Slopes, Rates of Change, and Derivatives
2.2 Slopes, Rates of Change, and Derivatives APPLICATION PREVIEW The Confused Creation of Calculus* Calculus evolved from consideration of four major problems that were current in 17th century Europe: how to define instantaneous velocity, how to define tangent lines to curves, how to find maxi- mum and minimum values of functions, and how to calculate areas and volumes, all of which will be discussed in this and the follow- ing chapters. While calculus is now presented as a logical mathe- matical system, it began instead as a collection of self-contradictory ideas and poorly understood techniques, accompanied by much controversy and criticism. It was developed by two people of dia- metrically opposed temperaments, Isaac Newton (1642–1727) and Gottfried Wilhelm Leibniz (1646–1716), each while in his twenties (Newton at age 22 and Leibniz at about 29). Newton attended mediocre schools in England, entered Cam- bridge University (with a deficiency in Euclidean geometry), im- mersed himself in solitary studies, and graduated with no particular distinction. He then returned to his family’s small farm where, during a 2-year period, he singlehandedly developed calcu- lus, in addition to the science of optics and the theory of universal gravitation, all of which he kept to himself. He then returned to Cambridge for a master’s degree and secured an appointment as a professor, after which he became even more solitary and intro- verted. A contemporary described him as never taking “any recre- ation or pastime either in riding out to take the air, walking, bowling, or any other exercise whatever, thinking all hours lost that was not spent in his studies.” He was often seen “with shoes down at heels, stockings untied,..., and his head scarcely combed.” He was not a popular teacher, sometimes lecturing to empty class- rooms, and his mathematical writings were very difficult to under- stand (he told one friend that he wrote this way intentionally “to avoid being bated by little smatterers in mathematics”).
[Show full text]