Definitions of Gastroesophageal Reflux Disease (GERD) ���������������������� 1 Amit Patel and C

Total Page:16

File Type:pdf, Size:1020Kb

Definitions of Gastroesophageal Reflux Disease (GERD) ���������������������� 1 Amit Patel and C Diagnosis and Treatment of Gastroesophageal Reflux Disease Michael F. Vaezi Editor Diagnosis and Treatment of Gastroesophageal Reflux Disease 1 3 Editor Michael F. Vaezi, MD, PhD, MSc Department of Gastroenterology Vanderbilt University School of Medicine Nashville Tennessee USA ISBN 978-3-319-19523-0 ISBN 978-3-319-19524-7 (eBook) DOI 10.1007/978-3-319-19524-7 Library of Congress Control Number: 2015944713 Springer Cham Heidelberg New York Dordrecht London © Springer International Publishing Switzerland 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Printed on acid-free paper Springer International Publishing AG Switzerland is part of Springer Science+Business Media (www.springer.com) To my wife, Holly, who is not only my kids’ hero but also mine. Preface Gastroesophageal reflux disease is a common clinical entity encountered by all spe- cialties in medicine. Over the past few years, there has been increasing understand- ing of the pathophysiology of this disease, and treatment options are vast. Improved and novel diagnostic tests are providing an easier way for clinicians to establish the diagnosis and offer patients the latest treatment options. This book is a constella- tion of information from the world’s experts in the field of esophagology and reflux disease. The chapters are organized so that the reader systematically learns about the disease definition, recognizes the current challenges in diagnosis, and then is provided with the latest information about medical, endoscopic, and surgical op- tions for patients with reflux disease. We are grateful to the contributors and hope that the book provides useful insight into this commonly encountered disease and can pave the way for optimal patient care. Michael F. Vaezi, MD, PhD, MSc vii Contents 1 Definitions of Gastroesophageal Reflux Disease (GERD) ...................... 1 Amit Patel and C. Prakash Gyawali 2 Complications of Gastroesophageal Reflux Disease ............................... 19 Patrick Yachimski 3 Diagnostic Approaches to GERD ............................................................. 37 Dejan Micic and Robert Kavitt 4 Lifestyle Modifications in GERD ............................................................. 59 Ali Akbar and Colin W. Howden 5 Role of H2RA and Proton Pump Inhibitor Therapy in Treating Reflux Disease ............................................................................. 71 John W. Jacobs, Jr. and Joel E. Richter 6 Novel Upcoming Therapies ....................................................................... 93 Carla Maradey-Romero and Ronnie Fass 7 Minimally Invasive GERD Therapies ...................................................... 117 Dan E. Azagury and George Triadafilopoulos 8 Role of LES Augmentation for Early Progressive Disease in GERD and Fundoplication for End-Stage Disease in GERD ................ 145 Stephanie G. Worrell and Tom R. DeMeester Index .................................................................................................................. 161 ix Contributors Ali Akbar Divison of Gastroentrology, University of Tennessee Health Science Center, Memphis, TN, USA Dan E. Azagury Department of Bariatric and Minimally Invasive Surgery, Stanford University School of Medicine, Stanford, CA, USA Tom R. DeMeester Department of Surgery, Keck Medical Center of University of Southern California, Los Angeles, CA, USA Ronnie Fass Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA C. Prakash Gyawali Department of Medicine, Division of Gastroenterology, Barnes-Jewish Hospital/Washington University School of Medicine, St. Louis, MO, USA Colin W. Howden Divison of Gastroentrology, University of Tennessee Health Science Center, Memphis, TN, USA John W. Jacobs Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Joy McCann Culverhouse Swallowing Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA Robert Kavitt Section of Gastroenterology, Hepatology and Nutrition, Center for Esophageal Diseases, University of Chicago, Chicago, IL, USA Carla Maradey-Romero Esophageal and Swallowing Center, Division of Gastroenterology and Hepatology, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, USA Dejan Micic Section of Gastroenterology, Hepatology and Nutrition, University of Chicago Medical Center, Chicago, IL, USA Amit Patel Department of Medicine, Division of Gastroenterology, Barnes-Jewish Hospital/Washington University School of Medicine, St. Louis, MO, USA xi xii Contributors Joel E. Richter Department of Internal Medicine, Division of Digestive Diseases and Nutrition, Joy McCann Culverhouse Swallowing Center, University of South Florida Morsani College of Medicine, Tampa, FL, USA George Triadafilopoulos Department of Medicine, Stanford University, Stanford, CA, USA Stephanie G. Worrell Department of Surgery, Keck Medical Center of University of Southern California, Los Angeles, CA, USA Patrick Yachimski Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, USA Chapter 1 Definitions of Gastroesophageal Reflux Disease (GERD) Amit Patel and C. Prakash Gyawali Gastroesophageal reflux disease (GERD) is one of the most common gastrointesti- nal outpatient diagnoses and carries a significant clinical impact and disease burden worldwide [1]. A systematic review of population-based studies suggested that the prevalence of GERD is 10–20 % in the Western world and 5 % in Asia [2]. Preva- lence rates are higher than incidence rates worldwide, implying that the condition is chronic [2]. Estimates of the annual direct cost burden of GERD on the USA health- care system alone top US$ 9 billion [3]. GERD is well documented to adversely affect quality of life, and patients with persistent GERD symptoms suffer from re- duced physical as well as mental health-related quality of life (HRQOL) [4]. This is mainly from symptomatic presentations, hence the importance of symptom-based definitions of GERD [1]. As the population ages, the severity of reflux esophagitis and the prevalence of Barrett’s esophagus (BE) increase while symptoms become less prevalent, highlighting the importance of diagnostic definitions of GERD on investigative studies [5]. In this chapter, we explore different approaches to defining GERD—symptomatic definitions, endoscopic definitions, parameters on ambula- tory reflux testing (acid and impedance monitoring) defining GERD, diagnostic implications of structural and anatomic abnormalities, and the impact of newer di- agnostic modalities on the definition of GERD. Spectrum of GERD Gastroesophageal reflux (GER), or the retrograde flow of gastric content across the esophagogastric junction (EGJ) and the lower esophageal sphincter (LES), can be physiologic, especially in the postprandial setting. Inherent mechanisms are in C. P. Gyawali () · A. Patel Department of Medicine, Division of Gastroenterology, Barnes-Jewish Hospital/Washington University School of Medicine, Campus Box 8124, 660 S. Euclid Avenue, St. Louis, MO 63110, USA e-mail: [email protected] © Springer International Publishing Switzerland 2016 1 M. F. Vaezi (ed.), Diagnosis and Treatment of Gastroesophageal Reflux Disease, DOI 10.1007/978-3-319-19524-7_1 2 A. Patel and C. P. Gyawali place for the LES to relax transiently in response to distension of the fundus of the stomach, resulting in venting of air (belching) [6]. The resting LES tone, inspiratory diaphragmatic crural pinch at the same level as the LES, and the angle between the long axes of the esophagus and the stomach prevent significant retrograde move- ment of gastric content across the EGJ and LES in the physiologic setting. However, transient LES relaxations (TLESRs) can result in small amounts of gastric content refluxing into the esophagus; in health, esophageal secondary peristalsis is efficient in stripping any refluxed material back into the stomach [7]. GER becomes pathologic (GERD) when associated with symptoms (typically heartburn or regurgitation) or mucosal injury (typically esophagitis or BE) [8, 9]. Symptoms and mucosal injury are not mutually exclusive, and each can occur in the absence of the other. Therefore, subjective symptom analysis, and, indeed, en- doscopic inspection of the esophageal mucosa, may not always be indicative of GERD. Symptoms related to GERD can be atypical (noncardiac chest
Recommended publications
  • Review Article New Pharmacological Therapies for Treatment of Gastroesophageal Reflux Disease
    Journal of Pharmaceutical Research & Clinical Practice, Oct-Dec 2013; 3(4):11-21 Review Article New Pharmacological Therapies for Treatment of Gastroesophageal Reflux Disease *Rahul Saini1, Shanmukhananda M. P.2, Sunaina3 1. Department of Pharmacology, PGIMS, Rohtak, India. 2. Novartis, Hyderabad, India. 3. Department of Radiology, PGIMS, Rohtak, India. ABSTRACT Gastroesophageal reflux disease (GERD) is a chronic, relapsing disorder characterized by recurrent symptoms of acid reflux with esophageal injury. It rarely resolves spontaneously, and it is associated with frequent recurrences. It has adverse impact on quality of life. A variety of medications have been used in GERD treatment, and acid suppression therapy is the mainstay of treatment for GERD. Although proton pump inhibitor is the most potent acid suppressant and provides good efficacy in esophagitis healing and symptom relief, about one-third of patients with GERD still have persistent symptoms with poor response to standard dose proton pump inhibitors (PPI). These are generally well tolerated but there are associated with minor side effects such as headache, diarrhea, and abdominal pain. Newer formulations of PPI which have faster and longer duration of action and potassium-competitive acid blocker, a newer acid suppressant, are also in developing stages. Transient lower oesophageal sphincter relaxation (TLESR) is an important factor behind the occurrence of reflux, and preclinical studies have identified gamma aminobutyric acid (GABA) type B receptor (GABAB) agonists and metabotropic glutamate receptor 5 (mG1uR5) modulators as candidate drugs for modifying TLESR. Another novel therapeutic agent has focused on the underlying mechanisms of GERD, such as motility disorder, mucosal protection, and esophageal hypersensitivity are also under clinical trials.
    [Show full text]
  • Proton Pump Inhibitors Act with Unprecedented Potencies
    DOI: 10.1002/alz.12113 RESEARCH ARTICLE Proton pump inhibitors act with unprecedented potencies as inhibitors of the acetylcholine biosynthesizing enzyme—A plausible missing link for their association with incidence of dementia Rajnish Kumar1 Amit Kumar1 Agneta Nordberg1 Bengt Långström2 Taher Darreh-Shori1 1Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Abstract Neurobiology, Care Sciences and Society, Introduction: Several pharmacoepidemiological studies indicate that proton pump Karolinska Institutet, Stockholm, Sweden inhibitors (PPIs) significantly increase the risk of dementia. Yet, the underlying mecha- 2Department of Chemistry, Uppsala University, Uppsala, Sweden nism is not known. Here, we report the discovery of an unprecedented mode of action of PPIs that explains how PPIs may increase the risk of dementia. Correspondence TaherDarreh-Shori, Division of Clinical Geri- Methods: Advanced in silico docking analyses and detailed enzymological assess- atrics, Center for Alzheimer Research, Depart- ments were performed on PPIs against the core-cholinergic enzyme, choline- ment of Neurobiology, Care Sciences and Society, Karolinska Institutet, NEO, 7th Floor, 141 52 acetyltransferase (ChAT), responsible for biosynthesis of acetylcholine (ACh). Stockholm, Sweden. Results: This report shows compelling evidence that PPIs act as inhibitors of ChAT, with Email: [email protected] high selectivity and unprecedented potencies that lie far below their in vivo plasma and Funding information brain concentrations. the international Alzheimer Association, USA, Grant/Award Number: 2016-NIRG-391599; Discussion: Given that accumulating evidence points at cholinergic dysfunction as a Swedish Research Council, Grant/Award Num- driving force of major dementia disorders, our findings mechanistically explain how ber: project no 2016-01806 prolonged use of PPIs may increase incidence of dementia.
    [Show full text]
  • 4 Supplementary File
    Supplemental Material for High-throughput screening discovers anti-fibrotic properties of Haloperidol by hindering myofibroblast activation Michael Rehman1, Simone Vodret1, Luca Braga2, Corrado Guarnaccia3, Fulvio Celsi4, Giulia Rossetti5, Valentina Martinelli2, Tiziana Battini1, Carlin Long2, Kristina Vukusic1, Tea Kocijan1, Chiara Collesi2,6, Nadja Ring1, Natasa Skoko3, Mauro Giacca2,6, Giannino Del Sal7,8, Marco Confalonieri6, Marcello Raspa9, Alessandro Marcello10, Michael P. Myers11, Sergio Crovella3, Paolo Carloni5, Serena Zacchigna1,6 1Cardiovascular Biology, 2Molecular Medicine, 3Biotechnology Development, 10Molecular Virology, and 11Protein Networks Laboratories, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 34149, Trieste, Italy 4Institute for Maternal and Child Health, IRCCS "Burlo Garofolo", Trieste, Italy 5Computational Biomedicine Section, Institute of Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany 6Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy 7National Laboratory CIB, Area Science Park Padriciano, Trieste, 34149, Italy 8Department of Life Sciences, University of Trieste, Trieste, 34127, Italy 9Consiglio Nazionale delle Ricerche (IBCN), CNR-Campus International Development (EMMA- INFRAFRONTIER-IMPC), Rome, Italy This PDF file includes: Supplementary Methods Supplementary References Supplementary Figures with legends 1 – 18 Supplementary Tables with legends 1 – 5 Supplementary Movie legends 1, 2 Supplementary Methods Cell culture Primary murine fibroblasts were isolated from skin, lung, kidney and hearts of adult CD1, C57BL/6 or aSMA-RFP/COLL-EGFP mice (1) by mechanical and enzymatic tissue digestion. Briefly, tissue was chopped in small chunks that were digested using a mixture of enzymes (Miltenyi Biotec, 130- 098-305) for 1 hour at 37°C with mechanical dissociation followed by filtration through a 70 µm cell strainer and centrifugation.
    [Show full text]
  • Pyridoxine Hydrochloride Pyrrolnitrin Quetiapine Fumarate
    21822182 Infrared Reference Spectra JP XVII Pyridoxine Hydrochloride Pyrrolnitrin Quetiapine Fumarate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21832183 Quinapril Hydrochloride Quinine Ethyl Carbonate Quinine Sulfate Hydrate The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21842184 Infrared Reference Spectra JP XVII Rabeprazole Sodium Ranitidine Hydrochloride Rebamipide The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) JP XVII Infrared Reference Spectra 21852185 Reserpine Ribavirin Rifampicin The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia. (See the General Notices 5.) 21862186 Infrared Reference Spectra JP XVII Risperidone Ritodrine Hydrochloride Rokitamycin The JP Drugs are to be tested according to the provisions given in the pertinent monographs, General Notices, General Rules for Crude Drugs, General Rules for Preparations, and General Tests for their conformity to the Japanese Pharmacopoeia.
    [Show full text]
  • Lansoprazole Exacerbates Pemetrexed-Mediated Hematologic Toxicity by Competitive Inhibition of Renal Basolateral Human Organic Anion Transporter 3 S
    Supplemental material to this article can be found at: http://dmd.aspetjournals.org/content/suppl/2016/07/27/dmd.116.070722.DC1 1521-009X/44/10/1543–1549$25.00 http://dx.doi.org/10.1124/dmd.116.070722 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 44:1543–1549, October 2016 Copyright ª 2016 by The American Society for Pharmacology and Experimental Therapeutics Lansoprazole Exacerbates Pemetrexed-Mediated Hematologic Toxicity by Competitive Inhibition of Renal Basolateral Human Organic Anion Transporter 3 s Kenji Ikemura, Yugo Hamada, Chinatsu Kaya, Tomoyuki Enokiya, Yuichi Muraki, Hiroki Nakahara, Hajime Fujimoto, Tetsu Kobayashi, Takuya Iwamoto, and Masahiro Okuda Department of Clinical Pharmacy and Biopharmaceutics, Mie University Graduate School of Medicine, Tsu (K.I., Y.H., T.I., M.O.); Department of Pharmacy, Mie University Hospital, Tsu (K.I., T.E., Y.M., T.I., M.O.); Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka (C.K.); Department of Pulmonary and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu (H.N., H.F., T.K.), Mie, Japan Received March 30, 2016; accepted July 18, 2016 Downloaded from ABSTRACT Pemetrexed, a multitargeted antifolate, is eliminated by tubular effect of lansoprazole was much greater than those of other PPIs secretion via human organic anion transporter 3 (hOAT3). Although and the apparent IC50 value of lansoprazole against pemetrexed proton pump inhibitors (PPIs) are frequently used in cancer patients, transport via hOAT3 was 0.57 6 0.17 mM. The inhibitory type of the drug interaction between PPIs and pemetrexed remains to be lansoprazole was competitive. In a retrospective study, multivariate clarified.
    [Show full text]
  • Comparison of Prevention of NSAID-Induced Gastrointestinal Complications by Rebamipide and Misoprostol: a Randomized, Multicenter, Controlled Trial—STORM STUDY
    Original Article J. Clin. Biochem. Nutr., 40, 148–155, March 2007 Comparison of Prevention of NSAID-Induced Gastrointestinal Complications by Rebamipide and Misoprostol: A Randomized, Multicenter, Controlled Trial—STORM STUDY Soo-Heon Park1,*, Chul-Soo Cho1, Oh-Young Lee2, Jae-Bum Jun2, San-Ren Lin3, Li-Ya Zhou3, Yao-Zong Yuan4, Zhao-Shen Li5, Xiao-Hua Hou6, Hong-Chuan Zhao7, Udom Kachintorn8, Chomsri Kositchaiwat9, and Comson Lertkupinit10 1St. Mary’s Hospital, The Catholic University of Korea, Seoul 150-713, Korea 2Hanyang University Hospital, Hanyang University, Seoul 133-792, Korea 3The Third Hospital, Peking University, Beijing 100083, China 4Ruijin Hospital, Shanghai Second Medical University, Shanghai 200025, China 5Changhai Hospital, Second Military Medical University, Shanghai 2000433, China 6Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China 7Beijing China-Japan Friendship Hospital, Beijing 100029, China 8Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand 9Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand 10Chonburi Hospital, Chonburi 20000, Thailand Received 10 August, 2006; Accepted 7 November, 2006 Summary Nonsteroidal anti-inflammatory drugs (NSAIDs) have gastrointestinal side effects such as dyspepsia, peptic ulcer, hemorrhage, and perforation. Misoprostol and PPIs have been used to prevent NSAID-induced gastroduodenal injury. Rebamipide increases gastric mucus and stimulates the production of endogenous prostaglandins. The prophylactic effect of rebamipide on NSAID-induced gastrointestinal complications is unknown. The aim of this study was to compare NSAID-induced gastrointestinal complications in rebamipide- and misoprostol-treated groups. Patients were randomized to two groups and took a conventional NSAID plus rebamipide or misoprostol for 12 weeks. Gastric mucosal damage was evaluated by endoscopy at screening and the end of the study.
    [Show full text]
  • Phathom 2020 Annual Report
    A Note from Phathom’s CEO To Our Shareholders: After a year of unparalleled challenges, I hope that this letter finds you and your loved ones healthy and safe. The unforeseen personal and professional difficulties endured by many due to the COVID-19 pandemic pale in comparison to the millions of lives lost. Thanks to the relentless efforts of the healthcare community, including the groundbreaking development and distribution of lifesaving vaccines and treatments by our own pharmaceutical industry, there is a renewed hope and optimism that the end of the pandemic is in sight. Phathom, like so many others, faced uncertainties and significant challenges in 2020 due to COVID-19, including a three month pause in patient enrollment in our Phase 3 trials. The demands on medical institutions and clinicians during the beginning of the crisis, coupled with the safety of study participants and Phathom staff, made this the most prudent decision. Despite the obstacles 2020 presented, our teams rose to the challenge–showcasing Phathom’s culture of resilience and our unwavering commitment to meet the unmet needs of patients suffering from acid-related diseases. Last year, we completed and exceeded our enrollment target of 1,000 patients in our pivotal Phase 3 trial for vonoprazan in erosive esophagitis (PHALCON-EE) and achieved our target patient enrollment in our pivotal Phase 3 trial for vonoprazan in H. pylori infection (PHALCON-HP)–completing and again exceeding patient enrollment in January 2021. The progress made last year advancing the clinical development of vonoprazan, a potassium competitive acid blocker (P-CAB), demonstrates the urgent need for new therapeutic options for patients suffering from erosive esophagitis andH.
    [Show full text]
  • Jp Xvii the Japanese Pharmacopoeia
    JP XVII THE JAPANESE PHARMACOPOEIA SEVENTEENTH EDITION Official from April 1, 2016 English Version THE MINISTRY OF HEALTH, LABOUR AND WELFARE Notice: This English Version of the Japanese Pharmacopoeia is published for the convenience of users unfamiliar with the Japanese language. When and if any discrepancy arises between the Japanese original and its English translation, the former is authentic. The Ministry of Health, Labour and Welfare Ministerial Notification No. 64 Pursuant to Paragraph 1, Article 41 of the Law on Securing Quality, Efficacy and Safety of Products including Pharmaceuticals and Medical Devices (Law No. 145, 1960), the Japanese Pharmacopoeia (Ministerial Notification No. 65, 2011), which has been established as follows*, shall be applied on April 1, 2016. However, in the case of drugs which are listed in the Pharmacopoeia (hereinafter referred to as ``previ- ous Pharmacopoeia'') [limited to those listed in the Japanese Pharmacopoeia whose standards are changed in accordance with this notification (hereinafter referred to as ``new Pharmacopoeia'')] and have been approved as of April 1, 2016 as prescribed under Paragraph 1, Article 14 of the same law [including drugs the Minister of Health, Labour and Welfare specifies (the Ministry of Health and Welfare Ministerial Notification No. 104, 1994) as of March 31, 2016 as those exempted from marketing approval pursuant to Paragraph 1, Article 14 of the Same Law (hereinafter referred to as ``drugs exempted from approval'')], the Name and Standards established in the previous Pharmacopoeia (limited to part of the Name and Standards for the drugs concerned) may be accepted to conform to the Name and Standards established in the new Pharmacopoeia before and on September 30, 2017.
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0122919 A1 Schutze Et Al
    US 2012O122919A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0122919 A1 Schutze et al. (43) Pub. Date: May 17, 2012 (54) PHARMACEUTICAL COMPOSITION (30) Foreign Application Priority Data COMBINING TENATOPRAZOLE AND A HISTAMINE H2-RECEPTOR ANTAGONST Oct. 21, 2002 (FR) ...................................... 02/13114 (75) Inventors: Francois Schutze, Saint-Nom-La-Breteche (FR); Suzy Publication Classification Charbit, Creteil (FR); Hervé (51) Int. Cl. Ficheux, Nogent-sur-Marne (FR): A63L/437 (2006.01) Michel Homerin, Courcouronnes A6IPL/04 (2006.01) (FR); Alain Taccoen, Le Chesnay (FR); Nathalie Taccoen, legal representative, La Chesnay (FR); (52) U.S. Cl. ........................................................ S14/303 Yoshio Inaba, Tokyo (JP) (73) Assignees: MTSUBISH PHARMA CORPORATION, Tokyo (JP); (57) ABSTRACT SIDEM PHARMA, Luxembourg (LU) The invention relates to a novel pharmaceutical combination. The inventive pharmaceutical composition, which is intended (21) Appl. No.: 13/297,122 for the treatment of pathologies linked to gastric hyperacidity, (22) Filed: Nov. 15, 2011 comprises a combination of tenatoprazole and one or more O O histamine H2-receptor antagonists preferably selected from Related U.S. Application Data cimetidine, ranitidine, famotidine and nizatidine. The inven (63) Continuation of application No. 10/532,114, filed on tion is particularly suitable for the treatment of duodenal and Jun. 23, 2006, now abandoned, filed as application No. gastric ulcers and the symptoms of, and lesions caused by, PCT/FR2003/003124 on Oct. 21, 2003. gastroesophageal reflux. US 2012/O 122919 A1 May 17, 2012 PHARMACEUTICAL COMPOSITION nist Such as famotidine, with at least two standard antacids COMBINING TENATOPRAZOLE ANDA Such as Sodium bicarbonate and magnesium hydroxide, HISTAMINE H2-RECEPTOR ANTAGONST which display a strong neutralisation potential, and an alu minium hydroxide gel which exhibits weak neutralisation RELATED APPLICATIONS potential.
    [Show full text]
  • Multi-Layered Pharmaceutical Composition for Both Intraoral and Oral Administration
    Europäisches Patentamt *EP001260216A1* (19) European Patent Office Office européen des brevets (11) EP 1 260 216 A1 (12) EUROPEAN PATENT APPLICATION (43) Date of publication: (51) Int Cl.7: A61K 9/24, A61K 9/00, 27.11.2002 Bulletin 2002/48 A61K 9/48 (21) Application number: 02007778.0 (22) Date of filing: 06.04.2002 (84) Designated Contracting States: • Midha, Kamal K. AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU Hamilton HM 12, Bermuda (US) MC NL PT SE TR • Hirsh, Mark Designated Extension States: Wellesley, MA 2481 (US) AL LT LV MK RO SI • Lo, Whe-Yong Canton, MA 02021 (US) (30) Priority: 15.05.2001 US 858016 (74) Representative: (71) Applicant: Peirce Management, LLC COHAUSZ DAWIDOWICZ HANNIG & PARTNER Wellesley, MA 02481 (US) Schumannstrasse 97-99 40237 Düsseldorf (DE) (72) Inventors: • Hirsh, Jane C. Wellesley, MA 02481 (US) (54) Multi-layered pharmaceutical composition for both intraoral and oral administration (57) New pharmaceutical composition in unit dos- capable of intraoral administration; and age form 1 are disclosed for both intraoral and oral ad- ministration to a mammalian patient, said unit dosage (b) as a second portion 4 located within said first form configured to be placed intraorally of said patient, portion 3, a therapeutically effective amount of at which comprises: least one pharmaceutically active ingredient capa- ble of oral administration and which is releasable (a) as a first portion 3 , at least one discrete outer and orally ingestible by the patient after the outer layer comprising a therapeutically effective amount layer has disintegrated or has dissolved intraorally.
    [Show full text]
  • Rhubarb Tions of Bismuth Compounds (P.1712), and Ranitidine (P.1766)
    1768 Gastrointestinal Drugs trolav; Gastrulcer; Pep-Rani; Peptab; Peptifar; Quardin†; Ran†; Ranitine; Sta- 3. Anonymous. Pylorid, H. pylori and peptic ulcer. Drug Ther Bull Revaprazan (rINN) cer; Ulcecur†; Ulcerol†; Zantac; Rus.: Aciloc (Ацилок); Histac (Гистак); 1996; 34: 69–70. Ranigast (Ранигаст); Ranisan (Ранисан); Rantac (Рантак); Ulran (Ульран)†; 4. van der Wouden EJ, et al. One-week triple therapy with raniti- Révaprazan; Revaprazán; Revaprazanum. N-(4-Fluorophenyl)- Zantac (Зантак); Zoran (Зоран); S.Afr.: GI-Tak†; Histak; Ranihexal; Ran- dine bismuth citrate, clarithromycin and metronidazole versus 4,5-dimethyl-6-[(1RS)-1-methyl-3,4-dihydroisoquinolin-2(1H)- teen†; Ulcaid; Ultak; Zantac; Singapore: Gastran†; Histac; Hyzan; Lumaren; two-week dual therapy with ranitidine bismuth citrate and clari- yl]pyrimidin-2-amine. Neoceptin-R; Rani†; Ranidine; Ratic; Xanidine; Zantac; Zendhin; Zoran†; thromycin for Helicobacter pylori infection: a randomized, clin- Spain: Alquen; Arcid; Ardoral; Coralen; Denulcer; Fagus; Lake; Meticel†; ical trial. Am J Gastroenterol 1998; 93: 1228–31. Ревапразан Quantor; Ran H2; Ranidin; Ranix; Ranuber; Rubiulcer; Tanidina; Terposen; Toriol; Underacid; Zantac; Swed.: Artonil; Inside; Rani-Q; Zantac; Switz.: Preparations C22H23FN4 = 362.4. Ranimed; Ranisifar; Ulcidine; Zantic; Thai.: Aciloc; Histac; Radine†; Ranicid; CAS — 199463-33-7. Ranidine; Rantac; Ratic; Ratica; Utac; Xanidine; Zanamet; Zantac; Zantidon; Proprietary Preparations (details are given in Part 3) Zardil; Turk.: Ranitab; Ranitine; Ranobel; Rozon; Santanol; Ulcuran; Zandid; Arg.: Pylorid†; Austria: Helirad; Pylorisin; Belg.: Pylorid†; Braz.: Pylorid; Zantac; UAE: Rantag; UK: Gavilast; Ranitic; Ranitil; Rantec; Ranzac; Vivatak†; Cz.: Eradipak†; Denm.: Pylorid†; Fin.: Pylorid; Gr.: Pylorid; Hong Kong: Zaedoc†; Zantac; USA: Zantac; Venez.: Aplom; Enteral; Gastac; Ranibloc; Pylorid†; Hung.: Pylorid†; Irl.: Pylorid†; Ital.: Elicodil†; Pylorid; Mex.: Ranifesa†; Ranix†; Ranizan†; Retamin; Vizerul; Zantac; Zoran†.
    [Show full text]