Proton Pump Inhibitors and What You Need to Know

Total Page:16

File Type:pdf, Size:1020Kb

Proton Pump Inhibitors and What You Need to Know PROTON PUMP INHIBITORS SAFETY: A LITERATURE REVIEW CHARLENE LEPANE DO MSPH FACOI FACG FASGE ASST PROFESSOR MEDICINE UCF SCHOOL OF MEDICINE, LECOM BRADENTON, NSUCOM AND KCUMB CENTRAL FLORIDA HEPATOLOGY AND GASTROENTEROLOGY AT CELEBRATION HEALTH PROTON PUMP INHIBITORS SAFETY: A LITERATURE REVIEW AGENDA Background of PPIs Literature review of PPIs and blood thinners Pharmacokinetics of PPIs Current Use of PPIs PURPOSE OF THIS PRESENTATION Literature review of long term side effects of PPIs PROVIDE CLINICAL Osteoporotic fractures BASED DATA TO Renal damage ASSESS CURRENT Infection Rhabdomyolysis CLINICAL RELEVANCE MI/Cardiac events OF PPI THERAPY TO Electrolyte and Nutrienal deficiencies REINFORCE BEST Anemia and thrombocytopenia PRACTICE Drug interactions RECOMMENDATIONS PPIS Pharmaceutical agents that target H+/K+-ATPase located in the gastric parietal cells PPIS: PHARMACOKINETICS AND PHARMACODYNAMICS PPI is a prodrug which is activated by acid Activated PPI binds covalently to the gastric H+, K+-ATPase via disulfide bond Cys813 is the primary site responsible for the inhibition of acid pump enzyme, where PPIs bind PPIs share the core structures benzimidazole and pyridine but their PK and PD are a little different PPIS: PK AND PD Several factors must be considered in understanding the pharmacodynamics of PPIs, including: accumulation of PPI in the parietal cell the proportion of the pump enzyme located at the canaliculus de novo synthesis of new pump enzyme metabolism of PPI amounts of covalent binding of PPI in the parietal cell the stability of PPI binding PPIs have about 1hour of elimination half-life Area under the plasma concentration curve and the intragastric pH profile are very good indicators for evaluating PPI efficacy PPIS First available in 1989 with discovery of omeprazole Has become one of the most widely prescribed drugs Available in the USA as omeprazole, esomeprazole, lansoprazole, pantoprazole, rabeprazole and dexlansoprazole Their high potency in increasing the pH of the stomach coupled with an excellent safety profile has made this class of drugs become one of the most commonly prescribed drugs in primary and specialty care AVAILABLE PPIS APPROVED BY FDA Liquid or Drug Dosages, mg IV suspension Generic Over-the-counter Omeprazole 10, 20, 40 Yes No Yes Yes Esomeprazole 20, 40 Yes Yes Yes Yes Lansoprazole 15, 30 Yes Yes Yes Yes Dexlansoprazole 30, 60 No No No No Pantoprazole 20, 40 Yes Yes Yes No Rabeprazole 20 No No Yes No STUDIES A study conducted in 2010 Ann Arbor, MI Veterans Administration hospital determined that of 946 patients: only 35% were prescribed PPI therapy for an appropriate documented upper GI diagnosis 10% received PPIs empirically for symptomatic treatment based on extraesophageal symptoms 18% received PPIs for gastroprotection 36% had no documented appropriate indication for PPI therapy Subgroup analysis demonstrated 49% of patients across all four categories received PPIs without documentation of re-evaluation of upper GI symptoms Disavowing the potential for on-demand or step-down therapy and this total cost of inappropriate PPI use was US$1,566,252 based upon average wholesale price (AWP) costs Heidelbaugh et al 2010 STUDIES Boston, MA health plan evaluated prescription patterns via pharmacy audit data in 2003 of both PPIs and histamine 2 receptor antagonists (H2RAs) in patients taking for more than 90 days Study of 168,727 adult patients found an: appropriate upper GI diagnosis in 61% of the study population; most common diagnoses of dyspepsia (42% of total) and GERD (38% of total) Approximately 39% of patients in this study lacked appropriate documentation for any upper GI diagnosis Almost 50% had documented symptoms of extraesophageal manifestations of potential upper GI disease Nearly 19% of subjects had diagnoses or symptoms commensurate with atypical GERD or dyspepsia no subgroup analysis with regard to defined gastroprotection with PPIs Jacobson et al. 2003 PHARMACOKINETICS PPIs are mainly eliminated by the hepatic route and cytochrome P450 (CYP450) system Polymorphic CYP2C19 and CYP3A4 are the primary enzymes involved in their metabolism Omeprazole and pantoprazole are metabolized mainly thorough CYP2C19 and therefore will interact with other drugs metabolized by same enzyme Warfarin and clopidogrel Lansoprazole is equally metabolized by both CYP2C19 and CYP3A4 Rabeprazole combines with H+/K+-ATPase reversibly causing 2-3X anti-secretory activity than omeprazole Mainly metabolized through non-enzymatic pathways and therefore little interaction with other meds PPIS AND EOSINOPHILIC ESOPHAGITIS Eosinophilic esophagitis (EoE) is now recognized as a chronic allergic inflammatory reaction involving an abnormal Th2-type immunological response A growing body of evidence has shown that PPIs might benefit both GERD and EoE patients and has recognized a new potential phenotype of the disease termed PPI-responsive esophageal eosinophilia (PPI-REE) A systemic review containing 10 randomized clinic trials (RCTs) enrolling 437 patients was performed to assess the efficacy of topical steroids + placebo vs PPIs for management of EoE Budesonide > fluticasone (OR.96; 95% CI .09-3.92) PPI > fluticasone (OR.61; 95% CI .13-1.86) but not to budesonide (OR 1.64;95%CI .08- 8.5) 3.Lipka et al. Dis Esophagus 2016;29(6):700-703 4.Lipka et al. Aliment Pharmacol Ther. 2016;43(6):663-673 PPIS AND EOSINOPHILIC ESOPHAGITIS These findings from the meta-analysis even showed there is no difference between topical steroids and PPIs for most of the symptoms of EoE Multiple plausible mechanisms of why PPI benefit EoE: Acid suppression as well as anti-inflammatory effects of PPIs might decrease acid injury-related cytokines, pain and esophageal permeability PPIs can inhibit Th2 cytokine-induced eotaxin-3 secretion in esophageal epithelial cells potentially reducing eosinophil recruitment PPIs can also exhibit antioxidant properties and inhibit certain functions of immune cells that may contribute to EoE PPIs would benefit at least 1/3 of patients with EoE Orel et l. Acta Gastoenerol Belg 2016;79(2):245-250 PPIS AND HELICOBACTER PYLORI H. pylori is a gram-negative bacillus that parasitizes the stomach and main pathogenic bacterium is protracted gastritis and PUD Closely connected to chronic gastritis, PUD, MALT (mucosa-associated lymphoid tissue lymphoma) Plays role in pathogenesis of gastric cancer therefore eradication reduces risk of gastric cancer A multicenter, open-label , randomized controlled trial (RCT) in 2003 with 544 patients with early gastric cancer indicated prophylactic eradication of H. pylori prevented potential development of metachronous gastric cancer OR .35 (95%CI.16-.76;P=.009) for development of metachranous gastric cancer Fukase et al. Lancet 2008;372(9636):392-397 Gatta et al. J Antimicrobial Chemother. 2003;51(2):439-442 PPIS AND HELICOBACTER PYLORI PPIs not only suppress the bacteria directly but also increase the pH which allows better penetration of the antibiotics Other PPIs showed a better eradication effect compare to omeprazole; the most effective combination studied is that with lansoprazole Replacement with pantoprazole resulted in few adverse reactions Substitution with rabeprazole led to increased rate of ulcer healing A clinical trial involving 80 patients with gastritis reported H. pylori eradication rate of esomeprazole-based triple therapy was similar to those based on first generation PPI Saito et alWorld J Gastoenerol. 2015;21(48):13548-13554 PPIS AND CANCER PPI-induced tumor cell apoptosis has become an area of interest A study 2010 suggested that PPIs exert selective apoptosis induction and cytoprotective actions, in addition to acid suppression PPIs showed a significant antitumor effect as a single agent in treating melanomas, lymphomas and gastric adenocarcinomas B cell tumors, Multiple Myeloma, colon cancer, pancreatic cancer and metastatic breast cancer Because of the acidic environment, it seems conceivable that PPIs may be able to impact the tumor site Various studies have been conducted to prove the antitumor effect of PPIs in vitro 2007 PPIs combined with vinblastine could increase the sensitivity to vinblastine Kim et al. Cancer Prev Res 2010;3(8)963-974 DeMilito. Can Res. 2007;67(11):5408-5417 PPIS AND CANCER Faulk et al. in Gastroenterology 2012 confirmed that PPIs + 325 mg ASA prevented esophageal adenocarcinoma in patients with Barretts’ esophagus The proposed mechanism was the PPIs combined with ASA may eliminate acid and bile salt reflux or block the activation of gastrin-CCK-cyclooxyygenase-2 (COX-2)-mediated pro-carcinogenic signal pathways and regulate PGE2 production The most probable mechanism of the antitumor effects of PPIs is demonstrated by the inhibition of the acidic environment PPIs are excellent at disturbing the acidic environment inhibits phosphorylation of the extracellular signal in turn regulates kinases contributes to the induction of apoptosis in cancer cells Faulk et al. gastroenterology. 2012; 143(4):917-926 PPIS AND TYPE 2 DM Suggested role of PPI with management of blood sugar in type 2 DM Gastrin is a peptide secreted mostly by antral G cells PPI indirectly elevate serum gastrin levels via negative feedback Gastrin promotes B cell neogenesis in the pancreatic ductal complex, modest pancreatic B cell replication, and improvement of glucose tolerance in animal models in a published study 2015 World J Diabetes Remodeling of pancreatic tissue is seen
Recommended publications
  • Phathom 2020 Annual Report
    A Note from Phathom’s CEO To Our Shareholders: After a year of unparalleled challenges, I hope that this letter finds you and your loved ones healthy and safe. The unforeseen personal and professional difficulties endured by many due to the COVID-19 pandemic pale in comparison to the millions of lives lost. Thanks to the relentless efforts of the healthcare community, including the groundbreaking development and distribution of lifesaving vaccines and treatments by our own pharmaceutical industry, there is a renewed hope and optimism that the end of the pandemic is in sight. Phathom, like so many others, faced uncertainties and significant challenges in 2020 due to COVID-19, including a three month pause in patient enrollment in our Phase 3 trials. The demands on medical institutions and clinicians during the beginning of the crisis, coupled with the safety of study participants and Phathom staff, made this the most prudent decision. Despite the obstacles 2020 presented, our teams rose to the challenge–showcasing Phathom’s culture of resilience and our unwavering commitment to meet the unmet needs of patients suffering from acid-related diseases. Last year, we completed and exceeded our enrollment target of 1,000 patients in our pivotal Phase 3 trial for vonoprazan in erosive esophagitis (PHALCON-EE) and achieved our target patient enrollment in our pivotal Phase 3 trial for vonoprazan in H. pylori infection (PHALCON-HP)–completing and again exceeding patient enrollment in January 2021. The progress made last year advancing the clinical development of vonoprazan, a potassium competitive acid blocker (P-CAB), demonstrates the urgent need for new therapeutic options for patients suffering from erosive esophagitis andH.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Rhubarb Tions of Bismuth Compounds (P.1712), and Ranitidine (P.1766)
    1768 Gastrointestinal Drugs trolav; Gastrulcer; Pep-Rani; Peptab; Peptifar; Quardin†; Ran†; Ranitine; Sta- 3. Anonymous. Pylorid, H. pylori and peptic ulcer. Drug Ther Bull Revaprazan (rINN) cer; Ulcecur†; Ulcerol†; Zantac; Rus.: Aciloc (Ацилок); Histac (Гистак); 1996; 34: 69–70. Ranigast (Ранигаст); Ranisan (Ранисан); Rantac (Рантак); Ulran (Ульран)†; 4. van der Wouden EJ, et al. One-week triple therapy with raniti- Révaprazan; Revaprazán; Revaprazanum. N-(4-Fluorophenyl)- Zantac (Зантак); Zoran (Зоран); S.Afr.: GI-Tak†; Histak; Ranihexal; Ran- dine bismuth citrate, clarithromycin and metronidazole versus 4,5-dimethyl-6-[(1RS)-1-methyl-3,4-dihydroisoquinolin-2(1H)- teen†; Ulcaid; Ultak; Zantac; Singapore: Gastran†; Histac; Hyzan; Lumaren; two-week dual therapy with ranitidine bismuth citrate and clari- yl]pyrimidin-2-amine. Neoceptin-R; Rani†; Ranidine; Ratic; Xanidine; Zantac; Zendhin; Zoran†; thromycin for Helicobacter pylori infection: a randomized, clin- Spain: Alquen; Arcid; Ardoral; Coralen; Denulcer; Fagus; Lake; Meticel†; ical trial. Am J Gastroenterol 1998; 93: 1228–31. Ревапразан Quantor; Ran H2; Ranidin; Ranix; Ranuber; Rubiulcer; Tanidina; Terposen; Toriol; Underacid; Zantac; Swed.: Artonil; Inside; Rani-Q; Zantac; Switz.: Preparations C22H23FN4 = 362.4. Ranimed; Ranisifar; Ulcidine; Zantic; Thai.: Aciloc; Histac; Radine†; Ranicid; CAS — 199463-33-7. Ranidine; Rantac; Ratic; Ratica; Utac; Xanidine; Zanamet; Zantac; Zantidon; Proprietary Preparations (details are given in Part 3) Zardil; Turk.: Ranitab; Ranitine; Ranobel; Rozon; Santanol; Ulcuran; Zandid; Arg.: Pylorid†; Austria: Helirad; Pylorisin; Belg.: Pylorid†; Braz.: Pylorid; Zantac; UAE: Rantag; UK: Gavilast; Ranitic; Ranitil; Rantec; Ranzac; Vivatak†; Cz.: Eradipak†; Denm.: Pylorid†; Fin.: Pylorid; Gr.: Pylorid; Hong Kong: Zaedoc†; Zantac; USA: Zantac; Venez.: Aplom; Enteral; Gastac; Ranibloc; Pylorid†; Hung.: Pylorid†; Irl.: Pylorid†; Ital.: Elicodil†; Pylorid; Mex.: Ranifesa†; Ranix†; Ranizan†; Retamin; Vizerul; Zantac; Zoran†.
    [Show full text]
  • Comparative Efficacy of Various Anti-Ulcer Medications After Gastric Endoscopic Submucosal Dissection: a Systematic Review and Network Meta-Analysis
    Surgical Endoscopy (2019) 33:1271–1283 and Other Interventional Techniques https://doi.org/10.1007/s00464-018-6409-4 Comparative efficacy of various anti-ulcer medications after gastric endoscopic submucosal dissection: a systematic review and network meta-analysis Eun Hye Kim1 · Se Woo Park2 · Eunwoo Nam3 · Jae Gon Lee4 · Chan Hyuk Park4 Received: 4 May 2018 / Accepted: 24 August 2018 / Published online: 30 August 2018 © Springer Science+Business Media, LLC, part of Springer Nature 2018 Abstract Background The comparative efficacy of various anti-ulcer medications after gastric endoscopic submucosal dissection (ESD) has not been fully evaluated. Recently, vonoprazan, a novel potassium-competitive acid blocker, has also been used in ulcer treatment after ESD. Methods We searched for all relevant randomized controlled trials examining the efficacy of anti-ulcer medications after gastric ESD, published through October 2017. Healing of iatrogenic ulcers was investigated at 4–8 weeks after ESD. A network meta-analysis was performed to calculate the network estimates. Results Twenty-one studies with 2005 patients were included. Concerning the comparative efficacy for ulcer healing at 4 weeks after ESD, no network inconsistency was identified (Cochran’s Q-test, df = 10, P = 0.13; I2 = 34%). A combination therapy of proton-pump inhibitor (PPI) and muco-protective agent was superior to PPI alone [risk ratio (RR) (95% confi- dence interval, CI) 1.69 (1.20–2.39)]. The combination therapy of PPI and muco-protective agents tended to be superior to vonoprazan [RR (95% CI) 1.98 (0.99–3.94)]. There was no difference of ulcer healing effect between PPI and vonoprazan [RR (95% CI) PPI vs.
    [Show full text]
  • Refractory Gastroesophageal Reflux Disease: Pathophysiology, Diagnosis, and Management
    Refractory Gastroesophageal Reflux Disease: Pathophysiology, Diagnosis, and Management My Editor’s Pick for this edition is Nabi et al.’s review on the topic of refractory gastroesophageal reflux disease in the context of its pathophysiology, diagnosis, and treatment. The authors explore these elements in great detail, offering a timely and helpful update on this common gastrointestinal complaint. Authors: *Zaheer Nabi, Arun Karyampudi, and D. Nageshwar Reddy Department of Medical Gastroenterology, Asian Institute of Gastroenterology, Hyderabad, India *Correspondence to [email protected] Disclosure: The authors have declared no conflicts of interest. Received: 10.05.19 Accepted: 02.07.19 Keywords: Antireflux surgery, endoscopy, gastroesophageal reflux, proton pump inhibitors (PPI). Citation: EMJ Gastroenterol. 2019;8[1]:62-71. Abstract Gastroesophageal reflux disease (GERD) is one of the most commonly encountered gastrointestinal diseases in clinical practice. Proton pump inhibitors (PPI) remain the cornerstone of the treatment of GERD. Up to one-third of patients do not respond to optimal doses of PPI and fall into the category of refractory GERD. Moreover, the long-term use of PPI is not risk-free, as previously thought. The pathophysiology of refractory GERD is multifactorial and includes reflux related and unrelated factors. It is therefore paramount to address refractory GERD as per the aetiology of the disease for optimal outcomes. The management options for PPI refractory GERD include optimisation of PPI, lifestyle modifications, and the addition of alginates and histamine-2 receptor blockers. Neuromodulators, such as selective serotonin reuptake inhibitors or tricyclic antidepressants, may be beneficial in those with functional heartburn and reflux hypersensitivity. Laparoscopic antireflux surgeries, including Nissen’s fundoplication and magnetic sphincter augmentation, are useful in patients with objective evidence of GERD on pH impedance studies with or without a hiatal hernia.
    [Show full text]
  • New and Future Drug Development for Gastroesophageal Reflux Disease
    J Neurogastroenterol Motil, Vol. 20 No. 1 January, 2014 pISSN: 2093-0879 eISSN: 2093-0887 http://dx.doi.org/10.5056/jnm.2014.20.1.6 JNM Journal of Neurogastroenterology and Motility Review New and Future Drug Development for Gastroesophageal Reflux Disease Carla Maradey-Romero and Ronnie Fass* The Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, Ohio, USA Medical therapy remains the most popular treatment for gastroesophageal reflux disease (GERD). Whilst interest in drug devel- opment for GERD has declined over the last few years primarily due to the conversion of most proton pump inhibitor (PPI)’s to generic and over the counter compounds, there are still numerous areas of unmet needs in GERD. Drug development has been focused on potent histamine type 2 receptor antagonist’s, extended release PPI’s, PPI combination, potassium-competitive acid blockers, transient lower esophageal sphincter relaxation reducers, prokinetics, mucosal protectants and esophageal pain modulators. It is likely that the aforementioned compounds will be niched for specific areas of unmet need in GERD, rather than compete with the presently available anti-reflux therapies. (J Neurogastroenterol Motil 2014;20:6-16) Key Words Erosive esophagitis; Gastroesophageal reflux; Heartburn; Proton pump inhibitors Most patients with GERD fall into 1 of 3 categories: non- erosive reflux disease (NERD), erosive esophagitis (EE), and Introduction Barrett’s esophagus (BE). The 2 main phenotypes of GERD, Gastroesophageal reflux disease (GERD) is a common con- NERD and EE, appear to have different pathophysiological and dition that develops when reflux of stomach contents cause trou- clinical characteristics.
    [Show full text]
  • 2 12/ 35 74Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 22 March 2012 (22.03.2012) 2 12/ 35 74 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/16 (2006.01) A61K 9/51 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP201 1/065959 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 14 September 201 1 (14.09.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/382,653 14 September 2010 (14.09.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, NANOLOGICA AB [SE/SE]; P.O Box 8182, S-104 20 ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Stockholm (SE).
    [Show full text]
  • Stembook 2018.Pdf
    The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 WHO/EMP/RHT/TSN/2018.1 © World Health Organization 2018 Some rights reserved. This work is available under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO licence (CC BY-NC-SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo). Under the terms of this licence, you may copy, redistribute and adapt the work for non-commercial purposes, provided the work is appropriately cited, as indicated below. In any use of this work, there should be no suggestion that WHO endorses any specific organization, products or services. The use of the WHO logo is not permitted. If you adapt the work, then you must license your work under the same or equivalent Creative Commons licence. If you create a translation of this work, you should add the following disclaimer along with the suggested citation: “This translation was not created by the World Health Organization (WHO). WHO is not responsible for the content or accuracy of this translation. The original English edition shall be the binding and authentic edition”. Any mediation relating to disputes arising under the licence shall be conducted in accordance with the mediation rules of the World Intellectual Property Organization. Suggested citation. The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances. Geneva: World Health Organization; 2018 (WHO/EMP/RHT/TSN/2018.1). Licence: CC BY-NC-SA 3.0 IGO. Cataloguing-in-Publication (CIP) data.
    [Show full text]
  • WO 2016/159386 Al 6 October 2016 (06.10.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/159386 Al 6 October 2016 (06.10.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 31/4439 (2006.01) A61K 31/5025 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 31/506 (2006.01) A61P 1/04 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/4184 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/JP20 16/06 1185 KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (22) International Filing Date: MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, 30 March 2016 (30.03.2016) PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (25) Filing Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (26) Publication Language: English (84) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of regional protection available): ARIPO (BW, GH, 1505526.2 3 1 March 2015 (3 1.03.2015) GB GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 1521015.6 27 November 2015 (27.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,776,873 B2 Hahm Et Al
    USOO7776873B2 (12) United States Patent (10) Patent No.: US 7,776,873 B2 Hahm et al. (45) Date of Patent: Aug. 17, 2010 (54) METHOD FORTREATING DAMAGE TO Konturek, P.C., Journal of Physiology and Pharmacology, (1997), GASTRCMUCOSA 48(1), pp. 9-42 (Abstract).* “Peptic Ulcer Disease.” Curr. Probl. Surgery, vol. 42: 346-454, Jun. 2005. (75) Inventors: Ki-Baik Hahm, Seongnam-si (KR): G. Glavin, et al.: “Experimental gastric mucousal injury: laboratory Dong-Kyu Kim, Suwon-si (KR); models reveal mechanisms of pathogenesis and new therapeutic Mi-Sun Kwak, Gunpo-si (KR); strategies.” The FASEB Journal, vol. 6, pp. 825-831, Feb. 1992. Sang-Aun Joo, Seoul (KR): K. Jain, et al.: “Recent advances in proton pump inhibitors and Byoung-Seok Moon, Uiwang-si (KR); management of acid-peptic disorders. Bioorg. Med. Chem, vol. 15, Geun-Seog Song. Anyang-si (KR) pp. 1181-1205, 2007. Y. Tsukimi, et al.: “Recent Advances in Gastrointestinal (73) Assignee: Yuhan Corporation, Seoul (KR) Pathophysiology: Role of Heat Shock Proteins in Mucosal Defense and Ulcer Healing.” Biol. Pharm. Bull., vol. 24. No. 1, pp. 1-9, Jan. (*) Notice: Subject to any disclaimer, the term of this 2001. patent is extended or adjusted under 35 S. Okabe, et al.: "An Overview of Acetic Acid Ulcer Models: The U.S.C. 154(b) by 134 days. History and State of the Art of Peptic Ulcer Research.” Biol. Pharm. Bull., vol. 28, No. 8, pp. 1321-1341, Aug. 2005. K. Tokuhara, et al.: “Rebamipide, anti-gastric ulcer drug, up-regu (21) Appl. No.: 11/604,269 lates the induction of iNOS in proinflammatory cytokine-stimulated hepatocytes.” Nitric Oxide, vol.
    [Show full text]
  • The Novel Acid Pump Antagonists for Anti-Secretory Actions with Their Peculiar Applications Beyond Acid Suppression
    Review J. Clin. Biobem. Nutr., 38, 1–8, January 2006 The Novel Acid Pump Antagonists for Anti-secretory Actions with Their Peculiar Applications Beyond Acid Suppression Marie Yeo,1 Dong Kyu Kim,1 In Sik Chung,2 Byoung Seok Moon,3 Keun Seog Song,3 and Ki-Baik Hahm1,* 1Genome Research Center for Gastroenterology and Department of Gastroenterology, Ajou University School of Medicine, Suwon 443-721, Korea 2Kangnam St. Mary Hospital, Catholic University School of Medicine, Seoul 137-701, Korea 3Yuhan Corp., Seoul 156-754, Korea Received 28 October, 2005; Accepted 31 October, 2005 Summary The H+/K+-ATPase of gastric parietal cell exchanges luminal K+ for cytoplasmic + − H , of which outcome is gastric acidification with outflux of hydronium ion (H3O ). Secretion of gastric acid from the H+/K+-ATPase is stimulated by neuronal sensing and elaborately regulated various neuronal transmitters and hormones, consequently resulting in anchoring of the H+/K+-ATPase in canaliculi membrane of gastric parietal cell. Since hypersecretion of gastric acid or a defect of its barrier function is considered as a principal casual factor in the acid-related diseases such as duodenal and gastric ulcer, reflux esophagitis, and some types of gastritis, the development of anti-secretory agents including PPIs (proton pump inhibitors) and H2-RAs (histamine type 2 receptor antagonists) has revolutionized during the second millennium. Similar considerations applying to design of compounds substituting K+ led to the development of acid pump antagonists (APAs), of which advantages are independent of secretory status, no lag time required, reversible in actions allowing “on-demand dosage”. Our recent studies revealed that these inhibitors of H+/K+-ATPase could be extensively applied for the selective induction of cancer cell apoptosis, a significant anti-inflammatory and gastro- protective action beyond acid suppression.
    [Show full text]
  • Review Article Current Pharmacological Management of Gastroesophageal Reflux Disease
    Hindawi Publishing Corporation Gastroenterology Research and Practice Volume 2013, Article ID 983653, 12 pages http://dx.doi.org/10.1155/2013/983653 Review Article Current Pharmacological Management of Gastroesophageal Reflux Disease Yao-Kuang Wang,1 Wen-Hung Hsu,1,2 Sophie S. W. Wang,1,3 Chien-Yu Lu,1,4 Fu-Chen Kuo,5 Yu-Chung Su,4,6 Sheau-Fang Yang,7 Chiao-Yun Chen,3,8 Deng-Chyang Wu,1,2,3,4 and Chao-Hung Kuo1,3,4 1 Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 2 Division of Internal Medicine, Kaohsiung Municipal Hsiao-Kang Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan 3 Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 4 Department of Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan 5 Department of Health Management, I-Shou University, E-Da Hospital, Kaohsiung, Taiwan 6 Department of Internal Medicine, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan 7 Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 8 Department of Medical Imaging, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan Correspondence should be addressed to Chao-Hung Kuo; [email protected] Received 7 May 2013; Accepted 3 June 2013 Academic Editor: Ping-I Hsu Copyright © 2013 Yao-Kuang Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gastroesophageal reflux disease (GERD), a common disorder with troublesome symptoms caused by reflux of gastric contents into the esophagus, has adverse impact on quality of life.
    [Show full text]