in the line of sight. The traditional view of early-type galaxies is that they are Our criteria for a real detection are as follows: essentially free of interstellar matter. However, with advances 1. The optical position of the galaxy and the position of the in instrumental sensitivity, it has become possible to observe IRAS source agree to better than V. (The agreement is usually 21 cm emission (Knapp, Turner, and Cunniffe 1985; Wardle much better than T.) and Knapp 1986), optical dust patches (Sadler and Gerhard 2. The flux is at least 3 times the r.m.s. noise. -
Distances to Local Group Galaxies
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Distances to Local Group Galaxies Alistair R. Walker Cerro Tololo Inter-American Observatory, NOAO, Casilla 603, la Serena, Chile Abstract. Distances to galaxies in the Local Group are reviewed. In particular, the distance to the Large Magellanic Cloud is found to be (m M)0 =18:52 0:10, cor- − ± responding to 50; 600 2; 400 pc. The importance of M31 as an analog of the galaxies observed at greater distances± is stressed, while the variety of star formation and chem- ical enrichment histories displayed by Local Group galaxies allows critical evaluation of the calibrations of the various distance indicators in a variety of environments. 1 Introduction The Local Group (hereafter LG) of galaxies has been comprehensively described in the monograph by Sidney van den Berg [1], with update in [2]. The zero- velocity surface has radius of a little more than 1 Mpc, therefore the small sub-group of galaxies consisting of NGC 3109, Antlia, Sextans A and Sextans B lie outside the the LG by this definition, as do galaxies in the direction of the nearby Sculptor and IC342/Maffei groups. Thus the LG consists of two large spirals (the Galaxy and M31) each with their entourage of 11 and 10 smaller galaxies respectively, the dwarf spiral M33, and 13 other galaxies classified as either irregular or spherical. We have here included NGC 147 and NGC 185 as members of the M31 sub-group [60], whether they are actually bound to M31 is not proven. -
Precollimator for X-Ray Telescope (Stray-Light Baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017
Mindrum.com Precollimator for X-Ray Telescope (stray-light baffle) Mindrum Precision, Inc Kurt Ponsor Mirror Tech/SBIR Workshop Wednesday, Nov 2017 1 Overview Mindrum.com Precollimator •Past •Present •Future 2 Past Mindrum.com • Space X-Ray Telescopes (XRT) • Basic Structure • Effectiveness • Past Construction 3 Space X-Ray Telescopes Mindrum.com • XMM-Newton 1999 • Chandra 1999 • HETE-2 2000-07 • INTEGRAL 2002 4 ESA/NASA Space X-Ray Telescopes Mindrum.com • Swift 2004 • Suzaku 2005-2015 • AGILE 2007 • NuSTAR 2012 5 NASA/JPL/ASI/JAXA Space X-Ray Telescopes Mindrum.com • Astrosat 2015 • Hitomi (ASTRO-H) 2016-2016 • NICER (ISS) 2017 • HXMT/Insight 慧眼 2017 6 NASA/JPL/CNSA Space X-Ray Telescopes Mindrum.com NASA/JPL-Caltech Harrison, F.A. et al. (2013; ApJ, 770, 103) 7 doi:10.1088/0004-637X/770/2/103 Basic Structure XRT Mindrum.com Grazing Incidence 8 NASA/JPL-Caltech Basic Structure: NuSTAR Mirrors Mindrum.com 9 NASA/JPL-Caltech Basic Structure XRT Mindrum.com • XMM Newton XRT 10 ESA Basic Structure XRT Mindrum.com • XMM-Newton mirrors D. de Chambure, XMM Project (ESTEC)/ESA 11 Basic Structure XRT Mindrum.com • Thermal Precollimator on ROSAT 12 http://www.xray.mpe.mpg.de/ Basic Structure XRT Mindrum.com • AGILE Precollimator 13 http://agile.asdc.asi.it Basic Structure Mindrum.com • Spektr-RG 2018 14 MPE Basic Structure: Stray X-Rays Mindrum.com 15 NASA/JPL-Caltech Basic Structure: Grazing Mindrum.com 16 NASA X-Ray Effectiveness: Straylight Mindrum.com • Correct Reflection • Secondary Only • Backside Reflection • Primary Only 17 X-Ray Effectiveness Mindrum.com • The Crab Nebula by: ROSAT (1990) Chandra 18 S. -
Messier Objects
Messier Objects From the Stocker Astroscience Center at Florida International University Miami Florida The Messier Project Main contributors: • Daniel Puentes • Steven Revesz • Bobby Martinez Charles Messier • Gabriel Salazar • Riya Gandhi • Dr. James Webb – Director, Stocker Astroscience center • All images reduced and combined using MIRA image processing software. (Mirametrics) What are Messier Objects? • Messier objects are a list of astronomical sources compiled by Charles Messier, an 18th and early 19th century astronomer. He created a list of distracting objects to avoid while comet hunting. This list now contains over 110 objects, many of which are the most famous astronomical bodies known. The list contains planetary nebula, star clusters, and other galaxies. - Bobby Martinez The Telescope The telescope used to take these images is an Astronomical Consultants and Equipment (ACE) 24- inch (0.61-meter) Ritchey-Chretien reflecting telescope. It has a focal ratio of F6.2 and is supported on a structure independent of the building that houses it. It is equipped with a Finger Lakes 1kx1k CCD camera cooled to -30o C at the Cassegrain focus. It is equipped with dual filter wheels, the first containing UBVRI scientific filters and the second RGBL color filters. Messier 1 Found 6,500 light years away in the constellation of Taurus, the Crab Nebula (known as M1) is a supernova remnant. The original supernova that formed the crab nebula was observed by Chinese, Japanese and Arab astronomers in 1054 AD as an incredibly bright “Guest star” which was visible for over twenty-two months. The supernova that produced the Crab Nebula is thought to have been an evolved star roughly ten times more massive than the Sun. -
Distribution of Phantom Dark Matter in Dwarf Spheroidals Alistair O
A&A 640, A26 (2020) Astronomy https://doi.org/10.1051/0004-6361/202037634 & c ESO 2020 Astrophysics Distribution of phantom dark matter in dwarf spheroidals Alistair O. Hodson1,2, Antonaldo Diaferio1,2, and Luisa Ostorero1,2 1 Dipartimento di Fisica, Università di Torino, Via P. Giuria 1, 10125 Torino, Italy 2 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino, Via P. Giuria 1, 10125 Torino, Italy e-mail: [email protected],[email protected] Received 31 January 2020 / Accepted 25 May 2020 ABSTRACT We derive the distribution of the phantom dark matter in the eight classical dwarf galaxies surrounding the Milky Way, under the assumption that modified Newtonian dynamics (MOND) is the correct theory of gravity. According to their observed shape, we model the dwarfs as axisymmetric systems, rather than spherical systems, as usually assumed. In addition, as required by the assumption of the MOND framework, we realistically include the external gravitational field of the Milky Way and of the large-scale structure beyond the Local Group. For the dwarfs where the external field dominates over the internal gravitational field, the phantom dark matter has, from the star distribution, an offset of ∼0:1−0:2 kpc, depending on the mass-to-light ratio adopted. This offset is a substantial fraction of the dwarf half-mass radius. For Sculptor and Fornax, where the internal and external gravitational fields are comparable, the phantom dark matter distribution appears disturbed with spikes at the locations where the two fields cancel each other; these features have little connection with the distribution of the stars within the dwarfs. -
Arxiv:0807.0009V2
Draft version October 29, 2018 A Preprint typeset using LTEX style emulateapj v. 08/22/09 THE RESOLVED PROPERTIES OF EXTRAGALACTIC GIANT MOLECULAR CLOUDS Alberto D. Bolatto1, Adam K. Leroy2, Erik Rosolowsky3,4, Fabian Walter2, & Leo Blitz5 Draft version October 29, 2018 ABSTRACT We use high spatial resolution observations of CO to systematically measure the resolved size-line width, luminosity-line width, luminosity-size, and the mass-luminosity relations of Giant Molecular Clouds (GMCs) in a variety of extragalactic systems. Although the data are heterogeneous we analyze them in a consistent manner to remove the biases introduced by limited sensitivity and resolution, thus obtaining reliable sizes, velocity dispersions, and luminosities. We compare the results obtained in dwarf galaxies with those from the Local Group spiral galaxies. We find that extragalactic GMC properties measured across a wide range of environments are very much compatible with those in the Galaxy. The property that shows the largest variability is their resolved brightness temperature, although even that is similar to the average Galactic value in most sources. We use these results to investigate metallicity trends in the cloud average column density and virial CO-to-H2 factor. We find that these measurements do not accord with simple predictions from photoionization-regulated star formation theory, although this could be due to the fact that we do not sample small enough spatial scales or the full gravitational potential of the molecular cloud. We also find that the virial CO-to-H2 conversion factor in CO-bright GMCs is very similar to Galactic, and that the excursions do not show a measurable metallicity trend. -
Curriculum Vitae Avishay Gal-Yam
January 27, 2017 Curriculum Vitae Avishay Gal-Yam Personal Name: Avishay Gal-Yam Current address: Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel. Telephones: home: 972-8-9464749, work: 972-8-9342063, Fax: 972-8-9344477 e-mail: [email protected] Born: March 15, 1970, Israel Family status: Married + 3 Citizenship: Israeli Education 1997-2003: Ph.D., School of Physics and Astronomy, Tel-Aviv University, Israel. Advisor: Prof. Dan Maoz 1994-1996: B.Sc., Magna Cum Laude, in Physics and Mathematics, Tel-Aviv University, Israel. (1989-1993: Military service.) Positions 2013- : Head, Physics Core Facilities Unit, Weizmann Institute of Science, Israel. 2012- : Associate Professor, Weizmann Institute of Science, Israel. 2008- : Head, Kraar Observatory Program, Weizmann Institute of Science, Israel. 2007- : Visiting Associate, California Institute of Technology. 2007-2012: Senior Scientist, Weizmann Institute of Science, Israel. 2006-2007: Postdoctoral Scholar, California Institute of Technology. 2003-2006: Hubble Postdoctoral Fellow, California Institute of Technology. 1996-2003: Physics and Mathematics Research and Teaching Assistant, Tel Aviv University. Honors and Awards 2012: Kimmel Award for Innovative Investigation. 2010: Krill Prize for Excellence in Scientific Research. 2010: Isreali Physical Society (IPS) Prize for a Young Physicist (shared with E. Nakar). 2010: German Federal Ministry of Education and Research (BMBF) ARCHES Prize. 2010: Levinson Physics Prize. 2008: The Peter and Patricia Gruber Award. 2007: European Union IRG Fellow. 2006: “Citt`adi Cefal`u"Prize. 2003: Hubble Fellow. 2002: Tel Aviv U. School of Physics and Astronomy award for outstanding achievements. 2000: Colton Fellow. 2000: Tel Aviv U. School of Physics and Astronomy research and teaching excellence award. -
Long-Period Variables in NGC 147 and NGC 185⋆
A&A 532, A78 (2011) Astronomy DOI: 10.1051/0004-6361/201116951 & c ESO 2011 Astrophysics Long-period variables in NGC 147 and NGC 185 D. Lorenz1, T. Lebzelter1,W.Nowotny1, J. Telting2, F. Kerschbaum1,H.Olofsson3,4, and H. E. Schwarz 1 University of Vienna, Department of Astronomy, Türkenschanzstrasse 17, 1180 Vienna, Austria e-mail: [email protected] 2 Nordic Optical Telescope, Apartado 474, 38700 Santa Cruz de La Palma, Spain 3 Department of Astronomy, Stockholm University, AlbaNova University Center, 10691 Stockholm, Sweden 4 Onsala Space Observatory, 43992 Onsala, Sweden Received 24 March 2011 / Accepted 25 May 2011 ABSTRACT Context. Previous studies on the stellar content of the two nearby dwarf galaxies NGC 147 and NGC 185 reveal a rich population of late-type giants in both systems, including a large number of carbon-rich objects. These stars are known to show pronounced photo- metric variability, which can be used for a more detailed characterisation of these highly evolved stars. Owing to their well-studied parameters, these Local Group members are ideal candidates for comparative studies. Aims. Through photometric monitoring, we attempt to provide a catalogue of long-period variables (LPVs), including Mira variables, semi-regular variables, and even irregular variables in NGC 147 and NGC 185. We investigate the light variations and compare the characteristics of these two LPV populations with the results found for other galaxies, such as the LMC. Methods. We carried out time-series photometry in the i-band of the two target galaxies with the Nordic Optical Telescope (NOT), covering a time span of ≈2.5 years. -
Dwarfs Walking in a Row the filamentary Nature of the NGC 3109 Association
A&A 559, L11 (2013) Astronomy DOI: 10.1051/0004-6361/201322744 & c ESO 2013 Astrophysics Letter to the Editor Dwarfs walking in a row The filamentary nature of the NGC 3109 association M. Bellazzini1, T. Oosterloo2;3, F. Fraternali4;3, and G. Beccari5 1 INAF – Osservatorio Astronomico di Bologna, via Ranzani 1, 40127 Bologna, Italy e-mail: [email protected] 2 Netherlands Institute for Radio Astronomy, Postbus 2, 7990 AA Dwingeloo, The Netherlands 3 Kapteyn Astronomical Institute, University of Groningen, Postbus 800, 9700 AV Groningen, The Netherlands 4 Dipartimento di Fisica e Astronomia - Università degli Studi di Bologna, viale Berti Pichat 6/2, 40127 Bologna, Italy 5 European Southern Observatory, Karl-Schwarzschild-Str. 2, 85748 Garching bei Munchen, Germany Received 24 September 2013 / Accepted 22 October 2013 ABSTRACT We re-consider the association of dwarf galaxies around NGC 3109, whose known members were NGC 3109, Antlia, Sextans A, and Sextans B, based on a new updated list of nearby galaxies and the most recent data. We find that the original members of the NGC 3109 association, together with the recently discovered and adjacent dwarf irregular Leo P, form a very tight and elongated configuration in space. All these galaxies lie within ∼100 kpc of a line that is '1070 kpc long, from one extreme (NGC 3109) to the other (Leo P), and they show a gradient in the Local Group standard of rest velocity with a total amplitude of 43 km s−1 Mpc−1, and a rms scatter of just 16.8 km s−1. It is shown that the reported configuration is exceptional given the known dwarf galaxies in the Local Group and its surroundings.