Using a Weighted Semantic Network for Lexical Semantic Relatedness Reda Siblini Leila Kosseim Concordia University Concordia University 1400 de Maisonneuve Blvd. West 1400 de Maisonneuve Blvd. West Montreal, Quebec, Canada, H3G 1M8 Montreal, Quebec, Canada, H3G 1M8
[email protected] [email protected] Abstract lexicon-based, corpus-based, and hybrid ap- proaches. The measurement of semantic relatedness Lexicon-based methods use the features of a between two words is an important met- lexicon to measure semantic relatedness. The ric for many natural language processing most frequently used lexicon is Princeton’s applications. In this paper, we present a WordNet (Fellbaum, 1998) which groups words novel approach for measuring semantic re- into synonyms sets (called synsets) and includes latedness that is based on a weighted se- various semantic relations between those synsets, mantic network. This approach explores in addition to their definitions (or glosses). the use of a lexicon, semantic relation WordNet contains 26 semantic relations that types as weights, and word definitions include: hypernymy, hyponymy, meronymy, and as a basis to calculate semantic related- entailment. ness. Our results show that our approach To measure relatedness, most of the lexicon-based outperforms many lexicon-based methods approaches rely on the structure of the lexicon, to semantic relatedness, especially on the such as the semantic link path, depth (Leacock TOEFL synonym test, achieving an accu- and Chodorow, 1998; Wu and Palmer, 1994), racy of 91.25%. direction (Hirst and St-Onge, 1998), or type (Tsat- saronis et al., 2010). Most of these approaches 1 Introduction exploit the hypernym/hyponym relations, but a few approaches have also included the use of Lexical semantic relatedness is a measurement other semantic relations.